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Cirrhotic ascites refers to the accumulation of fluid in the peritoneal cavity due

to severe liver disease and impaired liver function, which leads to poor blood

circulation in the body, increased pressure in the hepatic sinus wall, and the

exudation of fluid from the plasma into the peritoneal cavity. Cirrhotic ascites is

a common complication of cirrhosis and poses a threat to the health and lives

of modern people, causing a heavy social burden worldwide. So far, there are no

effective treatment methods available to improve the quality and quantity of life

for patients and their partners; existing drugs can only alleviate the symptoms

of cirrhotic ascites and slow down its progression. This article aims to carefully

examine the pathogenesis of cirrhotic ascites by exploring various contributing

factors such as portal hypertension, renal dysfunction, inflammation, growth

factors, oxidative stress, immunocytes, and gut microbiota. The purpose is to

gain better insights and deeper understanding of the mechanisms involved in

this condition.

KEYWORDS
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1 Introduction

Cirrhosis is a chronic liver disease characterized by the progressive and irreversible
destruction of liver tissue, leading to the formation of scar tissue (1). It is typically caused
by long-term alcohol abuse, viral hepatitis (such as hepatitis B or C), non-alcoholic fatty
liver disease (NAFLD), autoimmune hepatitis, hepatocarcinoma, or genetic disorders (1).
There are two main types of cirrhosis: compensated and decompensated. In compensated
cirrhosis, the liver is still able to function relatively well, and patients may not show any
symptoms (2). However, as the disease progresses, cirrhosis can become decompensated,
leading to the development of complications such as ascites, hepatic encephalopathy,
variceal bleeding, and jaundice (3, 4). The management of cirrhosis involves several
strategies aimed at slowing down the progression of the disease, preventing complications,
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and improving the patient’s quality of life (5). One key aspect
of cirrhosis management is addressing the underlying cause of
the disease (6). For example, patients with alcoholic cirrhosis
are advised to abstain from alcohol completely (7). Antiviral
medications may be prescribed for patients with viral hepatitis
to suppress viral replication (8). Another important component
of cirrhosis management is the prevention and treatment of
complications (9, 10).

Cirrhotic ascites is more commonly seen in patients with
decompensated cirrhosis (11). This is because as the liver becomes
more damaged, it is less able to effectively regulate fluid balance
in the body (12). Several etiologies of cirrhosis are known to be
more prone to the development of ascites. Chronic alcohol abuse
is one of the leading causes of cirrhosis worldwide and is associated
with a higher risk of cirrhotic ascites (13, 14). Other causes, such
as viral hepatitis (particularly hepatitis C), non-alcoholic fatty liver
disease (NAFLD), autoimmune hepatitis, hepatocarcinoma, and
genetic disorders like hemochromatosis or Wilson’s disease, can
also predispose individuals to developing ascites (14).

Cirrhotic ascites can have a debilitating impact on patients,
manifesting in symptoms such as abdominal distension, eating
difficulties, muscle weakness, fatigue, and respiratory distress (15).
These symptoms severely limit the ability of patients to work, walk,
and carry out their daily activities effectively (15). Additionally,
the presence of ascites increases the risk of liver failure, infections,
and other complications, further deteriorating the patient’s overall
health (16). It is alarming that around 10% of cirrhosis patients
develop refractory ascites, which exhibits a high incidence rate and
a discouraging one-year survival rate of less than 50% (17). The
consequences of cirrhotic ascites extend beyond the individual,
burdening family members and caregivers who devote significant
time and energy to providing care and support (18). Furthermore,
it is crucial to recognize the substantial financial burden associated
with treating ascites, as it places significant strain on society’s
healthcare resources (19, 20).

The pathogenesis of cirrhotic ascites is multifactorial, involving
complex interactions between different mechanisms. Cirrhotic
ascites occurs due to a combination of factors related to
portal hypertension, renal dysfunction, inflammation, growth
factors, oxidative stress (OS), immunocytes, and gut microbiota.
Understanding the pathogenesis of cirrhotic ascites is crucial for
identifying potential biomarkers and novel therapeutic targets,
advancing our knowledge and developing effective prevention
strategies and therapeutic interventions to mitigate its impact on
patients’ health and quality of life. Here, we summarize some of
these considerable factors, emphasizing some of the recent work on
cirrhotic ascites pathogenesis.

