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Objective: Skin fibrosis is a lesion in the dermis causing to itching, pain, and 
psychological stress. The gut microbiome plays as an essential role in skin 
diseases developments. We  conducted a Mendelian randomization study to 
determine the causal association between the gut microbiome and skin fibrosis.

Methods: We retrieved valid instrumental variables from the genome-wide 
association study (GWAS) files of the gut microbiome (n  =  18,340) conducted by 
the MiBioGen consortium. Skin fibrosis-associated data were downloaded from 
the GWAS Catalog. Subsequently, a two-sample Mendelian randomization (MR) 
analysis was performed to determine whether the gut microbiome was related 
to skin fibrosis. A reverse MR analysis was also performed on the bacterial traits 
which were causally associated with skin fibrosis in the forward MR analysis. In 
addition, we performed an MR-Pleiotropy Residual Sum and Outlier analysis to 
remove outliers and a sensitivity analysis to verify our results.

Results: According to the inverse variance-weighted estimation, we identified 
that ten bacterial traits (Class Actinobacteria, Class Bacteroidia, family 
Bifidobacteriaceae, family Rikenellaceae, genus Lachnospiraceae (UCG004 
group), genus Ruminococcaceae (UCG013 group), order Bacteroidales, order 
Bifidobacteriales, genus Peptococcus and genus Victivallis) were negatively 
correlated with skin fibrosis while five bacterial traits (genus Olsenella, genus 
Oscillospira, genus Turicibacter, genus Lachnospiraceae (NK4A136group), and 
genus Sellimonas) were positively correlated. No results were obtained from 
reverse MR analysis. No significant heterogeneity or horizontal pleiotropy was 
observed in MR analysis.

Objective conclusion: There is a causal association between the gut microbiome 
and skin fibrosis, indicating the existence of a gut-skin axis. This provides a new 
breakthrough point for mechanistic and clinical studies of skin fibrosis.
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1 Introduction

Skin fibrosis is an imbalance between extracellular matrix 
(ECM) synthesis and dermal degradation in the dermis. The 
remodelling process often leads to a loss of physiological architecture 
and skin malfunction including keloids, hypertrophic scars, systemic 
sclerosis, and dystrophic epidermolysis. Skin fibrosis is usually 
caused by surgery, burns and trauma and causes disfiguration, 
limitation of movement, or even significant psychological distress, 
such as keloids (1, 2). Keloids are common dermal skin fibrotic 
diseases. Owing to its aggressive proliferation, it is considered as 
benign skin tumour that harms the patient’s physiological and 
psychological health (3, 4). Keloids are refractory to cure, and their 
recurrence rate is over 45%. There are various treatment options, 
including intralesional steroid injections and surgical resection 
combined with postoperative radiation (4, 5). Therefore, it is 
important to explore the aetiology and pathogenic processes of skin 
fibrosis to provide novel insights into its treatment.

Many microbial communities reside in the intestine and 
affect human health and disease (6, 7). For example, the gut 
microbiome has been reported as a risk or preventive factor that 
can indirectly affect the response to immunotherapy in cancers 
(6, 8). The gut microbiome also influences the maintenance of 
maternal and foetal health during pregnancy (9). Recently, 
researchers have found that the gut microbiome plays a significant 
role in a wide variety of skin disorders, such as acne vulgaris, and 
reported the existence of a gut-skin axis (10, 11). However, the 
relationship between the gut microbiome and skin fibrosis 
remains unclear. Probing this association can be helpful for the 
treatment and clarification of the mechanism of skin  
fibrosis.

Unfortunately, the gut microbiome is associated with 
confounding factors, such as age, lifestyle, and living environment. 
Controlling these confounding biases inherent is difficult in the 
observational studies (12, 13). The advent of Mendelian 
randomization (MR) reduces the effect of these biases (14, 15). As 
Genome-wide association studies (GWAS) have greatly improved, 
we can observe the genetic susceptibility to the gut microbiome and 
skin fibrosis (16, 17). MR can be  considered a new method for 
exploring the relationship between the gut microbiome and skin 
fibrosis (8, 13, 18).

In this study, we used two-sample MR analysis, an extension of 
the MR method, to analyse GWAS summary statistics from MiBioGen 
and the GWAS Catalog. Based on these results, we aimed to identify 
the role of the gut microbiome in skin fibrosis and propose new 
treatment strategies.

