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Introduction: Microaneurysms serve as early signs of diabetic retinopathy, and

their accurate detection is critical for e�ective treatment. Due to their low

contrast and similarity to retinal vessels, distinguishing microaneurysms from

background noise and retinal vessels in fluorescein fundus angiography (FFA)

images poses a significant challenge.

Methods: We present a model for automatic detection of microaneurysms. FFA

images were pre-processed using Top-hat transformation, Gray-stretching, and

Gaussian filter techniques to eliminate noise. The candidate microaneurysms

were coarsely segmented using an improved matched filter algorithm. Real

microaneurysms were segmented by a morphological strategy. To evaluate the

segmentation performance, our proposed model was compared against other

models, including Otsu’s method, Region Growing, Global Threshold, Matched

Filter, Fuzzy c-means, and K-means, using both self-constructed and publicly

available datasets. Performance metrics such as accuracy, sensitivity, specificity,

positive predictive value, and intersection-over-union were calculated.

Results: The proposed model outperforms other models in terms of accuracy,

sensitivity, specificity, positive predictive value, and intersection-over-union. The

segmentation results obtained with our model closely align with benchmark

standard. Our model demonstrates significant advantages for microaneurysm

segmentation in FFA images and holds promise for clinical application in the

diagnosis of diabetic retinopathy.

Conclusion: The proposed model o�ers a robust and accurate approach to

microaneurysm detection, outperforming existing methods and demonstrating

potential for clinical application in the e�ective treatment of diabetic retinopathy.

KEYWORDS

diabetic retinopathy, segmentation model, microaneurysms, fluorescein fundus

angiography, computer-aided diagnosis

1 Introduction

Diabetic retinopathy (DR) is known as a blinding eye disease in the working

population. Most of the patients with type 1 diabetes mellitus and nearly 60% of the

patients with type 2 diabetes mellitus will develop retinopathy following a long duration of

diabetes (≥20 years). However, it is difficult to detect DR until it develops into the advanced

vision-threatening stage (1). DR is often divided into two stages: non-proliferative DR

(NPDR) and proliferative DR (PDR). In the NPDR stage, hyperglycemia can cause

Frontiers inMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1372091
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1372091&domain=pdf&date_stamp=2024-06-19
mailto:biao.yan@fdeent.org
mailto:zh-wang@shou.edu.cn
mailto:jiangqin710@126.com
https://doi.org/10.3389/fmed.2024.1372091
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2024.1372091/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2024.1372091

serious injuries to retinal capillaries, which can weaken the capillary

walls and lead to the occurrence of microaneurysms (MAs). MAs

are the small outpouchings of retinal capillaries and the early signs

of NPDR, as well as the indicators for DR progression (2, 3).

MAs appear as small, reddish, and circular shapes in color fundus

images. They can be clinically identified by ophthalmoscopy as the

deep-red dots varying from 10 to 100µm in diameter (4, 5). Thus,

automatic detection of MAs is important for DR diagnosis, which

can help in controlling and retarding visual loss.

Previous studies have reported that several imaging modalities

have been developed for MA detection, including color fundus

images (6), optical coherence tomography angiography (OCTA)

(7), and fluorescein fundus angiography (FFA) (8). Colored fundus

photography has often been used due to its low cost compared with

Optical coherence tomography machines. Walter et al. proposed

a method for the automatic detection of MAs based on diameter

closure and kernel density estimation (6). Melo et al. proposed a

method for MA detection using the sliding band filter algorithm in

color fundus images (9). MAs are situated on retinal capillaries and

are not often visible, whichmakes them difficult to distinguish from

the noises and pigmentation variations in color fundus images. An

OCTA can provide detailed visualization of vascular perfusions.

However, optical coherence tomography (OCT) machines are very

expensive, and the interpretation of OCTA data is still challenging

due to the complicated image artifacts and elusive algorithmic

details of OCTA data (10, 11). FFA can be used for the detection of

small changes in retinal vessels. The small and leaky MAs are easily

ignored without the aid of FFA. FFA is highly effective in detecting

MAs, especially when MAs are close to the vessels or too small to

distinguish (12, 13). However, objective segmentation of MAs in

FFA images is still challenging because MA segmentation requires

laborious manual segmentation by experienced graders. Therefore,

it is necessary to develop a model for automatic detection of MAs

in FFA images for DR diagnosis.

Computer-assisted MA detection is important for DR

diagnosis. Baudoin et al. used a mathematical morphology method

to remove vessels and applied a top-hat transformation with the

linear structuring elements to detect MAs (14). Spencer et al.

proposed an image correction procedure for MA segmentation

by calculating the true- and false-positive rates (15). Mendonca

et al. further improved this method by altering the pre-filtering

and classification procedures. However, shade corrections may

produce false positives caused by the darkening of regions close to

the bright patterns (16). Walter applied mathematical morphology

to segment the vascular trees of retinal angiograms. This algorithm

can extract patterns if vein width is constant, but it cannot extract

them from narrower/wider veins (17). Zhang et al. proposed

a model based on the dynamic thresholding and correlation

coefficients of a multi-scale Gaussian template (18). Antal and

Hajdu proposed an ensemble-based method for MA detection by

selecting an optimal combination of pre-processing methods and

candidate extractors (19). Saleh et al. developed a DR detection

system based on the Gaussian filter, a multi-layered dark object

filtering method, and a singular spectrum analysis (20). Despite

their clinical significance, MAs pose challenges for accurate

detection due to their low-contrast and close resemblance to blood

vessels. Thus, further study is necessary to refine MA detection

algorithms and enhance accuracy, particularly in FFA images. In

this study, we present a novel model for the automatic detection

of MA lesions in FFA images. Our proposed model comprises

pre-processing of FFA images, followed by coarse segmentation

of candidate MA regions and fine segmentation of MA regions.

