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Background: Muscle atrophy affects more than 50% of patients with chronic 
kidney disease (CKD) and is associated with increased morbidity and mortality. It 
is crucial to understand the mechanisms involved in the muscle atrophy in CKD 
and search for specific determinants of skeletal muscle mass loss, especially 
those which are available in everyday medical practice. This study aimed to 
evaluate the association between appendicular skeletal muscle mass (ASM) and 
anthropometric, body composition, nutritional, inflammatory, metabolic, and 
kidney function variables in non-dialysis-dependent CKD men.

Methods: A total of 85 men with CKD and eGFR lower than 60  mL/min/1.73  m2 
were included in the cross-sectional study: 24 participants with eGFR 59–45  mL/
min/1.73  m2, 32 individuals with eGFR 44–30  mL/min/1.73  m2, and 29 men with 
eGFR ≤29  mL/min/1.73  m2. ASM was estimated by bioimpedance spectroscopy 
(BIS) with the use of a Body Composition Monitor (BCM). To evaluate ASM 
from BCM, Lin’s algorithm was used. Among anthropometric parameters, 
height, weight, and body mass index (BMI) were measured. Serum laboratory 
measurements were grouped into kidney function, nutritional, inflammatory, 
and metabolic parameters.

Results: ASM was significantly associated with anthropometric and body 
composition variables. According to the anthropometric parameters, ASM 
correlated positively with weight, height, and BMI (p  <  0.001 and r  =  0.913, 
p  <  0.001 and r  =  0.560, and p  <  0.001 and r  =  0.737, respectively). Among body 
composition variables, ASM correlated significantly and positively with lean tissue 
mass (LTM) (p  <  0.001, r  =  0.746), lean tissue index (LTI) (p  <  0.001, r  =  0.609), fat 
mass (p  <  0.001, r  =  0.489), and fat tissue index (FTI) (p  <  0.001, r  =  0.358). No 
other statistically significant correlation was found between ASM and kidney, 
nutritional, metabolic, and inflammatory variables.
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Conclusion: In male patients with CKD stages G3–G5 not treated with dialysis, 
ASM correlates significantly and positively with anthropometric and body 
composition parameters such as weight, height, BMI, LTM, LTI, fat mass, and 
FTI. We did not observe such relationship between ASM and kidney function, 
nutritional, metabolic, and inflammatory variables.
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Introduction

Muscle atrophy is one of the complications of chronic kidney 
disease (CKD) and is highly prevalent in this group of patients. 
Decreased skeletal muscle mass in CKD leads to muscle strength 
reduction, the loss of patients’ functional independence, and low 
physical activity. On the other hand, sedentary lifestyle enhances 
muscle wasting and muscle atrophy. Reduced skeletal muscle mass is 
associated with increased morbidity, higher number of 
hospitalizations, and elevated mortality rate (1). Muscle atrophy in 
CKD is caused by an imbalance between anabolic and catabolic 
processes in muscle tissue which is in turn the result of numerous 
derangements such as metabolic acidosis, increased low-grade 
inflammatory state, insulin resistance, hormonal alterations, changes 
in adipocytokine profile, and the impaired mechanisms of 
hypothalamic appetite regulation (2). Decreased muscle mass deepens 
with the progression of kidney function impairment and may 
be  diagnosed in 9.5% to even up to 73.4% of patients requiring 
hemodialysis treatment (3, 4).

Muscle mass-related measurements such as mid-arm muscle 
circumference (MAMC) or numerous tools such as malnutrition-
inflammation score (MIS) have been used in the evaluation of 
nutritional status in CKD for many years (5, 6). Although accurate 
assessment of skeletal muscle mass is not included in the diagnostic 
process of protein-energy wasting (PEW), cachexia and frailty 
which reflect malnutrition, it is one of the components of 
sarcopenia (7, 8).