2 Materials and methods

2.1 Design of study

A two-sample MR study was performed to examine the causal 
association between the gut microbiome and skin fibrosis (Figure 1). 
First, we  identified a valid instrumental variable (IV). IVs must 
be associated with exposure but not with confounders. IVs must relate 
to outcomes only through exposure. Second, the appropriate IVs were 
subjected to MR analysis. Sensitivity analysis was conducted to verify 
these results (18, 19).

2.2 Data preparation

Human gut microbiome GWAS statistics were retrieved from the 
MiBioGen Consortium, an international project on genome-wide 
genotypes, and 16S faecal microbiome data (17, 20). In total, 194 
bacterial traits were identified in the dataset. In this project, 18,340 
individuals from 24 cohorts were included, of which 13,266 were of 
European ancestry. Thus, participants of European ancestry were 
selected to reduce the influence of ethnicity. We obtained GWAS data for 
keloids from GCST90044522. This study included 201 cases and 456,147 
controls of European descent. In addition, summary genetic data for scar 
conditions and skin fibrosis were downloaded from GCST90044521 
including 1,887 cases and 454,461 controls (Table 1) (21). The detail of 
gut microbiome was also shown (Supplementary Table S1).

2.3 Single nucleotide polymorphisms 
selection

We selected appropriate SNPs as IVs to reduce biases and improve 
the credibility of the results. The selection criteria were as follows: (1) 
the SNP was associated with the gut microbiome (p < 5 × 10−6); (2) the 
SNP was independent (r2 < 0.01 and clump distance >10,000 kb, EUR 
population reference); (3) it was highly correlated to exposure traits 
(the F-statistic >10); (4) palindromic SNPs were harmonized in 
exposure and outcome data; and (5) the SNPs associated with potential 
risk factors, such as inflammatory factor, were deleted based on 
PhenoScanner V2 (5, 16, 18, 22, 23).

2.4 Statistical analyses

Before the MR analysis, we performed an MR-Pleiotropy Residual 
Sum and Outlier (MR-PRESSO) analysis to identify and 
remove outliers.

We performed MR analysis using the inverse variance-weighted 
(IVW), MR–Egger, weighted median, simple mode, and weighted 
mode methods. We chose the IVW as the primary method because it 
can provide more robust estimates in a broader set of scenarios. Other 
methods serve as complementary methods (8, 18, 24).

To verify our study, we performed a sensitivity analysis using 
Cochran’s test. Heterogeneity was tested using Cochran’s Q test. If the 
Q statistic is p < 5 × 10−2, it indicates the presence of heterogeneity (25, 
26). We tested for the pleiotropic effect using the MR–Egger regression 
intercept. There was no horizontal pleiotropy of the study when 
p > 5 × 10−2 (24). Furthermore, a leave-one-out analysis was used to 
assess the horizontal pleiotropy. Finally, reverse MR analysis was 
performed using the same methods and settings (8, 13).

Statistical analyses were performed using R version 4.3.0, and the 
MR analysis was performed using the TwosampleMR package 
(version 0.5.7) (27).

3 Results

3.1 IVs associated with the gut microbiome

1,384 SNPs were retrieved from 194 bacterial traits, including 
phyla, classes, orders, families, and genus levels by the genera. There 
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was no bias in weak IVs (all F > 17). Additional details are provided in 
Supplementary Table S2.

3.2 Causal effects of the gut microbiome 
on skin fibrosis

We performed an MR analysis of 194 bacterial traits 
(Supplementary Table S3). Most of these factors were not associated 

with skin fibrosis. However, 15 bacterial features were potentially 
associated with skin fibrosis. The odds ratio (OR) of Class 
Actinobacteria was 0.2822, while the 95% confidence interval (CI) was 
0.0895–0.8903, and the p value was 3.09 × 10−2. The OR of Class 
Bacteroidia was 0.0659, the 95% CI was 0.0097–0.4479, and the p value 
was 5.4 × 10−3. The OR of family Bifidobacteriaceae was 0.2940, while 
the 95% CI was 0.0902–0.9583, and the p value was 4.23 × 10−2. The 
OR of family Rikenellaceae was 0.2142, the 95% CI was 0.0697–0.6590 
and the p value was 7.2 × 10−3. The OR of genus Lachnospiraceae 

FIGURE 1

Flow plot and design of study.

TABLE 1 Overview of study data.

