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Retinal vessels play a pivotal role as biomarkers in the detection of retinal

diseases, including hypertensive retinopathy. The manual identification of these

retinal vessels is both resource-intensive and time-consuming. The fidelity of

vessel segmentation in automated methods directly depends on the fundus

images’ quality. In instances of sub-optimal image quality, applying deep

learning-basedmethodologies emerges as amore e�ective approach for precise

segmentation. We propose a heterogeneous neural network combining the

benefit of local semantic information extraction of convolutional neural network

and long-range spatial features mining of transformer network structures. Such

cross-attention network structure boosts the model’s ability to tackle vessel

structures in the retinal images. Experiments on four publicly available datasets

demonstrate our model’s superior performance on vessel segmentation and the

big potential of hypertensive retinopathy quantification.

KEYWORDS
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1 Introduction

Hypertension (HT) is a chronic ailment posing a profound menace to human

wellbeing, manifesting in vascular alterations (1). Its substantial contribution to the global

prevalence and fatality rates of cardiovascular diseases (CVD) cannot be overstated. The

escalated incidence and mortality rates are not solely attributable to HT’s correlation with

CVD but also to the ramifications of hypertension-mediated organ damage (HMOD).

This encompasses structural and functional modifications across pivotal organs, including

arteries, heart, brain, kidneys, vessels, and the retina, signifying preclinical or asymptomatic

CVD (2, 3). HTmanagement’s principal aim remains to deter CVD incidence andmortality

rates. Achieving this goal mandates meticulous adherence to HT guidelines, emphasizing

precise blood pressure monitoring and evaluating target organ damage (4). Consequently,

the early identification of HT-mediated organ damage emerges as a pivotal concern.
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The retinal vascular system shares commonalities in structural,

functional, and embryological aspects with the vascular systems

of the heart, brain, and kidneys (5–9). Compared to other

microvascular territories, the distinctive attributes of the retinal

microcirculation enable relatively straightforward detection of

localized HMOD (5, 9). Its capacity to offer a non-invasive and

uncomplicated diagnostic tool positions retinal visualization as

the simplest means of elucidating the microcirculatory system.

In hypertensive patients, retinal microvasculature gives insight

into the wellbeing of the heart, kidneys, and brain (5, 10, 11).

Early detection of HT-mediated retinal changes indirectly mirrors

the vascular status of these organs, facilitating refined evaluation

of cardiovascular risk stratification, timely interventions, and

improved prognostication, thereby holding substantial clinical

significance. Traditional clinical methodologies for diagnosing HT-

mediated retinal alterations, while reliant on the proficiency of

ophthalmic professionals, often demand considerable time and

specialized expertise (12). Figure 1 presents a sample fundus

image, demonstrating the complexity of the retinal vasculature and

image intensity variation. However, integrating AI-based models

in ophthalmology holds promising prospects for revolutionizing

this paradigm. Leveraging machine learning algorithms and deep

neural networks, AI-enabled diagnostic tools have demonstrated

the potential to expedite and enhance the assessment of HT-

related retinal vessel changes (13–17). These AI models learn

from extensive datasets of annotated medical images, swiftly

recognizing subtle retinal anomalies that might elude human

detection. By automating the analysis and interpretation of retinal

images, AI-based systems offer the prospect of reducing diagnostic

timeframes, improving accuracy, and potentially mitigating the

need for extensive human oversight. In this work, we proposed a

heterogeneous features cross-attention neural network to tackle the

retinal vessel segmentation task with color fundus images.

2 Related work

Segmenting blood vessels in retinal color fundus images

plays a pivotal role in the diagnostic process of hypertensive

retinopathy. Over the years, researchers have explored computer-

assisted methodologies to tackle this task. For instance, Annunziata

and Trucco (18) introduced a novel curvature segmentation

technique leveraging an accelerating filter bank implemented via

a speed-up convolutional sparse coding filter learning approach.

Their method employs a warm initialization strategy, kickstarted

by meticulously crafted filters. These filters are adept at capturing

the visual characteristics of curvilinear structures, subsequently

fine-tuned through convolutional sparse coding. Similarly, Marín

et al. (19) delved into the realm of hand-crafted feature learning

methods, harnessing gray-level and moment invariant-based

features for vessel segmentation. However, despite the efficacy of

such techniques, the manual crafting of filters is inherently time-

intensive and prone to biases, necessitating a shift toward more

automated and data-driven approaches in this domain.