The presence of reduced skeletal muscle mass and/or impaired 
muscle quantity, along with low muscle strength, enables to diagnose 
sarcopenia according to the updated guidelines of the European 
Working Group on Sarcopenia in Older People (EWGSOP2) 2018 
(9). Due to the lack of specific assessment criteria for patients with a 
kidney function decrease, the EWGSOP2 criteria are also used in 
research studies in the CKD population. Sarcopenia is nowadays 
thought to be associated with increased morbidity and mortality 
(10). The prevalence of sarcopenia in CKD increases with the 
progression of kidney function decrease and ranges from 5.9 to 55% 
in non-dialysis-dependent CKD patients to up to 63.3% in those 
undergoing hemodialysis treatments (3, 11). However, there still 
exist numerous patients with CKD who have normal muscle quality 
or quantity but low muscle strength, and conversely, those with 
proper muscle strength but decreased muscle mass. These patients 
should not be classified as sarcopenic, but rather as pre-sarcopenic 
individuals (12, 13). It is advisable to overtake the sarcopenia 
development in CKD population by diagnosing those two 

compartments separately which could enable to implement proper 
therapeutic procedures as well as lifestyle and nutritional  
modification.

There are several techniques which evaluate muscle mass 
including magnetic resonance imaging (MRI), computed tomography 
(CT), and dual-energy X-ray absorptiometry (DXA) which is also 
used to measure appendicular skeletal muscle mass (ASM) (9). A 
simple, easy to use and not expensive method that also allows to 
evaluate muscle mass is bioelectrical impedance analysis (BIA). BIA 
uses a current with a single frequency of 50 kHz, evaluates the overall 
electrical conductivity of the body, and provides estimation for total 
body water, fat-free mass (FFM), and fat mass (FM). The main 
disadvantage of this method is the possibility of measurement 
imprecision in case of hydration disturbances, which are frequent in 
the state of kidney failure. A more accurate alternative to BIA is 
multifrequency bioimpedance spectroscopy (BIS). This technique uses 
various current frequencies (ranging from 1 to 1,000 kHz) to 
determine total body water (TBW), as well as extracellular water 
(ECW) and intracellular water (ICW), lean tissue mass (LTM), and 
adipose tissue mass (ATM) (14). BIS has greater accuracy than BIA in 
evaluating hydration status, and thus, it is preferably used in CKD 
patients (15). By employing various different equations, bioimpedance 
analysis assesses ASM (16–18).

The concentration changes of serum parameters which may 
be simply evaluated in medical everyday practice were observed to 
be  associated with the loss of muscle mass, for example, plasma 
albumin was found to be related positively to skeletal muscle mass in 
the general population of elderly (19). Increased subclinical 
inflammatory status which is observed in CKD patients also 
contributes to skeletal muscle atrophy (20). In addition, hormonal 
alterations including the derangement of testosterone, growth 
hormone (GH), and insulin in patients with a kidney function 
decrease take a significant part in lowering muscle mass (21). 
Moreover, the deficiency of vitamin D in CKD also contributes to 
muscle atrophy in this group (22).

Because decreased skeletal muscle mass in CKD is associated with 
increased morbidity and mortality, it is desirable to understand the 
mechanisms involved in the loss of ASM and to search for relationships 
between ASM and multivarious parameters to find potential 
determinants of skeletal muscle mass loss, especially those which are 
available in everyday medical practice. Only few studies evaluated the 
relationships between ASM and different parameters in CKD patients, 
indicating the need for such analyses (23, 24).

This study aimed to evaluate the association between ASM and 
anthropometric, body composition, nutritional, inflammatory, 
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metabolic, and kidney function variables in non-dialysis-dependent 
CKD men.

Materials and methods

Study design

We performed a cross-sectional study which included male 
patients with CKD not treated with dialysis.

Patients

Participants who were recruited for the study remained under care 
and visited Nephrological Outpatient Clinic of the Military Institute 
of Medicine-National Research Institute in Warsaw, Poland, for a 
routine check-up. All patients were enrolled to the study between 
November 2018 and February 2020. A total of 85 men with CKD and 
eGFR lower than 60 mL/min/1.73 m2 were included. Each participant 
signed an informed consent. Participants were classified into three 
groups based on the value of eGFR according to KDIGO 2012 Clinical 
Practice Guideline for the Evaluation and Management of Chronic 
Kidney Disease: patients with eGFR 59–45 mL/min/1.73 m2—stage 
G3a, participants with eGFR 30–44 mL/min/1.73 m2—stage G3b, and 
individuals with eGFR ≤29 mL/min/1.73 m2—stage G4–G5 (25). The 
inclusion criteria were age between 18 and 80 years and eGFR <60 mL/
min/1.73 m2. The exclusion criteria were as follows: the lack of 
agreement to take part in the study, clinical signs of infection, the 
presence of metal parts in the body, and renal replacement therapy or 
its requirement within the following 3 months.

