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The integration of diagnostic CT scans into PET/CT facilitates a comprehensive 
single examination, presenting potential advantages for patients seeking a 
thorough one-shot check-up. The introduction of iodinated contrast media 
during PET scanning raises theoretical concerns about potential interference 
with uptake quantification, due to the modification of tissue density on CT. 
Nevertheless, this impact appears generally insignificant for clinical use, compared 
to the intrinsic variability of standardized uptake values. On the other hand, with 
the growing indications of PET, especially 18F-FDG PET, contrast enhancement 
increases the diagnostic performances of the exam, and provides additional 
information. This improvement in performance achieved through contrast-
enhanced PET/CT must be carefully evaluated considering the associated risks 
and side-effects stemming from the administration of iodinated contrast media. 
Within this article, we  present a comprehensive literature review of contrast 
enhanced PET/CT, examining the potential impact of iodinated contrast media 
on quantification, additional side-effects and the pivotal clinically demonstrated 
benefits of an all-encompassing examination for patients. In conclusion, the 
clinical benefits of iodinated contrast media are mainly validated by the large 
diffusion in PET protocols. Contrary to positive oral contrast, which does not 
appear to offer any major advantage in patient management, intravenous iodine 
contrast media provides clinical benefits without significant artifact on images 
or quantification. However, studies on the benefit–risk balance for patients are 
still lacking.
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1 Introduction

A recent editorial has brought forth the question: “PET/contrast-enhanced CT in 
oncology: to do, or not to do, that is the question” (1).

Positron Emission Tomography (PET) is a molecular imaging technique that enhances 
diagnostic performance (2), therapeutic response monitoring (3), prognosis evaluation (4, 5) 
and modifies the management of patients with hematological (6) or solid malignancy (7). 
However, it is sensitive to attenuation. Unlike Single Photon Emission Tomography (SPECT), 
PET reconstruction needs the detection of two simultaneous 511 keV photons produced by 
β + annihilation. The increased interaction probability of at least one of two photons versus 
only one results in a decreased sensitivity with patient’s depth.
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This attenuation has been historically corrected with a 511 keV 
attenuation map generated using a 68Germanium transmission source. 
The primary drawback of this technique was its inherent slowness, 
significantly elongating the examination duration. Subsequent PET 
generation introduced a shift where attenuation correction map was 
substituted with a simulated high-energy attenuation map derived from 
Computed Tomography (CT). The first hybrid PET/CT systems offered 
enhanced accuracy in pinpointing the anatomical uptake location.

Gradually, PET manufacturers integrated the same diagnostic CT 
used as in radiology. With the potentially comparable performances 
capabilities, the redundancy between radiological CT and PET/CT 
prompted physicians to enhance the CT parameters of PET for 
minimizing overall patient’s exposure, especially in oncology, and the 
economic impact (8).

The quest to the one-stop-shop anatomic and metabolic exam 
potentially required contrast-enhanced CT but the attenuation map 
modification by contrast medium could potentially lead to PET 
artefacts (9, 10). In this article, we propose a comprehensive literature 
review on the physical and clinical impacts of intravenous and positive 
oral contrast-enhanced CT in PET (cePET/CT).

2 Physical impact on standardized 
uptake value

The standardized uptake value (SUV) is the main quantitative 
parameter in PET to assess the radiopharmaceutical concentrations in 
tissues, while accounting for radioactive decay.

SUV body weighted (SUVbw or SUW) is determined by the ratio 
of the activity concentration in the tissue under examination to the 
activity concentration in the entire body.

However, SUVbw assumed a uniform distribution of the 
radiopharmaceutical throughout the body which was not the case. 
Particularly for the mainly used radiopharmaceuticals, the activity 
level in white adipose tissue was considerably low and led to an SUVbw 
overestimation in patients with obesity (11). To rectify this, a more 
accurate approach involved scaling the SUV according to the lean 
body mass (SUVlbm or SUL) (12) for adults or to the body surface area 
(SUA) in pediatric patients (13).