Study name Year Trait Source Sample size
Number of 

SNPs
Population

MiBioGen 2023 Gut microbiome MiBioGen 

consortium

18,340 121,548 United Kingdom, 

Finland, Sweden, etc.

GCST90044522 2021 Keloid scar GWAS Catalog 456,348 11,842,647 European (United 

Kingdom)

GCST90044521 2021 Scar conditions and 

fibrosis of skin

GWAS Catalog 456,348 11,842,647 European (United 

Kingdom)
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(UCG004 group) was 0.2374, the 95% CI was 0.0624–0.9041 and the 
p value was 3.5 × 10−2. The OR of genus Olsenella was 2.5613, the 95% 
CI was 1.2878–5.0942 and the p value was 7.3 × 10−3. The OR of genus 
Oscillospira was 6.1185, the 95% CI was 1.0705–34.9693 and the p 
value was 4.17 × 10−2. The OR of genus Ruminococcaceae (UCG013 
group) was 0.2604, while the 95% CI was 0.0726–0.9344 and the p 
value was 3.9 × 10−2. The OR of genus Turicibacter was 3.1178, while 
the 95% CI was 1.0212–9.5186 and the p value was 4.59 × 10−2. The OR 
of order Bacteroidales was 0.0658, while the 95% CI was 0.0097–0.4479 
and the p value was 5.4 × 10−3. The OR of order Bifidobacteriales was 
0.2940, while the 95% CI was 0.0902–0.9583 and the p value was 
4.23 × 10−2. These were causally associated with keloids. Moreover, the 
OR of genus Lachnospiraceae (NK4A136group) was 1.8274, while the 
95% CI was 1.2810–2.6067 and the p value was 9 × 10−4. The OR of 
genus Peptococcus was 0.7292, while the 95% CI was 0.5679–0.9362 
and the p value was 1.33 × 10−2. The OR of genus Sellimonas was 
1.4268, the 95% CI was 1.0915–1.8651 and the p value was 9.3 × 10−3. 
The OR of genus Victivallis was 0.6990, while the 95% CI was 0.5474–
0.8925 and the p value was 4.1 × 10−3. The OR > 1 means that the gut 
microbiome was positively associated with skin fibrosis while the 
OR < 1 means negatively associated with skin fibrosis. Besides, p < 0.05 
means the result is statistically significant (Figure 2). These results 
indicate that the gut can affect skin disease, supporting the existence 
of the gut-skin axis (Figure  3). Refer to single nucleotide 
polymorphisms annotator (SNIPA), the genes associated with SNP of 
these bacterial trait were exhibited in Supplementary Table S4.

In addition, we used the traditional GWAS significance threshold 
(p < 5 × 10−8) as the selection criterion for the IVs. However few SNPs 
remained, and no significant results were observed in 
Supplementary Table S5.

In the reverse MR analysis, we found that there were not enough 
SNPs that were limited by the size of the gut microbiome. Using the 
selection criteria, no IVs were found in the skin fibrosis and gut 
microbiome data simultaneously.

3.3 Sensitivity analysis

According to Cochran’s Q test and MR–Egger regression intercept 
analysis, there was no significant heterogeneity or directional 
horizontal pleiotropy. Furthermore, the results of MR-PRESSO 
showed no outliers (Table 2). Leave-one-out analysis was performed 
to verify the MR results. Forest plots, scatter plots and funnel plots for 
the causal association between the gut microbiome and skin fibrosis 
are also shown (Figure 4, Supplementary Figures S1–S14).

4 Discussion

In the occurrence of skin disease, researchers observe microbial 
dysbiosis both in the gut and skin (10, 28). For example, the 
microbiological composition of healthy skin is balanced with proper 

FIGURE 2

Association between gut microbiome (15 bacterial features of MiBioGen consortium) and skin fibrosis (GCST90044521 & GCST90044522) (p  <  5  ×  10−6). 
Color code  =  “#48D1CC,” “#FA8072” and “#FF0000.”
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quantities of human and microbial antimicrobial peptides (AMPs). 
AMPs are a secretory product of epithelial and immune cells regulated 
by the Toll-like receptor (TLR) pathway. AMPs can maintain intestinal 

homeostasis and prevent the entry of gut bacteria into the 
bloodstream. When TLR pathways are inhibited, gut allostasis occurs. 
Dysbiosis of the gut microbiome influences the conversion of complex 

FIGURE 3

Existence of gut-skin axis supported by a two-sample Mendelian randomization (15 bacterial features of MiBioGen consortium). Color 
code  =  “#48D1CC,” “#FA8072” and “#FF0000.”