Studied variables

Muscle mass
Muscle quantity was measured by BIS with the use of a Body 

Composition Monitor (BCM, Fresenius Medical Care) after 12 h of 
fasting. Patients were asked to avoid physical exertion and alcohol 
consumption the day before the examination. Patients remained in a 
supine position after a 5 min rest with electrodes placed on the one 
hand and one foot in a tetrapolar configuration. To evaluate muscle 
mass from BCM, we used the Lin’s algorithm, which derived a formula 
for ASM estimation based on parameters obtained from bioimpedance 
spectroscopy and the sum of fat-free soft tissues in the arms and legs 
assessed from DXA (16).

 

ASM total body water

body weight
BCM = − + × +

× −
1 838 0 395

0 105 0 0

. .

. . 226

1 231

× +
( )

age

if male.

Lin’s prediction model was originally based on the observations 
of the group of Taiwanese patients with CKD in which Pearson’s 
correlation coefficient between estimated ASMBCM and ASMDXA was 
r = 0.953 (p < 0.001). The limit of agreement of model-derived ASM 
compared to DXA-derived ASM was 0.098 ± 2.440 kg in Bland–
Altman analysis.

We applied Lin’s formula to the independent sample of 109 Polish 
CKD patients (eGFR <30 mL/min/1.73 m2) in which both DXA and 
BCM measurements were collected to validate Lin’s prediction model. 
The study design has been previously described (26). The Pearson 
correlation coefficient between estimated ASMBCM and ASMDXA was 
0.954 (p < 0.001), and the limit of agreement in Bland–Altman analysis 
of model-derived ASM compared to DXA-derived ASM was 
0.949 ± 2.698 kg.

Anthropometric parameters
Among anthropometric parameters, we measured height, weight, 

and body mass index (BMI).
Height was measured with the use of calibrated stadiometer. The 

patient was standing straight and barefoot with heels joined on a 
stadiometer, lightly touched the chin to the neck, joined the heels, and 
pressed the entire body against the stadiometer. The measurement 
device of the stadiometer lightly touched the top of the head called 
the vertex.

The weight of patients was measured in a standing position with 
the use of calibrated weight scale.

BMI was calculated by dividing patient weight in kilograms by the 
square of height in meters.

Body composition measurements
Body compositions including lean tissue mass (LTM), lean tissue 

index (LTI), fat mass (Fat), relative fat (Rel Fat), fat tissue index 
(FTI), overhydration (OH), and relative overhydration (Rel OH) 
were measured by bioimpedance spectroscopy with the use of a 
Body Composition Monitor (Fresenius Medical Care, Bad Homburg, 
Germany). LTI was calculated as lean tissue mass in kilograms 
divided by height in squared meters, and FTI was calculated as fat 
mass in kilograms divided by height in squared meters.

Blood sample measurements
Blood samples for laboratory measurements were taken after an 

overnight fast and were analyzed in the local Department of 
Laboratory Diagnostics. Laboratory measurements were grouped into 
kidney function parameters: serum creatinine, estimated glomerular 
filtration rate (eGFR), and urea; nutritional parameters: serum 
albumin, total cholesterol, hemoglobin, and vitamin D; inflammatory 
parameters: C-reactive protein (CRP) and tumor necrosis factor-alpha 
(TNF-alpha); metabolic parameters: low-density lipoprotein 
cholesterol (LDL), high-density lipoprotein cholesterol (HDL), 
triglycerides (TG), serum glucose, hemoglobin A1c (HgbA1c), insulin, 
and homeostatic model assessment of insulin resistance (HOMA-IR). 
Serum creatinine concentrations were analyzed using Jaffe method 
(Gen.2, Roche Diagnostics GmbH, Rotkreuz, Switzerland) and serum 
urea levels using urease kinetic test (Cobas c501, Roche Diagnostics, 
GmbH, Rotkreuz, Switzerland). Plasma albumin levels were measured 
with the use of the BCP Albumin Assay Kit (Roche Diagnostics 
GmbH, Rotkreuz, Switzerland), and serum concentration of CRP was 
determined by a nephelometry assay (BN™ II System Siemens). 
Samples for measuring TNF-alpha levels were assessed using the 
Bio-Plex MAGPIX (Luminex Corporation, Austin, TX, United States).