Furthermore, various other factors could potentially interfere with 
radiopharmaceutical distribution, such as injected activity, post-
injection uptake time, blood glucose level, attenuation correction (14).

There was also multiple methods for quantifying SUV in a region 
of interest (ROI). SUVmean represented the average activity in the ROI 
while SUVmax captured only the maximum pixel value. However, 
SUVmax was more sensitive to noise (15) and SUVmean tended to lower 
the quantitative values with a better repeatability (16). An alternative 
approach could involve SUVpeak which computed the mean pixel value 
in the vicinity of the pixel with the maximum value and is less sensitive 
to changes in reconstruction parameters (17).

2.1 Intravenous iodine contrast media

On anthropomorphic phantom with and without Iodine Contrast 
Media (ICM), the study conducted by Razac et al. revealed a marginal 
absolute difference ΔSUVmax and ΔSUVmean, of 0.2 and 0.4, respectively 
(18). This disparity was more pronounced in the most metabolically 

active simulated lesion (ΔSUV = 1.5 for a SUVmax of 22). Nevertheless, 
these discrepancies were not clinically or statistically significant. These 
findings corroborated those of Bunyaviroch et al. which indicated a 
maximum SUV relative difference of 7% on phantom studies and a 
lower variance with 5.9% in clinical application (19). A variability of 
up to 8% was also found in conventional and digital systems 
complying with EARL accreditation but a more than 30% SUV 
difference could be observed on a limited number of lesions (17).

In clinical practice, the SUV fluctuation was heightened in highly 
contrast-enhanced regions, although these differences were not 
deemed significant (20, 21). Even when the variability was statistically 
significant, the authors did not observe any discernible clinical impact 
(22). This ICM SUV induced difference remained relatively negligible 
compared to the 20–30% global SUV variability in tumors (16). For 
this reason, it was recommended to use a 25% SUV decreased 
threshold for tumor reduction and a 33% SUV increased threshold for 
tumor progression in follow-up (23).

To mitigate the effects of ICM on attenuation correction, 
numerous research groups have explored how to refine the injection 
protocol, such as adjusting the ICM dose, concentration, or flow rate.

Regarding dose adjustment, an adaptation to the body surface 
area demonstrated a decrease in SUV variability, compared to a fixed-
dose approach, and an improved interpatient homogeneity of contrast 
enhancement (24).

Similarly, the same researchers compared the effects of ICM 
dosage, finding no significant difference between 300 and 370 mgI/ml 
(25). When using an even higher iodine concentration of 400 mgI/ml, 
in a multiphase contrast enhanced CT protocol, Aschoff et al. noted 
only a minimal to negligible influence on 2-[18F]FDG (18F-FDG) 
quantification (26). It was advisable to opt for a single-phase CT rather 
than a multiphasic protocol to minimize coregistration errors (27).

2.2 Oral contrast media

Similarly to ICM, positive oral contrast agents could influence 
SUV values. This effect was demonstrated on phantom with SUV 
overestimation for high-density oral contrast agent (28) and the 
absence of significant artifact for low-density barium oral contrast 
agents (29). However, in a small patient cohort, Otsuka et al. did not 
find a significant correlation between SUV and Hounsfield 
density (30).

On simulated PET reconstructions, Dizendorf et al. demonstrated 
that oral contrast agents overestimated PET attenuation coefficients 
by 26.2% with only a small effect on SUV PET. The error was measured 
at 4.4% and did not appear to be clinically significant (31).

3 Additional risks of contrast media in 
cePET/CT

In clinical use and because of their route of administration, 
positive oral contrast media were remarkably safe and side effects were 
exceedingly rare (32). Most complications were observed with 
intravenous contrast agents.