2 Pathogenesis of cirrhotic ascites

Cirrhotic ascites is a multifactorial process involving the
interplay of portal hypertension, renal dysfunction, inflammation,
growth factors, OS, immunocytes, and gut microbiota. By
understanding the underlying mechanisms and interactions
between these factors, we can tailor therapeutic approaches
that specifically address the complexities of cirrhotic ascites.
This knowledge is essential for improving patient outcomes and

reducing the complications associated with this condition. The
pathogenesis of cirrhotic ascites is shown in Figure 1.

2.1 Portal hypertension

The portal vein is the main blood vessel that collects blood from
abdominal organs, such as the intestines, spleen, and stomach, and
delivers it to the liver (21). In cirrhosis, the fibrosis of liver tissue
and the obstruction of blood flow lead to increased pressure in the
portal vein, known as portal hypertension (22).

Portal hypertension leads to the formation of collateral vessels,
which are abnormal blood vessels that bypass the liver and allow
blood to flow around it. These collateral vessels divert blood
away from the liver, which subsequently reduces renal perfusion
(23). The decrease in renal blood flow compromises the kidneys’
ability to function properly, leading to renal dysfunction (23,
24). The renal dysfunction stimulates the renin - angiotensin
- aldosterone system (RAAS) and sympathetic nervous system,
leading to sodium and water retention (25–27). The increased
sodium reabsorption in the proximal tubules of the kidneys
results in increased intravascular volume and exacerbates the
development of ascites (28). Moreover, the structural changes in
the liver parenchyma, such as fibrosis and nodular regeneration,
lead to increased resistance to blood flow within the liver sinusoids
(29). This condition, known as hepatic sinusoidal hypertension,
contributes significantly to the development of ascites (30, 31).
The compromised sinusoidal integrity results in increased portal
pressure, further exacerbating splanchnic vasodilation and sodium
retention (32, 33). Additionally, portal hypertension also causes an
elevation in the capillary filtration pressure within the splanchnic
circulation (34). The increased hydrostatic pressure forces fluid
through the endothelial fenestrations and into the interstitial space,
resulting in the accumulation of fluid within the peritoneal cavity
(35). Furthermore, the subsequent decrease in oncotic pressure due
to reduced hepatic protein synthesis impairs the reabsorption of
fluid from the peritoneal cavity (35).

In conclusion, there is a close relationship between portal
hypertension and cirrhotic ascites. Portal hypertension is caused
by the increase in pressure within the portal vein and leads to
the formation of collateral circulation. This process interacts with
factors such as renal dysfunction and the activation of RAAS.
The treatment of cirrhotic ascites involves not only alleviating
symptoms but also controlling portal hypertension and correcting
liver dysfunction.

2.2 Renal dysfunction

Renal dysfunction or impaired kidney function can worsen
the development and progression of cirrhotic ascites through
various mechanisms.

One of the key reasons is the disruption in the RAAS - a
hormone system responsible for regulating blood pressure and
fluid balance in the body (36). In cirrhosis, the RAAS system
is dysregulated, leading to increased production of vasodilators
and decreased production of vasoconstrictors (37). This leads to
systemic vasodilation and a decrease in effective arterial blood
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FIGURE 1

The pathophysiology of cirrhotic ascites. (By Figdraw). Under the stimulation of various factors, the stable state of the liver cell environment is
disrupted, leading to the development of cirrhosis and the occurrence of ascites. These factors include portal hypertension, renal dysfunction,
inflammation, growth factors, oxidative stress, immunocytes, and gut microbiota. These changes ultimately result in alterations in the normal
structure and function of the liver, leading to the development of cirrhotic ascites. HSC, hepatic stellate cell; RAAS, renin - angiotensin - aldosterone
system; HRS, hepatorenal syndrome; ROS, reactive oxygen species; OS, oxidative stress; TGF-β, transforming growth factor-beta; HGF, hepatocyte
growth factor; VEGF, vascular endothelial growth factor; MET, epithelial transition factor; TNF-α, tumor necrosis factor-α; IL, interleukin.