TABLE 2 MR results of causal relationship between gut microbiome and skin fibrosis.

Gut microbiome Method OR (95% CI)
p-

value
Q 

statistic
Q p-
value

Egger 
intercept

Intercept 
p-value

MR-
PRESSO

Keloid

class.Actinobacteria IVW 0.2822 (0.0895–0.8903) 0.0309 3.9086 0.7902 0.1394 0.4067 —

class.Bacteroidia IVW 0.0659 (0.0097–0.4479) 0.0054 6.6544 0.2476 0.1818 0.3859 —

family.Bifidobacteriaceae IVW 0.2940 (0.0902–0.9583) 0.0423 2.1649 0.9040 0.0789 0.6206 —

family.Rikenellaceae IVW 0.2142 (0.0697–0.6590) 0.0072 6.9211 0.6453 −0.0421 0.7085 —

genus.LachnospiraceaeUCG004 IVW 0.2374 (0.0624–0.9041) 0.0350 1.1241 0.9805 −0.0233 0.9238 —

genus.Olsenella IVW 2.5613 (1.2878–5.0942) 0.0073 2.9761 0.8118 0.1516 0.4188 —

genus.Oscillospira IVW 6.1185 (1.0705–34.9693) 0.0417 0.3714 0.8305 −0.2023 0.7318 —

genus.RuminococcaceaeUCG013 IVW 0.2604 (0.0726–0.9344) 0.0390 6.3107 0.3893 −0.0934 0.5678 —

genus.Turicibacter IVW 3.1178 (1.0212–9.5186) 0.0459 4.3163 0.5048 0.0031 0.9940 —

order.Bacteroidales IVW 0.0658 (0.0097–0.4479) 0.0054 6.6544 0.2476 0.1818 0.3859 —

order.Bifidobacteriales IVW 0.2940 (0.0902–0.9583) 0.0423 2.1649 0.9040 0.0789 0.6206 —

Scar conditions and fibrosis of skin

genus.

LachnospiraceaeNK4A136group

IVW 1.8274 (1.2810–2.6067) 0.0009 5.0928 0.5320 −0.0096 0.7544 —

genus.Peptococcus IVW 0.7292 (0.5679–0.9362) 0.0133 3.4440 0.8411 −0.0091 0.8772 —

genus.Sellimonas IVW 1.4268 (1.0915–1.8651) 0.0093 2.4355 0.4871 −0.0504 0.6215 —

genus.Victivallis IVW 0.6990 (0.5474–0.8925) 0.0041 2.6004 0.6267 −0.1390 0.2982 —

p-value < 0.05 shows that there is a potential association between gut microbiome and skin fibrosis. Q p-value < 0.05 shows that there is heterogeneity in the analysis. Intercept p-value < 0.05 
shows that there is pleiotropic effect in the analysis and the result is not credible.
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FIGURE 4

Leave-one-out plot, forest plot, funnel plot and scatter plot of class. Actinobacteria.

polysaccharides into vitamins and short-chain fatty acids (SCFAs) to 
improve the integrity of the gut barrier (10). They may also affect 
nitric oxide (NO) production and influence blood flow through the 
denitrification pathway (29). Impairment of intestinal epithelial cells 
leads to reduce production of AMPs and immunoglobulin A (IgA), 
which exacerbates gut microbial dysbiosis. As a result, gut bacteria 
enter the bloodstream through the gut wall and then reach the skin, 
causing dysbiosis of the skin microbiome and tissue inflammation (10, 
11, 30).

The skin performs its functions and undergoes constant renewal 
during homeostasis. Gut microbial dysbiosis can cause skin allostasis 
(11, 31). For example, the dysbiosis of Firmicutes and Bacteroides 
alters the serological cytokine levels and promotes inflammation, 
leading to the development of acne vulgaris (31). This interaction is 
mainly mediated by the immune system (10, 32). Additionally, 
bacterial metabolites, such as butyrate, are related to the integrity of 
the epithelial barrier which engages to protect the skin (10, 30, 33, 34). 
Intact skin is crucial for maintaining homeostasis (35). This intricate 

interaction is known as the gut-skin axis. However, there are few 
reports on the role of gut-skin axis in skin fibrosis (28). Thus, 
we  designed an MR analysis to determine the impact of the gut 
microbiome on the skin.