ICM allowed the enhancement of vascular structures and tissue 
contrast. They were classified into two major categories: highly 
hyperosmolar ICM and hypo- or iso-osmolar non-ionic ICM. Both 
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types could induce side effects, with a higher prevalence seen in ionic 
ICM. This discrepancy in side effects prevalence was the reason why 
non-ionic ICM were preferred (33).

Warming iodine contrast media at 37°C could also reduce the risk 
of allergic or physiologic reactions (34).

3.1 Pseudo-allergic and allergic reactions

While ionic ICM previously resulted in side effects for 12% of 
patients, the use of non-ionic ICM had significantly decreased this 
occurrence to 0.7–3.1% and the most severe reactions have been 
drastically reduced from 0.22 to 0.02–0.04%.

ICM reactions were mostly non-fatal and manifested in 70% of 
patients within the first 5 min following ICM injection (35).

The majority of ICM reactions were non-allergic. Hyperosmolality 
induced fast vascular volume changes or direct chemotoxicity which 
could lead to physiological responses such as flushing, nausea and 
altered taste. Another reaction came from a non-allergic 
hypersensitivity caused by the direct release of histamine from mast 
cells and basophils. This mechanism could result in allergic-like 
symptoms like urticaria. For mild reactions, simple monitoring or 
H1-antihistamines treatment was generally sufficient.

IgE-mediated allergy was uncommon. In more severe cases 
involving laryngeal edema, corticosteroid therapy was often initiated 
while resuscitation measures were implemented during anaphylactic 
shocks (36).

For at-risk patients, a prophylactic treatment could 
be implemented (H1-antihistamines, corticosteroids) (37).

3.2 Nephrotoxicity

ICM increased the risk of acute kidney injury within 48 h 
following injection. This risk, previously overestimated, could now 
be  prevented by hydration when clearance was below 30 mL/
min/1.73 m2 or for high-risk patients without contra-indication (38). 
As contrast enhanced CT was optional in PET, it might be advisable 
to refrain from administering ICM to these patients. For the specific 
case of myeloma, a meta-analysis suggested that no special precaution 
was needed if the calcium level was within the normal range (39).

3.3 Metformin

Metformin is an oral antihyperglycemic medication commonly 
prescribed for diabetes. In the context of ICM injection, patients 
might potentially develop lactic acidosis coupled with renal failure 
(35). The European Society of Urogenital Radiology (ESUR) 
guidelines and American College of Radiology manual recommended 
discontinuing the treatment for 48 h and monitoring renal function 
when the baseline clearance was below 30 mL/min/1.73 m2 or if there 
were signs of acute renal failure.

3.4 Extravasation

Compared to the low injected volume of radiopharmaceuticals, 
ICM injection is carried out at higher pressure and for a larger volume. 

The risk of extravasation reported in the literature ranged from 0.1 to 
0.9% and was increased when using an automatic injector (40, 41) or 
in cancer patients (42).

The risks associated with extravasation increased with osmolality 
but also depended on its direct toxicity. This toxicity was notably more 
pronounced with ionic ICM, as well as the anatomical location or 
volume. While most cases were relatively benign resulting in minor 
issues like skin erythema, there was potential for more severe side 
effects such as compartment syndrome or necrosis (40).

The widespread use of non-ionic ICM usually did not expose 
patients to the risk of severe complications. Therefore, a surgical 
consultation might be advised only for volumes exceeding 150 mL or 
in case of compressive signs (impaired perfusion or altered 
sensibility) (40).

3.5 Contrast-induced thyroid dysfunction

A typical radiological dose of ICM contains a substantial amount 
of free iodine, equivalent to the iodine needs for several months. 
When the body encountered excess iodine, the Wolff-Chaikoff effect 
was triggered, causing a fast downregulation in thyroid hormone 
synthesis. Prolonged exposure to high iodine levels could disrupt this 
regulatory mechanism, potentially resulting in either hyperthyroidism 
or hypothyroidism.

Moreover, this excess iodine load had the potential to exacerbate 
existing thyroid pathology or even directly cause thyroid toxicity (43).