volume (38). The kidneys perceive this decrease in blood volume
and activate compensatory mechanisms to retain sodium and
water in an effort to restore blood volume (39). However, in
the setting of renal dysfunction, these compensatory mechanisms
can be impaired. The kidneys are unable to properly respond to
the decreased blood volume, resulting in inadequate sodium and
water excretion (40). This further exacerbates the fluid overload
and contributes to the development of cirrhotic ascites (41).
Additionally, the impaired renal function can lead to the retention
of nitrogenous waste products, such as urea and creatinine (42).
These waste products can accumulate in the body, leading to the
development of hepatorenal syndrome (HRS) (43). HRS further
worsens the fluid imbalance seen in cirrhotic ascites (44). The
diminished kidney function in HRS results in the accumulation of
sodium and water, leading to an elevation in blood volume and
portal hypertension. Consequently, this facilitates the buildup of
fluid in the abdominal cavity (26, 45).

In summary, renal dysfunction can play a significant role
in inducing and worsening cirrhotic ascites. Impaired kidney
function disrupts the normal regulation of fluid balance in the
body, leading to fluid accumulation in the abdominal cavity.
Understanding the underlying mechanisms and implementing
appropriate management strategies are essential in addressing this
complex condition and improving patient outcomes.

2.3 Inflammation

Inflammation is a fundamental immune response that occurs
in the body as a protective mechanism against harmful stimuli such
as pathogens, tissue damage, or irritants (46). Chronic liver injury
leads to the release of pro-inflammatory cytokines and chemokines,
which attract immunocytes to the liver. These immunocytes, such
as macrophages and lymphocytes, further promote the formation of
cirrhotic ascites by enhancing the inflammatory response (47–49).

In cirrhosis, chronic liver inflammation triggers a complex
cascade of events that involve the activation of immunocytes,
the release of pro-inflammatory cytokines, and the recruitment
of inflammatory cells to both the liver and peritoneum (50, 51).
Notably, pivotal cytokines such as tumor necrosis factor-alpha
(TNF-α), interleukin-6 (IL-6), and interleukin-1 (IL-1) play crucial
roles in this inflammatory response (52, 53). These cytokines
play significant roles in the development of cirrhotic ascites
by inducing vasodilation, enhancing capillary permeability, and
activating the RAAS that promote sodium and water retention
(53–57). TNF-α, in particular, stimulates the production of nitric
oxide, which causes splanchnic and systemic vasodilation (58–60).
This leads to further decreases in effective arterial blood volume
and activates compensatory mechanisms that promote sodium and
water retention (61, 62). In addition, inflammation contributes to
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the pathogenesis of cirrhotic ascites by promoting the formation of
fibrous tissue and collagen deposition within the liver. This process,
known as hepatic fibrosis, is driven by activated hepatic stellate cells
(HSCs) and pro-inflammatory mediators (such as TNF-α and IL-6)
(63). The progressive fibrotic changes in the liver not only lead to
decreased liver function, but also induce renal dysfunction. These
factors further exacerbate portal hypertension, ultimately resulting
in the development of cirrhotic ascites (64, 65).

By and large, inflammation plays a critical role in the
development and progression of cirrhotic ascites. The dysregulated
inflammatory response in liver cirrhosis leads to the activation
of immunocytes, release of pro-inflammatory mediators, and
disruption of fluid homeostasis. Understanding the relationship
between inflammation and cirrhotic ascites can aid in the
development of targeted therapeutic strategies to mitigate its
impact on patients with liver cirrhosis.

2.4 Growth factors

Growth factors are signaling molecules that play a crucial
role in various cellular processes, including cell proliferation,
differentiation, migration, and apoptosis (66). In the context of liver
disease, dysregulated growth factor signaling has been shown to
contribute to hepatic fibrosis, angiogenesis, and the development
of portal hypertension and cirrhotic ascites (67–69).