The assessment of eGFR
eGFR (mL/min per 1.73 m2) was calculated according to the short 

Modification of Diet in Renal Disease (MDRD) formula: GFR in mL/
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min per 1.73 m2 = 175 × SerumCr (−1.154) × age (−0.203) × 1.212 (if patient 
is black).

Ethics consideration

The study was conducted in accordance with the Declaration of 
Helsinki. The study protocol was accepted by the local ethics 
committee—Bioethics Committee in Military Institute of Medicine-
National Research Institute in Warsaw, Poland, IRB acceptance 
number 120/WIM/2018, obtained 22 August 2018.

Statistical analysis

The results are presented as means ± standard deviations (SD) for 
normally distributed data or medians and interquartile ranges (25th–
75th percentiles) for skewed distributions. The Kolmogorov–Smirnov 
test was used to evaluate distributions for normality. One-way 
ANOVA with trend analysis or Jonckheere–Terpstra test was applied 
for trend evaluations across CKD stages, depending on assumption 
regarding distributions. For correlation analysis, Pearson’s correlation 
coefficients and partial correlation coefficients were calculated. A 
p-value of <0.05 was considered to be statistically significant. Statistical 
analysis was performed using IBM SPSS v.25.0 software (SPSS Inc., 
Chicago, IL, United States).

Results

The study sample consisted of 85 male patients: 24 participants 
with eGFR 59–45 mL/min/1.73 m2 (G3a, 28.2%), 32 individuals with 
eGFR 44–30 mL/min/1.73 m2 (G3b, 37.6%), and 29 men with eGFR 
≤29 mL/min/1.73 m2 (G4–5, 34.1%). The mean age of all participants 

was 64 years. Patients with eGFR <29 mL/min/1.73 m2 were younger 
than individuals in stages G3b and G3a of CKD. We did not observe 
significant differences between the three groups of patients according 
to ASM and anthropometric variables. Men with stage G4-5 of CKD 
presented significantly higher fluid overload (p = 0.006, p = 0.008) 
(Table 1).

All patients had serum creatinine concentrations above 1.2 mg/dL, 
and 70.2% of participants had plasma urea levels above 55 mg/
dL. Serum albumin concentrations lower than 3.9 g/dL were observed 
in 6.0% of all participants. Plasma hemoglobin was lower than 11 g/dL 
in 14.1% of patients, and total cholesterol was lower than 200 mg/dL in 
30.6% of participants. Serum vitamin D below 30 ng/mL was observed 
in 89.1% patients. All participants had plasma CRP more than or equal 
to 0.1 mg/dL. Serum LDL concentrations were above 130 mg/dL in 
29.4% of patients, 21.1% of participants had plasma HDL lower than 
35 mg/dL, and serum TG levels above 165 mg/dL were found in 43.5% 
of individuals. Plasma glucose concentrations were above 106 mg/dL in 
35.7% of patients. Insulin levels were above 24.9 μIU/mL in 29.4% of 
individuals, and 72.6% of patients had HOMA-IR more than or equal 
to 2.0. HgbA1c was observed to be above 6.5% in 23.5% of participants.

Participants with lower eGFR had significantly lower serum 
albumin, plasma hemoglobin, and serum vitamin D concentrations 
(ptrend = 0.019, ptrend < 0.001, and ptrend = 0.038, respectively) and higher 
TNF-alpha plasma levels (ptrend = 0.001) (Table 2).

We found that older patients had lower ASM (p = 0.013). The 
analysis of correlation between ASM and studied variables revealed 
that ASM was significantly associated mainly with anthropometric 
and body composition variables. According to the anthropometric 
parameters, ASM correlated positively with weight, height, and BMI 
(p < 0.001, p < 0.001, and p < 0.001, respectively). Among body 
composition variables, ASM correlated significantly and positively 
with LTM (p < 0.001), LTI (p < 0.001), fat mass (p < 0.001), and FTI 
(p < 0.001) (Table 3). Among blood measurements, we observed a 
negative statistically significant relationship between ASM and HDL 

TABLE 1 Anthropometric and body composition characteristics of the studied population.