3.6 ICM transformation products and 
potential toxicity

While ICM themselves were not inherently toxic, their presence 
in source waters raised concerns due to the formation of potentially 
toxic transformation products detected in drinking water (44). 
Specifically, ICM could react with commonly used disinfectants like 
chlorine, leading to formation of iodinated disinfection byproducts 
(iodo-DBP). Studies indicated that these iodo-DBP were highly 
genotoxic or cytotoxic, surpassing the conventional DBPs in toxicity. 
This situation highlighted concerns regarding the effectiveness of 
current treatment technologies and raised serious questions about 
disinfecting water containing ICM (45). Recent proposals suggested 
measures aimed at reducing and collecting ICM residues (46).

These potential side effects needed to be balanced against the 
clinical benefits of an enhanced CT for the patients. Table  1 
summarizes the main advantages and disadvantages of ICM injection 
in PET/CT.

4 Clinical added value of cePET/CT

4.1 Head and neck tumors

Squamous cell carcinoma (SCC) represents the most common 
head and neck tumor type (95%). 18F-FDG cePET/CT with dual phase 
has been proved superior to conventional imaging by MRI or CT for 
diagnosis and staging of patients with laryngeal carcinoma, with an 
higher rate of regional nodal, distant metastasis, and synchronous 
tumors (5, 47). More globally, 18F-FDG PET/CT is a recognized 
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modality for the staging and follow-up of head and neck SCC (48, 49). 
In cases with cervical lymph node metastasis from an unknown 
primary tumor, 18F-FDG PET/CT revealed primary tumors that went 
undetected by CT or MRI in about 25% of cases (50). However, in 
those studies the difference between PET/CT and cePET/CT was 
not evaluated.

Prognosis for head and neck SCC is partly influenced by Human 
Papilloma Virus (HPV) status, with evidence that virally induced 
tumors responded far better to radiotherapy (51, 52). Using the 
hypoxia-specific tracer 18F-fluoroazomycin arabinoside (FAZA), Saksø 
et al. demonstrated that the risk of locoregional recurrence was higher 
among patients with more hypoxic, non-HPV tumors (57% 
[21–94%]), when comparing to less hypoxic, non-HPV tumors, with 
a risk difference of 45% [4–86%] (53).

Integrated 18F-FDG PET/perfusion CT showed that tumoral 
perfusion was significantly increased compared to surrounding soft 
tissue, especially for advanced tumors, and that meant blood flow was 
decreased in HPV-negative tumors (54).

Suenaga et al. showed that cePET/CT and PET/CT statistically 
showed larger AUC than contrast enhanced CT (ceCT) for recurrent 
head and neck squamous cell carcinoma (55). Even though minimal, 
the difference between cePET/CT and PET/CT for local recurrence 
reached a significant level (p = 0.039).

These works highlighted the distinctions between HPV-positive 
and negative tumors and emphasized the utility of analyzing the 
microvasculature features of tumoral head and neck SCC to predict 
their aggressiveness. This illustrated the necessity of integrating 
non-morphologic parameters, and also looking beyond the 
SUV uptake.

4.2 Digestive tumors

18F-FDG ceCT had a higher predictive positive value for any PET 
pathologic findings than CT in the whole gastrointestinal tract, as well 
as in the separate evaluation of the upper and lower gastrointestinal 
tract (56). The sensitivity for the detection of a malignant lesion was 
100% for ceCT and 29.4% for CT (p = 0.0001). The false negative rate 
for any pathology was 31.1% for ceCT and 68.9% for CT; this rate was 
however lower in the lower gastro-intestinal tract for CT (12.5% vs. 
37.5% for ceCT).

18F-FDG PET and ceCT seemed to have similar value in the 
detection of unsuspected recurrence of high-risk colorectal cancer in 

a patient-based analysis: sensitivity and specificity of 86 and 88%, 86 
and 92%, 86 and 85%, respectively for PET, ceCT and cePET/CT (57). 
However, the combined assessment of cePET/CT improved the 
accuracy in the lesion-based analysis: sensitivity of 56, 71 and 97%, 
respectively for PET, ceCT and cePET/CT.