The imbalance between pro- and anti-fibrotic growth factors
has been suggested to play a critical role in the development
of hepatic fibrosis, which is a hallmark of chronic liver disease.
Transforming growth factor-beta (TGF-β) is one of the most potent
pro-fibrogenic growth factors involved in the activation of HSCs
and the promotion of fibrosis (70). It has been demonstrated that
TGF-β signaling is upregulated in cirrhosis and contributes to
the development of ascites through the promotion of fibrogenesis
and the disruption of hepatic microcirculation (71). On the other
hand, hepatocyte growth factor (HGF) is an important anti-fibrotic
growth factor that acts as a potent inhibitor of HSC activation
and collagen synthesis. HGF is produced by mesenchymal cells,
including HSCs, and exerts its effects through the mesenchymal
to epithelial transition factor (MET) receptor on hepatocytes and
other cell types (72). Reduced production or impaired signaling of
HGF has been observed in cirrhosis, and this dysregulation may
contribute to the development of ascites by promoting fibrosis and
impairing liver regeneration (73).

In addition to their role in fibrogenesis, growth factors have
also been implicated in the regulation of vascular tone and
angiogenesis, which are important factors in the development of
portal hypertension and subsequent cirrhotic ascites formation.
Vascular endothelial growth factor (VEGF) is a major angiogenic
factor that stimulates the formation of new blood vessels and
increases vascular permeability (74). Increased levels of VEGF
have been found in the serum and ascitic fluid of patients with
cirrhotic ascites, and this dysregulation may contribute to the
development of cirrhotic ascites by promoting neovascularization
and endothelial dysfunction (75).

In a nutshell, the dysregulation of growth factor signaling
plays a crucial role in the pathogenesis of cirrhotic ascites.
Imbalances between pro- and anti-fibrotic growth factors, such

as TGF-β and HGF, contribute to hepatic fibrosis and impaired
liver regeneration, while dysregulated angiogenic factors, such
as VEGF, promote neovascularization and increased vascular
permeability. Understanding the relationship between growth
factors and cirrhotic ascites may provide valuable insights into
the development of targeted therapeutic interventions for this
condition. For example, targeted therapies that inhibit VEGF or
its receptors have shown promising results in reducing ascites
formation in experimental models and clinical trials (75, 76).

2.5 Oxidative stress

Oxidative stress has been implicated in the pathogenesis of
various liver diseases, including cirrhotic ascites. The liver plays
a vital role in detoxification and metabolism, which exposes
it to a higher concentration of reactive oxygen species (ROS)
(77). The excessive production of ROS can lead to oxidative
damage to various cellular components, including lipids, proteins,
and DNA (78).

In cirrhotic ascites, OS is believed to contribute to the
progression of hepatic fibrosis, which eventually leads to cirrhosis
(79). Studies have shown that ROS can contribute to endothelial
dysfunction, inflammation, which are responsible for the activation
of HSCs and the production and deposition of collagen (80–82).
This activation process promotes hepatic fibrosis and contributes
to the development of cirrhosis and cirrhotic ascites (83, 84).
Moreover, OS can also directly affect the function and integrity
of endothelial cells lining the blood vessels in the liver (79, 85).
The dysfunction of these endothelial cells leads to an abnormal
increase in both vasodilation and vascular permeability, which
significantly contributes to the leakage of fluid into the abdominal
cavity (86). This, in turn, causes an elevation in vascular resistance
and ultimately leads to the development of portal hypertension (87,
88). Consequently, there is a buildup of cirrhotic ascites due to the
heightened hydrostatic pressure (89, 90). Additionally, OS-induced
activation of the RAAS has been shown to play a role in sodium
and water retention, further contributing to the development of
cirrhotic ascites (91–93).

On the whole, OS plays a significant role in the development
and progression of cirrhotic ascites. Excessive generation of ROS
and inadequate antioxidant defense contribute to endothelial
dysfunction, HSC activation, hepatic fibrosis, and fluid retention.
Targeting OS pathways may provide new therapeutic strategies for
the management of cirrhotic ascites. However, more research is
needed to fully understand the complex interplay between OS and
cirrhotic ascites formation in liver cirrhosis.