Total (n  =  85) CKD stage ptrend

G3a (n  =  24) G3b (n  =  32) G4–5 (n  =  29)

ASM (BIS) [kg] 24.88 ± 4.50 25.18 ± 3.61 24.31 ± 4.69 25.27 ± 5.02 0.897

Age [years] 63.93 ± 10.56 65.79 ± 8.56 66.56 ± 11.50 59.48 ± 9.83 0.021

Anthropometric parameters

Weight [kg] 89.41 ± 16.64 90.43 ± 14.25 89.85 ± 16.87 88.08 ± 18.61 0.606

Height [m] 1.75 ± 0.07 1.75 ± 0.06 1.74 ± 0.08 1.75 ± 0.07 0.729

BMI [kg/m2] 29.27 ± 4.82 29.54 ± 4.12 29.77 ± 5.27 28.50 ± 4.91 0.414

Body composition parameters

LTM [kg] 51.00 ± 10.33 52.60 ± 7.94 48.14 ± 10.13 52.83 ± 11.82 0.843

LTI [kg/m2] 16.67 ± 2.94 17.16 ± 2.06 15.90 ± 3.08 17.11 ± 3.31 0.961

Fat [kg] 27.52 ± 10.99 27.49 ± 9.57 30.05 ± 10.27 24.76 ± 12.47 0.319

Rel Fat [%] 30.05 ± 8.40 29.80 ± 6.63 32.83 ± 8.00 27.19 ± 9.34 0.197

FTI [kg/m2] 12.29 ± 4.84 12.24 ± 4.22 13.60 ± 4.78 10.89 ± 5.14 0.258

OH [L] 0.20 ± 1.96 −0.42 ± 1.27 −0.07 ± 1.63 1.02 ± 2.47 0.006

Rel OH [%] 0.46 ± 9.14 −2.34 ± 6.63 −0.78 ± 8.00 4.14 ± 11.01 0.008

ASM (BIS), appendicular skeletal muscle mass measured by bioimpedance spectroscopy; BMI, body mass index; LTM, lean tissue mass; LTI, lean tissue index; Rel Fat, relative fat; FTI, fat 
tissue index; OH, overhydration; Rel OH, relative overhydration; eGFR, estimated glomerular filtration rate; ptrend-values < 0.05 are marked in bold.
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(p < 0.001) and a positive between ASM and TG (p = 0.038). However, 
after adjustment for BMI, using partial correlation analysis, there was 
neither statistically significant association between HDL and ASM nor 
between TG and ASM (rpartial = −0.001, p = 0.995 and rpartial = −0.013, 
p = 0.907, respectively). No other significant correlations were found 
between ASM and kidney, nutritional, metabolic, and inflammatory 
variables (Table 3 and Figure 1).

Discussion

In our study, we found that ASM in CKD men not treated with 
dialysis with eGFR <60 mL/min/1.73 m2 was positively correlated with 
anthropometric and body composition parameters. ASM was higher 
in taller, heavier, and obese participants. We did not observe statistically 
significant correlations between ASM and kidney, nutritional, and 
inflammatory parameters. Among metabolic parameters after 
adjustment for BMI, we also did not find a statistically significant 
association between ASM and TG and between ASM and HDL.

Anthropometric and body composition 
parameters

Regarding body composition parameters, ASM was higher not 
only in participants with higher LTM and LTI but also with increased 
fat mass and FTI. Such results emphasize the significant role of 

anthropometric measurements in the group of CKD patients in terms 
of the necessity to evaluate skeletal muscle mass and the probability of 
muscle atrophy. Some studies found similar results to ours; however, 
they analyze muscle mass together with other characteristics. The 
report of Wang revealed that the MIS in CKD patients stages G3–G5 
was negatively correlated with anthropometric parameters such as 
BMI and MAMC and also with body composition variables such as 
LTI and FTI (27). The study of Heimbürger, similar to our results, also 
showed that low-fat mass was an independent factor related to 
malnutrition in CKD participants (28). These results are similar to 
ours as we observed that individuals with higher fat mass and FTI had 
higher ASM. Sánchez-Tocino found the relationship between 
sarcopenia and nutrition; however, they observed the opposite to our 
results according to weight—patients with confirmed sarcopenia were 
heavier and had higher fat mass (29).