Deep learning techniques based on data analysis have

demonstrated superior performance to conventional retinal vessel

segmentation approaches (18–20). For instance, Maninis et al. (21)

developed a method wherein feature maps derived from a side

output layer contributed to vessel and optic disc segmentation.

Along a similar line, Oliveira et al. (22) combined the benefits of

stationary wavelet transform’s multi-scale analysis with a multi-

scale full convolutional neural network, resulting in a technique

adept at accommodating variations in the width and orientation of

retinal vessel structures. In terms of exploiting the advance of the

Unit structure, there are previous methods that achieved promising

performance. For example, Yan et al. (23) implemented a joint loss

function in U-Net, comprising two components responsible for

pixel-wise and segment-level losses, aiming to enhance the model’s

ability to balance segmentation between thicker and thinner vessels.

Mou et al. (24) embedded dense dilated convolutional blocks

between encoder and decoder cells at corresponding levels of a

U-shaped network, employing a regularized walk algorithm for

post-processing model predictions. Similarly, Wang et al. (25)

proposed a Dual U-Net with two encoders: one focused on spatial

information extraction and the other on context information. They

introduced a novel module to merge information from both paths.

Despite the proficiency of existing deep learningmethodologies

in segmenting thicker vessels, there remains a challenge in

combining heterogeneous features from different stages of the deep

learning models via Transformers and CNN models. Generally,

improving deep learning-based techniques for vessel segmentation

can be approached from various angles, including multi-stage

feature fusion and optimization of loss functions. This work

proposes a heterogeneous feature cross-attention neural network

to address the above challenge.

3 Materials and methods

3.1 Heterogeneous features
cross-attention neural network

A detailed model structure overview is shown in Figure 2.

In detail, two brunches of feature extraction modules are

proposed to extract heterogeneous features from different stages

of the backbone network. In detail, there is CNN-based (Conv-

Block) and transformer-based (Trans-Block) brunch, which focus

on local semantic and long-range spatial information. Those

two features’ information are both important for the vessel

segmentation task.

The interaction between the two branches is used as a

cross-attention module to emphasize the essential heterogeneous

(semantic and spatial) features. It is used as the main structure to

facilitate the interaction and integration of local and long-range

global features. Drawing inspiration from the work by Peng et

al. (26), the intersecting network architecture within our model

ensures that both Conv-Block and Trans-Block can concurrently

learn features derived from the preceding Conv-Block and Trans-

Block, respectively.

3.1.1 CNN blocks
In the structure depicted in Figure 2, the CNN branch

adopts a hierarchical structure, leading to a reduction in the

resolution of feature maps as the network depth increases

and the channel count expands. Each phase of this structure
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FIGURE 1

Sample retinal fundus image for vessel segmentation and hypertensive retinopathy quantification. The yellow areas in Ground Truth represent the

retinal vessel area that needs to be segmented for disease analysis.

FIGURE 2

Figure of our proposed model structure. Our model contains three modules, including Trans-Block, CNN-Block and Fusion-Block. The detailed

structure of each module is shown in the figure.

consists of several convolution blocks, each housing multiple

bottlenecks. These bottlenecks, in accordance with the ResNet

framework (27), comprise a sequence involving down-projection,

spatial convolution, up-projection, and a residual connection

to maintain information flow within the block. Distinctly,

visual transformers (28) condense an image patch into a

vector in one step, which unfortunately leads to the loss of

localized details. Conversely, in CNNs, the convolutional

kernels operate on feature maps, overlapping to retain intricate

local features. Consequently, the CNN branch ensures a

sequential provision of localized feature intricacies to benefit the

transformer branch.
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3.1.2 Transformer blocks
In line with the approach introduced in ViT (28), this segment

consists of N sequential transformer blocks, as showcased in

Figure 2. Each transformer block combines a multi-head self-

attention module with an MLP block, encompassing an up-

projection fully connected layer and a down-projection fully

connected layer. Throughout this structure, LayerNorms (29) are

applied before each layer, and residual connections are integrated

into both the self-attention layer and the MLP block. For

tokenization purposes, the feature maps generated by the backbone

module are compressed into 16 × 16 patch embeddings without

overlap. This compression is achieved using a linear projection

layer, implemented via a 3 × 3 convolution with a stride of 1.