2.6 Immunocyte

Immunocytes play a crucial role in the development and
progression of cirrhotic ascites. In the early stages of liver cirrhosis,
chronic inflammation is triggered by various factors such as
alcohol abuse, viral hepatitis, or autoimmune disorders (94–96).
This inflammation activates immunocytes, including macrophages,
neutrophils, and lymphocytes, which are key players in the immune
response (97–99).
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Macrophages are immunocytes that respond to inflammation
and infection. In cirrhotic ascites, activated macrophages release
pro-inflammatory cytokines, such as TNF-α and IL-6, which
contribute to the development of cirrhotic ascites (49). These
cytokines promote the activation and migration of other
immunocytes, leading to increased vascular permeability and
fluid accumulation in the abdominal cavity (100–102).

Neutrophils, another type of immunocyte, are also involved
in the pathogenesis of cirrhotic ascites. Inflammation stimulates
the release of chemokines, which attract neutrophils to the site of
injury or infection (103). Once in the liver, neutrophils promote
further inflammation and OS by releasing ROS and proteases (104–
106). These substances damage liver tissue and contribute to the
development of ascites (91, 105, 107, 108).

Lymphocytes, particularly T cells, also play a crucial role in
the development of cirrhotic ascites. The chronic inflammation in
the liver promotes the activation and expansion of T cells, leading
to an imbalance between regulatory T cells (Tregs) and effector T
cells (109, 110). This imbalance favors the development of cirrhotic
ascites by impairing the immune response and promoting the
accumulation of fluid in the abdominal cavity (111).

Moreover, immunocytes are not only involved in the
development but also in the resolution of cirrhotic ascites. During
the resolution phase, macrophages switch from a pro-inflammatory
to an anti-inflammatory phenotype (112). Anti-inflammatory
cytokines, such as interleukin-10 (IL-10), are released, which
reduce inflammation and promote tissue repair (49, 113). Similarly,
regulatory T cells play a role in dampening the immune response,

thereby reducing inflammation and promoting the resolution of
cirrhotic ascites (114).

To sum up, immunocytes play a crucial role in the development
and progression of cirrhotic ascites. Activation of macrophages,
neutrophils, lymphocytes, and dysregulation of immune responses
contribute to the development and resolution of cirrhotic ascites
through the release of pro-inflammatory and anti-inflammatory
molecules. Understanding the complex interactions between
immunocytes and ascites formation may pave the way for new
therapeutic approaches targeting the immune system for the
management of cirrhotic ascites. In particularly, modulation of
immunocyte function or inhibition of specific pro-inflammatory
cytokines could potentially reduce the severity and frequency of
ascites episodes (93, 115).

2.7 Gut microbiota

Gut dysbiosis refers to an imbalance in the composition and
function of the gut microbiota. In healthy individuals, the gut
microbiota consists of a diverse community of microorganisms
that play a crucial role in maintaining gut homeostasis and overall
health (116, 117). However, in patients with cirrhosis, gut dysbiosis
is commonly observed (118). This dysbiosis is characterized by an
increase in potentially harmful bacteria, a decrease in beneficial
bacteria, and alterations in microbial metabolites (119). The
pathogenesis of gut microbiota in the development of cirrhotic
ascites is illustrated in Figure 2.

