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Mast cells release different anti-and pro-inflammatory agents changing their 
role from protective to pro-inflammatory cells involved in the progression of 
different pathological conditions, including autoimmune diseases and tumors. 
Different mediators released by mast cells are involved in their biological 
activities which may be  anti-tumorigenic and/or pro-tumorigenic. For these 
reasons, tumor mast cells have been considered a novel therapeutic target to 
prevent tumor progression and metastatic process. Many different agents have 
been suggested and used in the past pre-clinical and clinical settings. Among the 
novel immunotherapeutic approaches to cancer treatment, different immune 
checkpoint inhibitors targeting PD-1/PDL-1 have been used in the treatment 
of many human tumors improving overall survival. In this context, inhibition of 
mast cell activity may be considered a novel strategy to improve the efficacy 
of anti-PD-1/PDL-1 therapy. The blockade of the PD-1/PD-L1 interaction may 
be suggested as a useful and novel therapeutic approach in the treatment of 
tumors in which mast cells are involved.
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Tumor mast cells and related therapeutic 
approaches

Mast cells have multiple roles extending beyond their classical role in Ig-E-mediated allergic 
reactions. Mast cells release different anti-and pro-inflammatory agents changing their role from 
protective to pro-inflammatory cells involved in the progression of different pathological 
conditions, including autoimmune diseases and tumors (Table 1). Mast cells can be recruited 
into the tumor microenvironment by different chemotactic molecules released by tumor cells. 
One of the main chemoattractant factors produced by tumor cells is stem cell factor (SCF), which 
recruits mast cells expressing its tyrosine kinase receptor c-kit (CD117). Mast cells can exert both 
anti-tumorigenic and/or pro-tumorigenic roles (Table 2). Mast cells may exert detrimental effects 
on the host by releasing cytokines and growth factors, such as fibroblast growth factor2- (FGF-2), 
vascular endothelial growth factor (VEGF), nerve growth factor (NGF), and interleukin-8 (IL-8), 
which stimulate tumor cell expansion. Mast cells are a major source of histamine, which can 
induce tumor cell proliferation through H1 receptors while suppressing the immune system 
through H2 receptors. Mast cells produce several angiogenic factors, as well as proteases, which 
promote tumor vascularization and tumor invasiveness, respectively. By contrast, mast cells may 
promote the inhibition of tumor cell growth, tumor cell apoptosis, and inflammation.
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by releasing cytokines such as inreleukin-1 (IL-1), IL-4, IL-6, and 
tumor necrosis factor alpha (TNF-α). Chondroitin sulfate may inhibit 
tumor cell diffusion and tryptase causes both tumor cell disruption 
and inflammation through activation of protease-activated receptors 
(PAR-1 and -2). Two mast cell phenotypes have been described called 
mast cell 1 and 2 (MC1 and MC2), related to pro-inflammatory and 
anti-inflammatory profiles, respectively. Mast cells promote tumor 
development by alterations in stroma-epithelial interactions, by 
inducing tumor angiogenesis and lymphangiogenesis, and by releasing 
different cytokines and growth factors. In solid and hematologic 
tumors, mast cells may be localized in intra-tumoral or peri-tumoral 

areas, with expression of favorable/unfavorable and, respectively, bed 
prognosis (25).