Notably, considering that the CNN branch (3 × 3 convolution)

encodes both local features and spatial location information, the

necessity for positional embeddings diminishes. This strategic

adaptation results in an improved image resolution, advantageous

for subsequent tasks related to vision.

3.1.3 Feature fusion blocks
Aligning the feature maps derived from the CNN branch

with the patch embeddings within the transformer branch poses a

significant challenge. To tackle this, we introduce the feature fusion

block, aiming to continuously and interactively integrate local

features with global representations. The substantial difference

in dimensionalities between the CNN and transformer features

is noteworthy. While CNN feature maps are characterized by

dimensions C×H ×W (representing channels, height, and width,

respectively), patch embeddings assume a shape of (L + 1) × J,

where L, 1, and J denote the count of image patches, class token, and

embedding dimensions, respectively. To reconcile these disparities,

feature maps transmitted to the transformer branch undergo an

initial 1 × 1 convolution to align their channel numbers with

the patch embeddings. Subsequently, a down-sampling module

(depicted in Figure 2) aligns spatial dimensions, following which

the feature maps are amalgamated with patch embeddings, as

portrayed in Figure 2. Upon feedback from the transformer to the

CNN branch, the patch embeddings necessitate up-sampling (as

illustrated in Figure 2) to match the spatial scale. Following this,

aligning the channel dimension with that of the CNN feature maps

through a 1×1 convolution is performed, integrating these adjusted

embeddings into the feature maps. Furthermore, LayerNorm and

BatchNorm modules are employed to regularize the features.

Moreover, a significant semantic disparity arises between feature

maps and patch embeddings. While feature maps stem from local

convolutional operators, patch embeddings arise from global self-

attention mechanisms. Consequently, the feature fusion block is

incorporated into each block (excluding the initial one) to bridge

this semantic gap progressively.

3.2 Experiments

3.2.1 Datasets
Four public datasets, DRIVE (30), CHASEDB1 (31), STARE

(32), and HRF (33), were used in our experiments. The images of

these datasets were captured by different devices and with different

image sizes. A detailed description of each dataset is elaborated

below:

1). DRIVE dataset: the dataset known as DRIVE comprises

40 pairs of fundus images accompanied by their respective

labels for vessel segmentation. Each image within this dataset

measures 565× 584 pixels. Furthermore, the dataset has been

partitioned into distinct training and test sets, encompassing

20 pairs of images and corresponding labels within each set.

Notably, in the test set, every image has undergone labeling

by two medical professionals. Typically, the initial label is

considered the reference standard (ground truth), while the

second label serves as a human observation used to assess

accuracy.

2). CHASEDB1 dataset: the CHASEDB1 dataset encompasses a

collection of 28 images, comprising samples from both the left

and right eyes, with each image possessing dimensions of 999

× 960 pixels. Past investigations have specifically delineated

the dataset’s utilization, designating a distinct partition for

training and testing purposes. According to prior scholarly

research (31), a selection strategy has been employed, with

the final eight images demarcated for evaluation as testing

samples, while the preceding images have been earmarked

for utilization as training samples. This segmentation strategy

in the dataset facilitates a structured approach for model

training and evaluation, enabling a systematic analysis of

algorithm performance on separate subsets of images to

ensure robustness and generalizability in vessel segmentation

tasks.

3). STARE dataset: each image within the STARE dataset

measures 700 × 605 pixels. This dataset comprises 20 color

fundus images without a predefined division into training

and test sets. Previous studies have employed two common

schemes for test set allocation to assess method performance.

One approach involves assigning 10 images to the training

set and the remaining 10 to the test set. Alternatively, the

Leave-One-Out method has been utilized, wherein each image

successively serves as the test set while the remaining images

form the training set for evaluation purposes in different

iterations.

4). HRF dataset: the HRF dataset comprises 45 fundus images

with a resolution of 3,504 × 2,336 pixels. From this

dataset, 15 images from are allocated to the training set,

while the remaining 30 images constitute the test set. To

mitigate computational expenses, both the images and their

corresponding labels are downsampled twice, as noted in (34).