As it was noticed previously, muscle atrophy is associated with 
higher mortality in CKD. The report of Stosovic et al. found that in the 
group of patients treated with hemodialysis, anthropometric 
parameters such as the percentage of body fat, mid-arm circumference 
(MAC), MAMC, and the percentage of body fat calculated from 
triceps (TSF) were independent predictors of mortality in this group. 
Increased values of anthropometric parameters were associated with 
reduced mortality. However, they did not observe the association 
between BMI and mortality (30). Increased anthropometric and body 
composition variables along with higher ASM and lower mortality 
may play a role in the obesity paradox phenomenon observed in 
CKD. The term “obesity paradox” reflects the reverse epidemiology of 

TABLE 2 Characteristics of the studied population according to kidney function, nutritional, inflammatory, and clinical variables.

Total (n  =  85) CKD stage ptrend

G3a (n  =  24) G3b (n  =  32) G4–5 (n  =  29)

Kidney function parameters

Serum creatinine [mg/dL] 1.90 (1.50–2.65) 1.40 (1.33–1.50) 1.90 (1.70–2.00) 3.20 (2.60–4.00) <0.001

eGFR [mL/min/1.73 m2] 37.00 ± 14.28 53.75 ± 3.73 39.34 ± 4.94 20.55 ± 6.79 <0.001

Urea [mg/dL] 65.50 (52.00–96.75) 47.00 (43.00–55.75) 63.00 (56.00–80.00) 116.00 (82.50–135.50) <0.001

Nutritional parameters

Serum albumin [g/dL] 4.40 (4.10–4.60) 4.50 (4.40–4.80) 4.45 (4.13–4.60) 4.30 (4.10–4.50) 0.019

Serum hemoglobin [g/dL] 13.25 ± 1.94 14.51 ± 1.60 13.39 ± 1.70 12.05 ± 1.76 <0.001

Total cholesterol [mg/dL] 166.00 (142.50–208.00) 167.50 (147.75–233.00) 169.50 (142.00–206.75) 160.00 (135.00–196.00) 0.297

Vitamin D [ng/mL] 22.59 ± 10.38 26.93 ± 13.03 21.11 ± 7.92 20.72 ± 9.66 0.038

Inflammatory parameters

CRP [mg/dL] 0.20 (0.10–0.50) 0.20 (0.10–0.30) 0.30 (0.10–0.60) 0.30 (0.10–0.45) 0.277

TNF-alpha [pg/ml] 4.36 (3.47–5.70) 4.05 (3.00–5.07) 4.24 (3.33–4.81) 5.38 (4.34–6.84) 0.001

Metabolic parameters

LDL [mg/dL] 107. 00 (79.50–142.00) 109.50 (85.50–158.25) 110.00 (80.25–142.25) 104.00 (68.50–128.50) 0.201

HDL [mg/dL] 42. 00 (35.00–53.00) 44.50 (38.25–55.50) 39.50 (32.75–50.75) 41.00 (33.50–53.50) 0.296

TG [mg/dL] 145.00 (110.00–220.00) 128.50 (95.00–288.50) 144.50 (119.50–198.00) 163.00 (117.00–232.00) 0.369

Serum glucose [mg/dL] 95.00 (82.00–129.50) 90.00 (79.00–99.00) 105.50 (85.25–146.50) 98.00 (84.50–143.50) 0.070

Insulin [uIU/mL] 14.10 (7.75–27.90) 14.55 (8.73–28.58) 17.20 (6.85–32.18) 12.80 (8.30–20.20) 0.249

HOMA-IR 3.79 (1.92–7.43) 3.70 (1.65–7.04) 4.61 (1.96–8.54) 2.72 (2.04–7.32) 0.708

HgbA1c [%] 5.70 (5.30–6.40) 5.55 (5.20–6.00) 5.85 (5.33–6.98) 5.80 (5.25–7.05) 0.300