Based on the involvement of mast cells in tumor growth, these 
cells have been recently considered a novel therapeutic target in the 
control of tumor progression and metastatic capability. Many different 
agents have been suggested and used in pre-clinical and clinical 
settings. These therapeutic agents include inhibitors of c-kit (imatinib 
mesylate, mastinib, nilotinib, dasatinib, sunitinib, midostaurin, and 
ibrutinib). In this context, imatinib mesylate (Gleevec), which exerts 
inhibitory activity against the signaling cascade activated by CD117 
(27), has been used against gastrointestinal stromal tumors (GIST) 
and metastatic melanoma with c-Kit mutations (28, 29). Masitinib has 
been used in the treatment of mastocytosis, GIST, colon cancer, 
prostate cancer, and pancreatic cancer (30). Sunitinib has been used 
in patients with imatinib-resistant GIST (31). Gabexate mesylate an 
inhibitor of tryptase has been used as an inhibitor of colon cancer 
growth with an anti-angiogenic effect (32). Cromolyn sodium, a mast 
cell stabilizing agent (33) that prevent cell degranulation (34), has been 
used in a xenograft mouse model of thyroid cancer (35). Obatoclax, 
which binds and blocks the anti-apoptotic activity of members of the 
Bcl-2 family, induces growth arrest in human neoplastic mast cells, 
and different mast cell lines (36), and exerts synergistic antineoplastic 
effects when combined with dasatinib (36).

H1 receptor antagonists reduced tumor growth, mast cell 
infiltration, and VEGF levels through the inhibition of hypoxia-
inducible factor-1alpha (HIF-1α) in melanoma-bearing mice (37). 
Moreover, treatment with cimetidine, an H2 receptor antagonist, 
slows the growth of tumors in mice (38, 39). Chondroitin sulfate may 
inhibit tumor growth cell diffusion through activation of PAR-1 
and-2 (40).

TABLE 1 Different types of cancer in which mast cells are involved.

Head and neck

Oral squamous carcinoma (1)

Localization/Prognosis (Intratumoral-Good prognosis)

Gastro-intestinal tumors

Esophageal carcinoma (2)

Localization/Prognosis (Intratumoral-Bad prognosis)

Gastric cancer (3)

Localization/Prognosis (Intratumoral-Bad prognosis)

Colorectal cancer (4)

Localization/Prognosis (Peritumoral-Bad prognosis)

Cholangicarcionoma (5)

Localization/Prognosis (Intratumoral-Bad prognosis)

Pancreatic cancer (6)

Localization/Prognosis (Intratumoral-Bad prognosis)

Genito-urinary tract

Clear cell renal carcinoma (7)

Localization/Prognosis (Peritumoral-Bad prognosis)

Prostate cancer (8)

Localization/Prognosis (Intratumoral-Bad prognosis)

Endometrial cancer (9)

Localization/Prognosis (Intratumoral-Bad prognosis)

Skin

Melanoma (10)

Localization/Prognosis (Peritumoral-Bad prognosis)

Mastocytosis (11)

Localization/Prognosis (Peritumoral-Bad prognosis)

Breast cancer (12)

Localization/Prognosis (Tumor stroma-Bad prognosis)

Respiratory tract

Laryngeal carcinoma (13)

Localization/Prognosis (Peritumoral-Bad prognosis)

Lung cancer (14)

Localization/Prognosis (Intratumoral-Bad prognosis)

Hematological tumors

Multiple myeloma (15)

Localization/Prognosis (Intratumoral-Bad prognosis)

Chronic lymphocytic leukemia (16)

Localization/Prognosis (Intratumoral-Bad prognosis)

Myelodysplastic syndrome (17)

Localization/Prognosis (Intratumoral-Bad prognosis)

TABLE 2 Mediators released by mast cells able to stimulate or inhibit 
tumor growth.

Stimulators

Cytokines and growth factors

Fibroblast growth factor-2 (FGF-2) (18)

Vascular endothelial growth factor (VEGF) (19)

Nerve growth factor (NGF) (20)

Interleukin-8 and 10/high expression (IL-8, IL-10) (21)

Bioactive monoamines

Histamine (H1 receptors) (22)

Proteases

Tryptase, Chymase (23)

Matrix metalloproteinase (MMPs)-2 and MMP-9 (24).

Inhibitors

Cytokines and growth factors

Tumor necrosis factor alpha (TNFα) (25)

Interferon alpha (IFNα) (25)

Transforming growth factor beta (TGF-β) (26).