3.2.2 Loss functions
Commonly utilized region-based losses, like Dice loss (35),

often result in highly precise segmentation. However, they tend to

disregard the intricate vessel shapes due to a multitude of pixels

outside the target area, overshadowing the significance of those

delineating the vessel (36–40). This oversight may contribute to

relatively imprecise retinal vessel segmentation and, consequently,

inaccurate quantification of hypertensive retinopathy. In response,
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we incorporated the TopK loss (Equation 1) (41, 42) to emphasize

the retinal vessels during the training process specifically. When

objects exhibit sizes that are not notably smaller in comparison to

the convolutional neural network’s (CNN) receptive field, the vessel

emerges as the most variable component within the prediction,

displaying the least certainty; thus, the loss within the vessel region

tends to be the highest among the predictions (43). Building upon

these observations and rationale, the TopK loss is formulated as

follows:

LTopK = −
1

N

∑

i∈K

gi log si (1)

where gi is the ground truth of pixel i, si is the corresponding

predicted probability, and K is the set of the k% pixels with the

lowest prediction accuracy. While sole vessel-focused loss often

causes training instability (44), region-based loss, such as Dice loss

(Equation 2) (35), is needed at the early stage of the training. We

represent Dice loss as follows:

LDice = 1−
2|Vs ∩ Vg |

|Vs| + |Vg |
(2)

where Vg is the ground truth label and Vs is the prediction result of

segmentation.We coupled TopKwith region-basedDice loss as our

final loss function (Equation 3) for the retinal vessel segmentation.

L = LTopK + LDice (3)

3.2.3 Experimental setting
To enrich the dataset, we introduce random rotations on the

fly to the input images in the training dataset, applied to both

segmentation tasks. Specifically, these rotations span from –20 to

20 degrees. Additionally, 10% of the training dataset is randomly

chosen to serve as the validation dataset. The proposed network

was implemented utilizing the PyTorch Library and executed on

the Nvidia GeForce TITAN Xp GPU. Throughout the training

phase, we employed the AdamW optimizer to fine-tune the deep

model. To ensure effective training, a gradually decreasing learning

rate was adopted, commencing at 0.0001, alongside a momentum

parameter set at 0.9. For each iteration, a random patch of size

118 × 118 from the image was selected for training purposes, with

a specified batch size of 16. A backbone of ResNet50 (27) is used in

this work.

3.2.4 Evaluation metrics
The model’s output is represented as a probability map,

assigning to each pixel the probability of being associated with the

vessel class. Throughout the experiments, a probability threshold

of 0.5 was employed to yield the results. To comprehensively assess

the efficacy of our proposed framework during the testing phase,

the subsequent metrics will be computed:

• Acc (accuracy) = (TP + TN) / (TP + TN + FP + FN),

• SE (sensitivity) = TP / (TP + FN),

• SP (specificity) = TN / (TN + FP)

• F1 (F1 score) = (2× TP) / (2× TP + FP + FN)

• AUROC = area under the receiver operating characteristic

curve.

In this context, the correct classification of a vessel pixel

is categorized as a true positive (TP), while misclassification is

identified as a false positive (FP). Correspondingly, accurate

classification of a non-vessel pixel is considered a true

negative (TN), whereas misclassification is denoted as a false

negative (FN).

3.3 Compared methods

We compared our approach to other classic and

state-of-the-art models that have achieved promising

performance on different medical image segmentation

tasks. All of the experiments are conducted under the same

experimental setting. The compared methods are briefly

introduced below:

• Unet (45): Unet is a CNN architecture used for image

segmentation tasks. Its U-shaped design includes an encoder

(contracting path) for feature extraction and a symmetric

decoder (expansive path) for generating segmented outputs.

The network uses skip connections to preserve fine details and

context, making it effective for tasks like biomedical image

segmentation.

• Unet++ (46): Unet++ is an advanced version of the U-

Net architecture designed for image segmentation tasks. It

improves upon U-Net by introducing nested skip connections

and aggregation pathways, allowing better multi-scale feature

integration and context aggregation. This enhancement leads

to more accurate and precise segmentation results compared

to the original U-Net model.