CRP, C-reactive protein; TNF-alpha, tumor necrosis factor-alpha; LDL, low-density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol; TG, triglyceride; HOMA-IR, 
homeostatic model assessment of insulin resistance; HgbA1c, hemoglobin A1c; ptrend-values < 0.05 are marked in bold.
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obesity which shows that CKD patients with lower BMI or weight loss 
have higher mortality, and conversely, those with increased BMI or 
weight gain present better survival. This means that overweight and 
obesity play a protective role in CKD (31). The report of Lu which 
analyzed data of over 450 participants with eGFR <60 mL/min/1.73m2 
observed that BMI <25 kg/m2 was associated with worse outcomes, 

independently of the severity of CKD. In addition, BMI levels below 
30 kg/m2 were linearly related to higher mortality (32). Ahmandi also 
presented the results of 10 studies which included nearly 500 
participants with CKD stages G3-G5 and revealed that underweight 
patients had higher mortality rates compared to overweight and obese 
class I individuals. Moreover, obesity class II and class III were not 
related to increased mortality (33). Bellafronte assumed that the 
obesity paradox in CKD may be  due to higher lean mass and its 
protective effect in obese individuals (34). In our report, we found that 
ASM was significantly and positively associated with BMI, LTM, LTI, 
as well as fat mass and FTI. Thus, we  may assume that simple 
parameter such as BMI and body composition variables estimated by 
BIS may be  useful to estimate ASM in CKD patients. Moreover, 
we also observed the positive correlation of height with ASM which is 
probably associated with higher absolute muscle mass in 
taller individuals.

Kidney function parameters

We did not observe a significant correlation of ASM with 
kidney function parameters such as serum creatinine, eGFR, and 
urea. Comparable to our results, also in the study of Wang, MIS 
was not correlated with eGFR (27). The lack of association 
between ASM and kidney function parameters among patients at 
more advanced stages of CKD in our study does not indicate that 
there is no difference in the progress of muscle atrophy between 
patients at all stages of CKD. On the contrary, the numerous 
mechanisms that lead to muscle atrophy deepen with the 
progression of renal failure, being the most severe in end-stage 
kidney disease patients treated with dialysis (35). However, the 
rate of muscle mass loss varies among patients at different stages 
of kidney function decrease and that is probably why the simple 
correlations between ASM in our study or MIS in the report of 
Wang and kidney function parameters were not observed (27). In 
addition, the meta-analysis of Duarte revealed that the prevalence 
of sarcopenia in CKD patients did not differ among stages of 
kidney function decrease which also indicate that the severity of 
kidney failure is not the significant determinant of muscle mass 
loss (36).

Nutritional and metabolic parameters

We did not find a statistically significant relationship between 
ASM and serum albumin, nor between ASM and hemoglobin. The 
study by Wang found opposite to ours results as they observed that 
MIS was strongly and negatively associated with serum nutritional 
parameters such as plasma albumin and hemoglobin (27, 37, 38). The 
evaluation of nutritional status in CKD includes the measurement of 
serum albumin levels. Decreased plasma albumin is one of the criteria 
of protein-energy wasting syndrome in CKD (5). However, some 
studies did not find a relationship between plasma albumin and 
nutritional status in this population (28, 29, 39). The study of Evans 
confirmed that albumin is a poor nutritional marker (40). We also did 
not observe a significant correlation between ASM and serum 
albumin. The probable reason of it is that albumin plasma levels 

TABLE 3 Pearson’s correlation analysis of ASM with anthropometric, 
body composition, kidney function, nutritional, metabolic, and 
inflammatory parameters.