FIGURE 2

The pathogenesis of gut microbiota in the development of cirrhotic ascites. (By Figdraw). The pathogenesis of gut microbiota in the development of
cirrhotic ascites involves the imbalance of intestinal microbiota, leading to impairment of the intestinal mucosal barrier and reduced intestinal barrier
function. This imbalance further promotes the translocation of bacteria and toxins. These bacteria and toxins activate immune, inflammatory
responses, and oxidative stress, ultimately resulting in liver dysfunction and the formation of ascites. TNF-α, tumor necrosis factor-α; IL, interleukin;
HDACs, histone deacetylases; AC, adenylate cyclase; OS, oxidative stress; SCFAs, short-chain fatty acids; LPS, lipopolysaccharides.
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The relationship between gut dysbiosis and cirrhotic ascites is
thought to be bidirectional. On one hand, the presence of cirrhotic
ascites can lead to changes in the gut microbiota composition
(120). The accumulation of fluid in the peritoneal cavity can
cause increased intestinal permeability, also known as “leaky gut”
(121). This increased permeability allows bacteria and bacterial
products to translocate from the gut lumen into the systemic
circulation, leading to a systemic inflammatory response (115, 122).
This translocation of bacteria and bacterial products is known
as bacterial translocation and is a hallmark of advanced cirrhosis
(123). Bacterial translocation can further exacerbate gut dysbiosis
and contribute to the development and progression of cirrhotic
ascites (41, 93).

On the other hand, gut dysbiosis can also contribute to
the development of cirrhotic ascites. Dysbiotic gut microbiota
produce more pathogenic metabolites such as short-chain fatty
acids (SCFAs), lipopolysaccharides (LPS), and secondary bile acids
compared to a healthy gut microbiota (124–126). These metabolites
have been shown to induce intestinal inflammation and increase
intestinal permeability, leading to bacterial translocation (127,
128). Furthermore, dysbiotic gut microbiota not only triggers
inflammation throughout the body but also activates immunocytes,
leading to the production of pro-inflammatory cytokines (such
as TNF-α and IL-6) and chemokines (129, 130). Additionally, it
induces OS, which further worsens the development of cirrhotic
ascites (44, 131, 132).

Overall, gut dysbiosis plays a significant role in the development
and progression of cirrhotic ascites. The bidirectional relationship
between gut dysbiosis and cirrhotic ascites highlights the
importance of incorporating strategies to modify the gut
microbiota in the management of patients with cirrhosis. Further
research is needed to fully understand the mechanisms underlying
this relationship and to develop targeted therapeutic interventions
for the treatment of cirrhotic ascites. For instance, probiotics,
prebiotics, or fecal microbial transplantation have shown promise
in improving gut barrier function and reducing inflammation
in animal models of cirrhosis (118, 133). By restoring a healthy
balance of gut bacteria, it may be possible to restore gut homeostasis
and reduce the risk of bacterial translocation and subsequent ascites
formation (44).

3 Conclusion and discussion

The mechanism study of cirrhotic ascites is a complex
and challenging field. By studying in-depth factors such as
portal hypertension, renal dysfunction, inflammation, growth
factors, OS, immunocytes, and gut microbiota, as well as their
interrelationships, we can better understand the pathogenesis
of cirrhotic ascites and provide effective targets and strategies
for its treatment.

Despite some progress in understanding the mechanisms of
cirrhotic ascites, there are still many unresolved issues. Firstly,
the interaction between different mechanisms and their relative
importance in the development of cirrhotic ascites is still not fully
clear. Cirrhotic ascites is not caused by a single factor, but rather
by complex pathological and physiological changes resulting from
multiple factors. Therefore, further research is needed to investigate

the interactions between different mechanisms and their relative
contributions in the formation of cirrhotic ascites.

Secondly, early diagnosis and prevention of cirrhotic ascites
remain challenging. Currently, abdominal ultrasonography and
abdominal paracentesis are commonly used for diagnosing
cirrhotic ascites, but they still have limitations. Therefore, it is
of great significance to identify new biomarkers and imaging
techniques to improve the early diagnosis and prevention of
cirrhotic ascites.

Lastly, the treatment options for cirrhotic ascites are still
limited. Current approaches mainly involve diuretics, salt-
restricted diets, and paracentesis to alleviate the symptoms of
cirrhotic ascites, but these methods do not cure the underlying
disease. Therefore, finding new treatment targets and approaches
is an important direction for future research.

All in all, although progress has been made in understanding
the mechanisms of cirrhotic ascites, there are still many unresolved
issues. Future research should focus on the interactions between
different mechanisms, as well as identifying new biomarkers and
treatment methods to improve the prevention and treatment of
cirrhotic ascites.
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