• Swin-Transformer (47): Swin-Transformer is a hierarchical

vision transformer (28) structure. It uses shifted windows

to process image patches hierarchically, allowing for

improved global context understanding. This architecture has

demonstrated competitive segmentation performance with

efficient computation.

• AttenUnet (48): The AttenUnet enhances the traditional U-

Net architecture that integrates attention mechanisms. These

mechanisms enable the network to focus on important image

features during segmentation tasks. It improves accuracy

by refining object delineation and suppressing irrelevant

information. This variant is particularly effective in tasks like

medical image segmentation, where precise localization of

structures is essential.

• TransUnet (49): TransUNet is a proposed architecture

to improve medical image segmentation, addressing

limitations seen in the widely used U-Net model. It

combines the strengths of Transformers’ global self-

attention with U-Net’s precise localization abilities. The

Transformer part encodes image patches from a CNN

feature map to capture global context, while the decoder

integrates this with high-resolution feature maps for

accurate localization.
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FIGURE 3

Qualitative results of the vessel segmentation. We compare our model with Unet (45), Unet++ (46), Swin-Transformer (47), AttenUnet (48), TransUnet

(49). Our method can produce more accurate segmentation results than the other methods compared with the ground truth.

TABLE 1 Quantitative results comparison between our methods and other compared state-of-the-art methods on DRIVE dataset.

Methods Acc SE SP F1 AUROC

Unet 90.1 (89.1, 90.8) 76.5 (74.2, 78.1) 97.7 (95.8, 99.1) 80.3 (78.3, 82.3) 97.2 (95.0, 98.0)

Unet++ 91.3 (90.4, 92.7) 79.2 (78.0, 80.6) 97.9 (95.2, 99.0) 81.0 (79.2, 82.5) 97.1 (95.8, 99.0)

Swin-Transformer 92.3 (91.5, 92.9) 79.0 (77.9, 80.6) 98.1 (96.4, 99.2) 82.0 (81.0, 84.0) 97.6 (96.1, 98.3)

AttenUnet 92.1 (91.3, 93.2) 80.0 (78.3, 82.0) 98.3 (96.1, 99.5) 80.4 (78.5, 82.1) 97.4 (96.2, 98.6)

TransUnet 91.8 (91.2, 93.0) 80.3 (79.1, 81.3) 98.3 (97.2, 99.6) 80.1 (78.8, 80.9) 97.3 (96.4, 99.0)

Ours 93.8 (92.9, 94.8) 81.0 (80.2, 82.6) 98.5 (96.7, 99.1) 83.3 (78.8, 82.1) 97.9 (96.2, 98.8)

Performance is reported with Acc, SE, SP, F1 and AUROC. 95% confidence interval is presented in the bracket. The best performance is highlighted in bold.

4 Results

4.1 Vessel segmentation performance

Figure 3 illustrates qualitative comparison with other compared

methods on the test dataset. Tables 1–4 shows the quantitative

performance of Ours and other methods on four different

datasets, respectively.

Our proposed method can outperform other compared

methods on DRIVE, CHASEDB1, STARE, and HRF datasets,

respectively. In detail, Ours achieved 83.3% F1 on DRIVE dataset,

which outperformed Unet (45) by 3.6%, outperformed Swin-

Transformer (47) by 1.6% and outperformed TransUnet (49) by

4.0%. Ours achieved 81.6% F1 on CHASEDB1 dataset, which

outperformed Unet++ (46) by 1.9%, outperformed AttenUnet (48)

by 2.1% and outperformed TransUnet (49) by 1.5%. Ours achieved

86.6% F1 on STARE dataset, which outperformed Unet (45) by

2.7%, outperformed AttenUnet (48) by 2.4% and outperformed

TransUnet (49) by 1.6%. Ours achieved 79.9% F1 on HRF dataset,

which outperformed Unet++ (46) by 0.8%, outperformed Swin-

Transformer (47) by 0.5% and outperformed TransUnet (49) by

1.3%. Notably, Swin-Transformer (47) and TransUnet (49) belong

to the transformer-based model structure, which demonstrates a

superior performance on many tasks. However, in this work, the

limited data size is one of the leading reasons for the relatively low

performance of those datasets. Another reason could be the task’s

own nature of vessel segmentation, where more local information

is needed rather than the long-range relationship between pixels.