Regarding rectal tumors, cePET/CT was superior to non-enhanced 
PET/CT for precise definition of regional nodal status in rectal cancer 
with a better characterization of pararectal, internal iliac and obturator 
lymph nodes (58).

A retrospective study explored the diagnostic value of the cross-
modality fusion images provided by 18F-FDG PET/CT and ceCT in 
differentiating malignant from benign pancreatic lesions and staging 
pancreatic cancer (59). The authors found higher sensitivity and 
accuracy of cePET/CT compared to PET/CT and ceCT conducted 
individually both for diagnosing pancreatic malignant tumor and 
peripancreatic vessel invasion. Regarding regional lymph node 
metastasis, there was no significant differences between the three 
methods: however, regarding distant metastasis, cePET/CT improved 
sensitivity and negative predictive value in comparison to ceCT alone. 
cePET/CT had also higher sensitivity and accuracy than PET/CT, but 
the difference was not statistically significant.

Considering neuroendocrine tumors, a recent study emphasized 
that ceCT in 68Ga-DOTATATE PET should be included for staging. 
The overall lesion-based sensitivity, specificity, negative predictive 
value and positive predictive value were 97% versus 85, 86% versus 73, 
93% versus 72, 93% versus 85%, respectively, for full-dose cePET/CT 
and low dose PET/CT (60).

In the case of positive oral contrast media, several studies have 
demonstrated an improvement in digestive distension which was a 
potential help for diagnosis (61–63), but few have been able to 
demonstrate a clinical benefit. Chen et al. reported a more accurate 
delayed PET/CT with laxative-augmented contrast medium than 
conventional PET/CT for the evaluation of colorectal foci (64) and 
Guo et al. reported a case of enterovesical fistula revealed with oral 
contrast (65). The main challenge in assessing the impact of oral 
contrast agents was the hyperfixation of digestive structures (66), 
particularly due to distension, increased motility, and irritative 
phenomena (30). Regarding these digestive fixations, they were less 
pronounced with negative oral contrast agents (67–69) or those with 
low iodine density (62, 70).

4.3 Gynecological tumors

Considering malignant ovarian tumors, 18F-FDG cePET/CT 
outperformed ceCT with sensitivity, specificity, negative predictive 
value, positive predictive value, and accuracy of 96 versus 84%, 92 
versus 59%, 90 versus 59%, 97 versus 84%, and 95 versus 76%, 
respectively for cePET/CT and PET/CT alone (71). cePET/CT 
represented an accurate imaging modality for staging ovarian 
cancer (72).

Regarding ovarian cancer recurrence, cePET/CT seemed to 
be more accurate. Some data suggested higher sensitivity, specificity, 
and accuracy of cePET/CT: 86.9, 95.9, and 92.5%, respectively, 
(compared to 78.3, 95.0, and 88.3%, respectively for PET/CT) 
(p = 0.023 at least) (73). Another study found a better identification of 
smaller peritoneal/lymph node lesions close to physiological FDG 

TABLE 1 Main advantages and disadvantages of cePET/CT.

Pros Cons

Better lesion contrast especially in 

low-contrast lesions

Better delineation of anatomic 

structures (digestive and vascular 

structures, liver, muscles…)

Better PET/CT performance: 

sensitivity, specificity, accuracy

Better visualization of urinary tract

More comfortable for the patient

Overall cost lower than 2 exams

A more complex exam scheduling: 

kidney function, allergies, medications

Additional risks: pseudo-allergic and 

allergic reactions, kidney failure…

Artefacts with SUV overestimation

No additional reimbursement in many 

countries
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uptake sources with cePET/CT (74). With a better accuracy compared 
to non-contrast PET/CT and enhanced CT, cePET/CT could lead to 
changes in patient management for 39% of them (75).