IL-1, IL-2, IL-4, IL-6, IL-10/low expression (21)

Bioactive monoamines

Histamine (H2 receptors) (22)

Proteases

Tryptase by activating protease-activated receptors (PAR-1and-2) (25)
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Immune checkpoint inhibitors

Different studies have highlighted the importance of the 
programmed cell death-1 (PD-1)/programmed cell death ligand-1 
(PD-L1) pathway controlling inflammation degree to prevent an 
exacerbated immune response in tumor growth, in which PD-L1 
expressed on tumor cells can inhibit the effector functions of CD8+ T 
cells, leading to the progression of tumors (41). Different immune 
checkpoint inhibitors targeting PD-1/PDL-1 have been used in the 
treatment of many human tumors, such as melanoma, non-small-cell 
lung cancer, and renal cancer, improving overall survival (42, 43). 
However, this therapeutic approach may be ineffective, because of the 
development of resistance mechanisms mediated by inflammatory 
cells present in the tumor microenvironment, including mast cells.

Relationship between 
tumor-infiltrating mast cells and 
response to anti-PD1/PD-L1 blockade

Human mast cells express several co-stimulatory and 
co-inhibitory molecules, including PDL-1 and PD-L2 (44). In the 
skin, mast cells express high levels of PD-L1, and in contact 
hypersensitivity mast cell absence abolished the PD-L1 blockade effect 
on CD8+T-cell activation (45). According, high levels of PDL-1 in 
mast cells promotes T cell immunosuppression and tumor growth in 
gastric cancer (46).

In high-grade serous ovarian cancer, infiltration of mast cells is 
associated with a decreased response to anti-PD1 blockade (47). 
Similarly, in a melanoma experimental model of resistance to anti-
PD-1 therapy, high infiltration of mast cells predicted poor response 
to anti-PD1 blockade (48). An increased number of mast cells was 
detectable in melanoma patients after anti-PD1 therapy (49). In 
tumor histological sections, a co-localization of mast cells and 
forkhead box P3 (FOXP3)-positive Treg cells have been recognizable 
and associated with a down-modulation of HLA class I on tumor 
cells and correlated with resistance to anti-PD-1 therapy. Melanoma 
cells secrete chemokine (C-X-C motif) ligand 10 (CXCL10) that 
binds CXC motif chemokine receptor 3 (CXCR3) expressed by mast 
cells, favoring the recruitment of mast cells (49). Anti-PD1 treatment 
activates and induces expression on mast cells leading to therapeutic 
resistance through stimulation of angiogenesis and tumor 
growth (50).

Otherwise, the reduction of mast cells is associated with an 
improvement in the efficacy of anti-PD-1/anti-PD-L1 blockade. 
Combining anti-PD-1 with sunitinib or imatinib, but not PD-1 
blockade alone, resulted in the depletion of mast cells and tumor 
regression (48). Cromolyn sodium decreases mast cell infiltration, the 
release of inflammatory cytokines, and improves the efficacy of 
anti-PD1 therapy (50). Targeting mast cells with ketotifen enhances T 

cells’ infiltration and cytotoxic capacity and sensitizes sarcoma cells to 
anti-PDL-1 therapy (51).

Concluding remarks

Mast cells play a crucial role in the control of tumor immunity and 
tumor growth. They can modulate the biological activity of immune 
and non-immune components of the tumor microenvironment 
through the release of a plethora of mediators, leading to different 
cancer-promoting and cancer-suppressive activities. The reduction of 
mast cell infiltration may be considered a novel therapeutic approach 
to cancer treatment. Mast cells can be  therapeutically targeted by 
decreasing their number through c-Kit inhibitors; modulating mast 
cell activation and phenotype, and altering secreted mast cell 
mediators. In this context, inhibition of mast cell activity may 
be considered a novel strategy to improve the efficacy of anti-PD-1/
PDL-1 therapy. The blockade of the PD-1/PD-L1 interaction may 
be  suggested as a useful and novel therapeutic approach in the 
treatment of tumors in which mast cells are involved.
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