Thus, given two brunches with transformer and CNN structures

and fusion modules, our proposed model can simultaneously

tackle both the local semantic information and long-range spatial

information for the segmentation task.

Figure 3 shows the qualitative comparison between ours and

other compared methods. It demonstrated that our proposed
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TABLE 2 Quantitative results comparison between our methods and other compared state-of-the-art methods on CHASEDB1 dataset.

Methods Acc SE SP F1 AUROC

Unet 91.2 (89.8, 92.3) 60.3 (58.2, 61.4) 97.1 (96.4, 97.9) 79.7 (76.9, 81.0) 97.7 (96.6, 98.2)

Unet++ 91.6 (89.8, 93.2) 63.0 (61.2, 65.0) 97.3 (95.5, 98.3) 80.1 (78.5, 82.1) 97.7 (96.2, 98.3)

Swin-Transformer 92.3(91.0, 94.1) 62.9 (61.4, 64.0) 97.8 (96.2, 98.5) 80.3 (78.7, 81.7) 97.9 (96.2, 98.8)

AttenUnet 92.4 (91.0, 94.2) 67.7 (65.5, 68.3) 97.7 (96.2, 98.4) 79.9 (77.4, 80.6) 97.8 (97.0, 98.5)

TransUnet 92.6 (90.2, 94.4) 66.1 (64.6, 67.7) 98.0 (96.7, 99.0) 80.4 (78.9, 82.1) 98.2 (96.3, 99.9)

Ours 93.7 (91.7, 95.2) 69.0 (67.4, 70.5) 98.9 (97.2, 99.3) 81.6 (81.0, 93.0) 98.9 (98.1, 99.3)

Performance is reported with Acc, SE, SP, F1 and AUROC. 95% confidence interval is presented in the bracket. The best performance is highlighted in bold.

TABLE 3 Quantitative results comparison between our methods and other compared state-of-the-art methods on STARE dataset.

Methods Acc SE SP F1 AUROC

Unet 93.3 (91.7, 95.2) 80.8 (78.7, 81.8) 98.1 (97.1, 99.0) 84.3 (82.2, 86.3) 98.1 (97.0, 99.0)

Unet++ 94.2 (92.5, 96.0) 82.6 (81.6, 83.1) 98.0 (96.4, 99.0) 84.5 (83.7, 85.2) 98.3 (97.1, 99.2)

Swin-Transformer 93.9 (92.8, 94.7) 83.0 (82.0, 84.2) 98.2 (96.9, 99.1) 84.1 (82.5, 86.2) 98.5 (97.4, 99.3)

AttenUnet 93.6 (92.7, 94.7) 82.9 (81.7, 84.2) 98.6 (96.2, 99.3) 84.6 (82.9, 86.3) 98.6 (96.7, 99.5)

TransUnet 93.4 (91.9, 94.7) 83.2 (81.6, 85.0) 98.7 (96.6, 99.4) 85.2 (83.7, 86.9) 98.1 (97.2, 99.1)

Ours 94.8 (92.9, 95.6) 84.2 (82.6, 86.1) 99.2 (97.7, 99.4) 86.6 (85.9, 87.4) 99.3 (98.4, 99.7)

Performance is reported with Acc, SE, SP, F1 and AUROC. 95% confidence interval is presented in the bracket. The best performance is highlighted in bold.

methods can segment the vessels more accurately. This is important

for vessel segmentation tasks and hypertensive retinopathy

quantification with more accurate vessel area calculation.

4.2 Ablation study

4.2.1 Ablation study on loss functions
We did ablation study experiments on loss functions. We

maintain the same model structure and only change the loss

functions. In detail, we remove Dice loss and TopK loss,

respectively, to evaluate their respective contribution to the

performance of the proposed models. Furthermore, we replace

TopK loss with a cross-entropy loss to validate the effectiveness

of TopK loss in the segmentation task. Table 5 demonstrates that

Dice Loss can lead to a 6.2% F1 and TopK loss can lead to a

2.9% F1 performance. On the other hand, Dice loss can lead to

15.5% SE performance, and TopK loss can lead to a 2.8% SE

performance on Drive dataset. Additionally, compared with cross-

entropy loss, the TopK loss could lead to a 1.5% F1 improvement

and 2.3% SE improvement. Each loss function can boost themodel’s

performance in different evaluation metrics. This demonstrated

that the adopted loss function can both contribute to the learning

process and benefit the vessel segmentation performance.