Similarly, for uterine cancer, cePET/CT seemed to perform 
slightly better (sensitivity and accuracy) for nodal staging (p = 0.046 
and 0.047) (76). cePET/CT was accurate for recurrence, reducing the 
frequency of equivocal interpretations (77) and leading to more 
appropriate subsequent clinical management than that resulting from 
PET alone or ceCT alone (78).

4.4 Melanoma

A previous study recommended to perform 18F-FDG PET/CT 
instead of cePET/CT for staging of malignant melanoma patients (79). 
Comparison between CT and ceCT alone clearly revealed higher 
sensitivity and specificity for ceCT. However, when directly comparing 
lesion-based evaluation of combined PET/CT and cePET/CT, there 
was a difference in sensitivity of 3% only and no difference in 
specificity. As a limit, this study was conducted on a non-time-of-
flight PET/CT system.

4.5 Hematological cancers

Integrated cePET/CT could improve the evaluation of pelvic 
lymphatic pathways nodal status in patients with malignant lymphoma 
(external and internal iliac, common iliac lymph nodes); diagnostic 
accuracies of retroperitoneal lymph nodes seemed to be  similar 
between PET/CT and cePET/CT (80). However, the contribution of 
ceCT in nodal staging (Ann Arbor) seemed to remain limited (81). 
Similarly, the response evaluation applying the Deauville score and 
Lugano classification criteria remained unchanged with cePET/
CT (82).

Thus, cePET/CT could be  performed in the management of 
lymphoma patients, especially for a precise target delineation before 
radiotherapy (83).

CePET/CT approach should also be  considered in pediatric 
exams. It could offer dose savings at similar image quality for children 
and young adults with lymphoma who had indications for both PET 
and diagnostic CT examinations (84).

4.6 Other malignancies

18F-FDG cePET/CT showed similar results compared with CT/
MRI in the detection of primary renal tumors, but it was superior to 
conventional methods in the detection of metastasis and staging (85). 
Once again, in this study, the authors did not compare directly PET/
CT and cePET/CT.

Similarly, the same authors also showed higher diagnostic 
accuracy of 18F-FDG cePET/CT for staging bladder cancer (89% vs. 
57% for conventional imaging: CT and MRI), with upstaging in 37% 
of patients, resulting in changes of patient management.

The use of contrast has also been described as useful in 18F-FDG 
cePET/CT as an initial imaging modality in patients presenting with 
metastatic malignancy of undefined primary origin (86).

In the specific case of lung and breast cancers, although these 
cancers were frequent, the clinical contribution of iodinated contrast 

injection has not been studied. It had only been demonstrated for lung 
cancers that non-ionic contrast injection did not cause significant 
artifact (21).

Figure 1 illustrates the improved visualization of low-contrast 
lesions, especially in difficult areas for diagnosis.

4.7 Non-tumor pathologies: inflammation 
and infection

A recent study focused on the diagnostic challenge in suspected 
infected aortic aneurysms, showing the high diagnostic accuracy of 
PET/CT for the detection of infection (sensitivity between 85 and 
100% vs. between 63 and 88% for ceCT) (87). However, the authors 
raised the question of specificity because of false positive findings. The 
combined acquisition and analysis of PET and ceCT could help to 
improve this specificity.

In vasculitis, cePET/CT could be useful for identifying stenotic 
lesions in Takayasu arteritis, but data are insufficient to support its 
routine use for giant cell arteritis large vessel vasculitis. Guidelines 
recommended a low-dose CT prior to ceCT for attenuation correction 
and subsequent SUV calculations (88).

Recent guidelines in the management of infectious endocarditis 
recommended cePET/CT, as it allowed the detection of metabolic 
findings (FDG uptake distribution and intensity) and anatomical 
findings (endocarditis-related lesions like abscess) within a single 
imaging procedure, resulting in the clinical clarification of 
indeterminate findings and change in the management of the patients. 
This might be  particularly helpful in complex settings like aortic 
grafts (89).