In this study, we evaluated the casual association between the 
abundance of specific bacterial signatures and the risk of skin fibrosis. 
Ten bacterial traits showed protective effects against skin fibrosis: 
Class Actinobacteria, Class Bacteroidia, family Bifidobacteriaceae, 
family Rikenellaceae, genus Lachnospiraceae (UCG004 group), genus 
Ruminococcaceae (UCG013 group), order Bacteroidales, order 
Bifidobacteriales, genus Peptococcus, and genus Victivallis. The genus 
Olsenella, genus Oscillospira, genus Turicibacter, genus Lachnospiraceae 
(NK4A136group), and genus Sellimonas are risk factors for skin 
fibrosis. In a randomised clinical pilot trial, participants consecutively 
consumed milk containing family Bifidobacteriaceae twice a day for 
8 weeks. Compared with the pre-intake period, researchers found that 
the relative abundance levels of family Bifidobacteriaceae were 
significantly increased, and the skin condition of participants 
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improved (36). Genus Lachnospiraceae (UCG004 group) acts as 
probiotics and increases the production of SCFAs including butyric 
acid for skin homeostasis (33, 37). Sodium butyrate dampens the 
profibrotic response induced by TGF-β1 in human dermal fibroblasts 
(38). A study reported higher abundance levels of genus Turicibacter 
in patients with systemic lupus erythematosus than in healthy 
individuals (39). These results are consistent with those of our study 
and support the existence of a gut-skin axis. Besides, Order 
Bacteroidales and genus Olsenella are associated with checkpoint 
blockade immunotherapy in melanoma (40, 41). The mechanism 
underlying other bacterial traits in the gut-skin axis remains to 
be elucidated.

There are currently no effective treatments for skin fibrosis (2). 
With the development of research on gut microbiome and skin 
fibrosis, we can elucidate the mechanisms of skin fibrosis and explore 
new therapeutic targets. These include the intake of probiotics, 
transplantation of the faecal microbiome, dietary modification, and 
drug–microbiome combination treatment (42–45). Relative 
abundances of gut microbiome were regularly detected in the 
suspected population. Before the disease onset, early screening and 
diagnosis can be performed by engineering the gut microbiome and 
restoring intestinal homeostasis. In the context of skin fibrosis, 
we propose novel and effective therapeutic strategies based on changes 
in specific gut microbiome abundance levels. Based on these levels, 
we  can evaluate the effects of treatment and adjust therapeutic 
strategies for precise treatment. After treatment, diet can be leveraged 
to optimise SCFA production, maintain a healthy gut-skin axis, and 
reduce the risk of recurrence (46). To achieve this goal, we not only 
need appropriate data analysis to probe the causal association between 
the gut microbiome and skin fibrosis but also require a large number 
of rigorous clinical trials for validation.

Our study has some limitations. First, the results might not 
be entirely applicable to individuals of non-European descent because 
almost all samples are European, and only a few gut microbiome 
samples are from other races (17, 20, 21). Second, there might be a 
possibility of identifying false-positive findings owing to the absence 
of no Bonferroni correction. However, the results with IVW-derived 
p values less than 0.05 should also be treated cautiously (14). Third, 
the GWAS data for the gut microbiome were coordinated using by 16S 
rRNA gene sequencing, and the lowest taxonomic level was the genus. 
As a result, it is difficult to estimate the relationships between specific 
strains or species and skin fibrosis (17, 18). Additionally, we cannot 
exclude a reverse causal association between the gut microbiome and 
skin fibrosis because of the relatively small size of the gut microbiome. 
We hope that future GWAS data of the gut microbiome will be more 
sufficient, and we can perform analyses between a specific species and 
skin fibrosis in both European and non-European populations to 
reduce bias and improve universality.

5 Conclusion

The MR analysis revealed a causal association between the gut 
microbiome and skin fibrosis, supporting the existence of the gut-skin 
axis. When confronted with skin fibrosis, we also need to be cautious 
of the condition of the gut microbiome. Abundance of the gut 
microbiome can be a potential biomarker for early diagnosis and 
treatment of skin fibrosis. The role of the gut-skin axis in skin fibrosis 
requires further investigation.
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