4.2.2 Ablation study on the models’ components
We did ablation study experiments on the model’s components.

In detail, we maintain the same model structure and only change

the models’ structure by removing different modules, including

Trans-Block, CNN-Block and Fusion-Block, respectively. In detail,

we remove each of those three modules, respectively, to evaluate

their respective contribution to the performance of the proposed

models. Table 6 demonstrates thatTrans-Block can lead to a 10% F1,

CNN-Block can lead to a 10.3% F1 performance and Fusion-Block

can lead to a 7.9% F1 performance boost. On the other hand, Trans-

Block can lead to a 3.3% SE performance, CNN-Block can lead to

a 2.3% SE performance, and Fusion-Block can lead to an 0.9% SE

performance on Drive dataset. Each module can boost the model’s

performance in different evaluation metrics. This demonstrated

that the proposedmodules can all contribute to the learning process

and benefit the vessel segmentation performance.

5 Hypertensive retinopathy
quantification

The proposed method has demonstrated a promising retinal

vessel segmentation performance on different datasets and

benchmarks. Additionally, precise segmentation of retinal vessels

plays a vital role in hypertensive retinopathy detection, whereas

manual segmentation tends to be cumbersome and time-

consuming (50). The model proposed can generate a binary mask

distinguishing vessel pixels as one and background pixels as zero.

This mask effectively quantifies the total count of vessel pixels

within each mask. The ratio (Rvessel) between the count of vessel

pixels and non-vessel pixels is defined as follows:

Rvessel =
Nv

Nnon − Nv
, (4)

where Nv represents the count of vessel pixels, and Nnon denotes

the count of non-vessel pixels. The ratio Rvessel (Equation 4)

serves as a valuable metric in identifying hypertensive retinopathy

within fundus images. Hypertensive retinopathy leads to vascular
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TABLE 4 Quantitative results comparison between our methods and other compared state-of-the-art methods on HRF dataset.

Methods Acc SE SP F1 AUROC

Unet 94.4 (92.3, 96.0) 77.7 (75.8, 79.0) 95.1 (93.8, 96.7) 78.6 (76.9, 79.1) 97.2 (96.0, 98.0)

Unet++ 94.8 (92.8, 96.2) 78.9 (78.0, 79.6) 95.1 (93.8, 96.4) 79.3 (78.7, 80.5) 97.3 (96.1, 98.3)

Swin-Transformer 94.6 (92.9, 96.0) 79.1 (77.9, 80.5) 94.4 (92.7, 96.0) 79.5 (77.7, 80.6) 97.8 (96.2, 98.6)

AttenUnet 95.8 (93.9, 96.9) 77.6 (75.8, 79.1) 94.6 (93.9, 95.4) 78.8 (76.9, 79.5) 98.2 (97.0, 99.0)

TransUnet 95.3 (94.2, 96.3) 78.6 (77.4, 79.8) 94.7 (92.9, 96.3) 78.9 (77.0, 79.9) 98.3 (97.2, 99.1)

Ours 96.2 (95.0, 97.1) 79.9 (78.0, 81.0) 94.9 (92.8, 96.0) 79.9 (77.9, 81.2) 98.8 (97.9, 99.3)

Performance is reported with Acc, SE, SP, F1 and AUROC. 95% confidence interval is presented in the bracket. The best performance is highlighted in bold.

TABLE 5 Quantitative ablation study results of the loss function on DRIVE dataset.

Methods Acc SE SP F1 AUROC

w/o Dice loss 86.4 (85.0, 88.0) 70.1 (68.2, 72.5) 94.4 (92.3, 96.0) 75.6 (74.1, 76.2) 94.5 (92.8, 95.6)

w/o TopK loss 88.9 (87.3, 89.6) 78.8 (76.9, 80.3) 96.0 (94.2, 97.2) 78.0 (77.0, 79.2) 96.3 (94.8, 97.7)

w/ Cross-entropy loss 90.3 (89.6, 91.0) 79.2 (78.5, 80.0) 96.9 (95.8, 97.4) 79.1 (78.0, 80.2) 96.9 (95.8, 97.5)

Ours 93.8 (92.9, 94.8) 81.0 (80.2, 82.6) 98.5 (96.7, 99.1) 80.3 (78.8, 82.1) 97.9 (96.2, 98.8)

Performance is reported with Acc, SE, SP, F1 and AUROC. 95% confidence interval is presented in the bracket. The best performance is highlighted in bold.