r p

Age [years] −0.268 0.013

Anthropometric parameters

Weight [kg] 0.913 <0.001

Height [m] 0.560 <0.001

BMI [kg/m2] 0.737 <0.001

Body composition parameters

LTM [kg] 0.746 <0.001

LTI [kg/m2] 0.609 <0.001

Fat [kg] 0.489 <0.001

Rel Fat [%] 0.075 0.496

FTI [kg/m2] 0.358 0.001

OH [L] 0.095 0.389

Rel OH [%] 0.002 0.982

Kidney function parameters

Serum creatinine [mg/dL] −0.003 0.977

eGFR [mL/min/1.73 m2] 0.066 0.547

Urea [mg/dL] −0.001 0.991

Nutritional parameters

Serum albumin [g/dL] −0.070 0.529

Serum hemoglobin [g/dL] −0.068 0.539

Total cholesterol [mg/dL] −0.058 0.598

Vitamin D [ng/ml] −0.087 0.432

Metabolic parameters

LDL [mg/dL] −0.063 0.568

HDL [mg/dL] −0.370 <0.001

TG [mg/dL] 0.226 0.038

Serum glucose [mg/dL] 0.066 0.553

Insulin [uIU/mL] 0.046 0.677

HOMA-IR 0.046 0.979

HgbA1c [%] 0.031 0.779

Inflammatory parameters

CRP [mg/dL] −0.005 0.962

TNF-alpha [pg/ml] −0.118 0.284

BMI, body mass index; LTM, lean tissue mass; LTI, lean tissue index; Rel Fat, relative fat; 
FTI, fat tissue index; OH, overhydration; Rel OH, relative overhydration; eGFR, estimated 
glomerular filtration rate; LDL, low-density lipoprotein cholesterol; HDL, high-density 
lipoprotein cholesterol; TG, triglycerides; HOMA-IR, homeostatic model assessment of 
insulin resistance; HgbA1c, hemoglobin A1c; CRP, C-reactive protein; TNF-alpha, tumor 
necrosis factor-alpha; r-correlation coefficient, p-values < 0.05 are marked in bold.
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FIGURE 1

Appendicular skeletal muscle mass and anthropometric and body composition parameters in non-dialysis dependent chronic kidney disease men 
(r—Pearson’s correlation coefficient). Anthropometric and body composition parameters: weight (A), height (B), BMI (C), LTM (D), LTI (E), fat (F), rel fat 
(G), FTI (H).
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depend on hepatic function and play a role as an acute-phase protein. 
Thus, serum albumin is rather a poor nutritional marker in 
CKD. Sánchez-Tocino did not find the relationship between 
sarcopenia and serum albumin, but the association between 
sarcopenia and serum total cholesterol was positive (29). Some studies 
in the general population observed the positive association between 
the advancement of dyslipidemia and decreased skeletal muscle mass 
(41, 42). In our study, we did not report the relationship between ASM 
and total cholesterol and between ASM and LDL, but we found a 
significant negative zero-order correlation between ASM and HDL 
and a positive between ASM and TG. After adjustment for BMI, these 
last two associations disappeared since BMI was a confounding 
variable in the relationships between ASM and HDL and between 
ASM and TG.

Inflammatory parameters

We did not find the association between ASM and CRP and 
between ASM and TNF-alpha. Wang also did not observe 
statistically significant correlations between MIS and inflammatory 
parameters, similar to our results (27). However, the report of 
Heimbürger showed that high serum CRP is an independent 
determinant of malnutrition in CKD, contrary to our study (28). 
Different results concerning the impact of inflammatory cytokines 
on muscle mass may be related to differences between the studied 
populations, the amount of skeletal muscle mass, and inflammatory 
cytokines’ synthesis; despite the fact that inflammatory cytokines 
act through numerous mechanisms, they activate the nuclear 
transcription factor-kappa B (NFκB) pathway, raise myostatin 
expression, and impair the hypothalamic response to appetite-
regulating hormones (43, 44).

The limitation of our study is its relatively small sample size and 
cross-sectional design, not allowing for inferencing about causal 
relationships. Future prospective cohort studies would allow to 
observe the dynamics of ASM changes against other parameter 
fluctuations in CKD patients. Moreover, a larger number of 
participants would enable a more detailed and more comprehensive 
analysis. In addition, our study is restricted to one gender—male. The 
study with female participants would also let compare the results 
between men and women.

We may conclude that in male patients with CKD stages G3–G5 
not treated with dialysis, ASM correlates significantly and positively 
with anthropometric and body composition parameters such as 
weight, height, BMI, LTM, LTI, fat mass, and FTI. We did not observe 
such relationship between ASM and kidney function, nutritional, 
metabolic, and inflammatory variables.
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