Lastly, contrast enhancement with an ICM enabled the detection 
of others pathologies, mostly not visible in PET/CT, such as lesions 
below the system resolution or pulmonary embolism, which were 
common in oncology (90).

5 Clinical added value of cePET/CT 
with other radiotracers

5.1 18F-choline

Despite being widely used for prostate cancer in many countries, 
only a few studies on parathyroid glands have been published. In a 
meta-analysis, Piccardo et al. found a better pooled sensitivity for 4D 
cePET/CT compared to PET/CT in primary hyperparathyroidism 
(Sensitivity of 0.93 and 0.89, respectively) with an identical detection 
rate (0.86) (91). In a cohort comprising 44 primary 
hyperparathyroidism patients, the same researchers confirmed the 
higher sensitivity of cePET/CT over PET/CT (with sensitivity of 1.0 
and 0.8, respectively) and a better detection rate of 0.72 compared to 
0.56, respectively (92).

5.2 68Ga-DOTATOC

For neuroendocrine tumors, 68Ga-DOTATOC cePET/CT 
demonstrated a minimal increase in sensitivity and specificity 
compared to unenhanced exam (93). Ruf et al. recommended the 
same multiphase protocol for cePET/CT as for CT scan (94, 95).
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5.3 68Ga-PSMA ligand

Although the injection of contrast media did not yield a significant 
difference in diagnostic performance between PET/CT and cePET/
CT, contrast enhancement seemed to improve the delineation of 
genitourinary system and increased the diagnostic certainty and 
interobserver agreement (96, 97).

However, CT acquisition during the contrast urinary excretion 
allowed for a better identification of the urinary tract. In a large 
retrospective study of 247 patients, Rosar et al. demonstrated that CT 
urography increased diagnostic confidence (in 48.6% of patients) 
while providing substantial support for interpretation (24.3%). In 
12.1% of patients, urography changed the disease staging with a 
potential impact on patient management (98).

Tulipan et  al. also showed that iodinated contrast agent 
sedimentation in the bladder created an activity gradient that 
improved visualization of the prostatic bed and the posterior 
bladder (99).

6 Issues raised by the all-in-one PET/
CT exam

The one-stop-shop PET exam with ICM blurs the boundary 
between nuclear medicine and radiology. Depending on the 

country, this may rise issues of legislation and reimbursement. In 
addition, the choice of cePET/CT injection protocol is not 
standardized and differs from one nuclear medicine department to 
another (100).

7 Conclusion

The use of iodinated contrast media (ICM) in PET/CT scans 
enhanced the overall examination performance by combining the 
PET sensitivity and specificity with those of diagnostic enhanced 
CT. This synergistic performance enhancement was achievable 
through an all-in-one examination, improving patient dosimetry, 
facilitating pathology management, and decreasing the administered 
volumes of ICM especially in the field of oncology. In contrast, 
although positive oral contrast media enhanced distension and 
contrast of digestive structures, their clinical utility in PET imaging 
appeared more modest.

However, the ICM injection was not exempt from side effects, 
most of which were moderate. For the most severe forms, the 
additional risk remained low, as most patients would have 
undergone an ICM enhanced CT as part of their assessment. 
Apart from contraindications, injecting less than  
150 mL of non-ionic ICM into patients with a renal clearance 
greater than 30 mL/min/1.75 m2 could maximize the safety of 

FIGURE 1

Right corpora cavernosa metastasis from penile carcinoma. on PET images (early acquisition B, late acquisition D), there was a focal uptake [(B) black 
arrow], without significant lesion on unenhanced CT (A), in an area close to the physiological urinary activity. With contrast medium injection on a 
dedicated acquisition (C), this uptake corresponded to a metastatic lesion clearly visible on CT (white arrow).
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ICM use in PET as long as no benefit–risk studies have been  
carried out.
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