TABLE 6 Quantitative ablation study results of the model’s components on DRIVE dataset.

Methods Acc SE SP F1 AUROC

w/o Trans-Block 88.9 (87.6, 89.5) 78.4 (76.8, 79.3) 92.1 (91.2, 92.9) 73.0 (71.5, 74.6) 95.2 (93.7, 96.6)

w/o CNN-Block 89.1 (87.9, 90.8) 79.2 (78.2, 80.6) 92.3 (91.4, 92.9) 72.8 (71.6, 73.5) 95.3 (93.8, 96.6)

w/o Fusion-Block 91.2 (89.9, 92.3) 80.3 (78.8, 81.6) 93.1 (92.1, 94.4) 74.4 (72.6, 76.6) 96.3 (95.8, 96.7)

Ours 93.8 (92.9, 94.8) 81.0 (80.2, 82.6) 98.5 (96.7, 99.1) 80.3 (78.8, 82.1) 97.9 (96.2, 98.8)

Performance is reported with Acc, SE, SP, F1 and AUROC. 95% confidence interval is presented in the bracket. The best performance is highlighted in bold.

constriction (51, 52), resulting in a decrease in the count of vessel

pixels (Rvessel).

Detection of hypertensive retinopathy, characterized by

vascular constriction, involves assessing changes in Rvessel across

sequential examinations. Increases or decreases in Rvessel indicate

the occurrence or progression of hypertensive retinopathy,

respectively. Hence, our proposed methods offer a straightforward

approach for detecting hypertensive retinopathy.

In the future, with increased datasets comprising fundus images

from hypertensive and healthy patients, we can further analyze

vessel changes within these images. In real-world clinical practice,

comparing the Rvessel obtained from consecutive visits can serve

as a diagnostic tool. Additionally, the detection of newly formed

vessels can be achieved by subtracting images from successive visits

post-segmentation. This approach enables the identification and

tracking of changes in vasculature over time, offering potential

insights for clinical assessment and monitoring.

6 Limitation and future works

While our deep learning method has shown promising

results in the challenging tasks of retinal vessel segmentation

and hypertensive retinopathy quantification, it’s important to

acknowledge the nuanced landscape of limitations accompanying

such endeavors. One notable factor is the inherent variability

present in medical imaging datasets. Our model’s performance

could be influenced by factors such as variations in image

quality and disease severity across different datasets. Moreover,

despite achieving commendable results overall, there are instances

where the model might struggle to accurately delineate intricate

vascular structures or detect subtle manifestations of hypertensive

retinopathy. This suggests the need for further exploration and

refinement of our approach.

In future research, attention could be directed toward

enhancing the model’s robustness and adaptability to diverse

imaging conditions and patient populations. Techniques such as

advanced data augmentation and domain adaptation strategies

could prove instrumental in achieving this goal. Additionally,

integrating complementary sources of information, such as

clinical metadata or genetic markers, holds promise for enriching

the predictive capabilities of our model and enhancing its

clinical relevance. Furthermore, the pursuit of interpretability

and explainability remains paramount. Providing clinicians with

insights into how the model arrives at its predictions can foster

trust and facilitate its integration into real-world clinical workflows.

However, this pursuit must be balanced with ethical considerations,

particularly concerning patient privacy, algorithmic bias, and

the potential consequences of automated decision-making in

healthcare settings. By addressing these multifaceted challenges, we
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can pave the way for more effective and responsible deployment of

deep learning technologies in ophthalmology and beyond.

7 Conclusion

We have proposed a novel and comprehensive framework

for retinal vessel segmentation and hypertensive retinopathy

quantification. It takes advantage of heterogeneous feature cross-

attention with the help of local emphasis CNN and long-range

emphasis transformer structure with a fusion module to aggregate

the information. Our experiments on four large-scale datasets have

demonstrated that our framework can simultaneously conduct

accurate segmentation and potential hypertensive retinopathy

quantification performance.
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