Subsequently, comparative studies were conducted to assess the

MA detection performance of the proposed model.

2 Materials and methods

2.1 The proposed model for MA detection

The flowchart of the proposed MA detection model is shown

in Figure 1, including pre-processing of FFA images, coarse

segmentation of candidate MA regions by the matched filter

(MF) algorithm, and fine segmentation of MA regions by the

morphological strategy.

2.2 Pre-processing of FFA images

High-noise and low-contrast can pose great difficulties for

the identification of MAs in FFA images. In the pre-processing

step, the FFA images underwent decomposition into individual

channels to alleviate computational demands, given that the pixel

values across each channel were identical. Subsequently, each single

channel underwent processing, employing top-hat transformation

and gray-stretching (21) to enhance the contrasts between MAs

and the background. Following this processing, the processed result

underwent further refinement via a Gaussian filter to reduce noise.

The top-hat transformation was defined according to Equation

(1) (22):

Ith(x, y) = I(x, y)− I(x, y) ◦ B(u, v) (1)

where I(x, y) refers to the grayscale image, B(u, v) refers to the

structural element constructed as a circle with a radius of 45 pixels,

and ◦ refers to the open operation. Opening of I(x, y) by B(u, v) was

defined according to Equation (2):

I(x, y) ◦ B(u, v) = (I(x, y)2B(u, v))⊕ B(u, v) (2)

where 2 and ⊕ refer to the erosion and dilation operations,

respectively. The erosion and dilation of I(x, y) by B(u, v) were

defined according to Equations (3) and (4):

I(x, y)2B(u, v) = min
u,v

(I(x+ u, y+ v)− B(u, v)) (3)

I(x, y)⊕ B(u, v) = min
u,v

(I(x− u, y− v)+ B(u, v)) (4)

Gray-stretching was defined according to Equation (5) (23):

Inew = (
Gmax − Gmin

Imax − Imin
)(I − Imin)+ Gmin (5)
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FIGURE 1

Flow chart of the proposed model for microaneurysm (MA) segmentation.

where Imax and Imin refer to the largest and smallest gray values in

the original images, respectively. Gmax and Gmin refer to the largest

and smallest gray values in the transformed images.

The Gaussian filter was defined according to Equation (6) (24):

G(x, y) =
1

√
2πσ

e
−(x2+y2)

2σ2 (6)

where σ 2 refers to the variance of the Gaussian filter.

In the pre-processing step, top-hat transformation, gray-

stretching, and a Gaussian filter were employed for MA

extraction by strengthening, enhancing, and denoising. A top-hat

transformation was used to highlight the object edges and remove

distracting information such as background noises. Gray-stretching

mapped the grayscale ranges of FFA images. The Gaussian filter

smoothed FFA images and removed irregular details such as noise

points and burrs in the FFA images.

2.3 Coarse segmentation of MAs by the MF
algorithm

The candidate MA regions in the FFA images were detected

using the MF algorithm. MF was initially proposed by Chaudhuri

et al. (25) for blood vessel extraction. Analogous to the matching

filter concept in signal processing, a blood vessel image can be

interpreted as a signal. Blood vessels exhibit characteristics such as

a narrow range of width variation and parallel inner walls. Based

on the prior knowledge, MF can construct a template to match

the cross-sectional structure of blood vessels. Consequently, when

the blood vessel component is input, a higher value is yielded,

whereas a lower value is produced for the background, facilitating

the separation of blood vessels. Hence, MF effectively enhances

blood vessels and suppresses background noises.

MF was defined according to Equation (7) (26):

f (x, y) =
1

√
2πs2

e
−x2

2s2 −m, |x| ≤ t × s,
∣

∣y
∣

∣ ≤
L

2
(7)
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FIGURE 2

Original fluorescein fundus angiography (FFA) images and segmentation results of MAs by the proposed model and retinal clinicians.

where s refers to the filter scale,m is used for normalizing the mean

value of the filter to 0, which is defined as Equation (8), L refers to

the neighborhood length along the y-axis and is used to smooth the

noises. L was deduced by s. When s was small, L was set relatively

small, and vice versa. The criterion t is a constant and was set to

3 (27).

m =

∫ ts
−ts

1√
2πs2

e
−x2

2s2 dx

2ts
(8)

The performance of the MF algorithm is heavily reliant on the

design of the template. Poorly designed templates or significant

deviations from the actual blood vessel structure can result in

inaccurate extraction or an abundance of noise. Genetic algorithms

(GA), an optimization technique introduced by John Holland,

offer a solution to this challenge. GA mimics natural selection

and genetic mechanisms to search for optimal solutions within

the solution space. By using GA, one can efficiently explore and

identify template configurations that yield improved accuracy and

robustness in vessel extraction.

Hence, GA can be utilized to automatically adjust the threshold

value of MF to accommodate the morphological features of blood

vessels in various images. The GA process comprises five key steps:

population initialization, fitness assessment, selection, crossover,

and mutation. In the population initialization step, chromosome

length was set to 8 and population size was set to 10. In the fitness

assessment step, the efficacy of a solution was determined using a

fitness function, where solutions with higher fitness were deemed

superior. In our study, the fitness function of the GA is defined as

in Equation (9) (28). In the selection step, the elitism strategy was

adopted. In the crossover step, the crossover probability was set to

0.7. In the mutation step, the mutation probability was set to 0.4.

In the later stages of the genetic algorithm’s evolution, adjustments

were made to both the crossover andmutation probabilities, setting

them to 0.3 each.

Through iterative optimization via GA, the MF template

that most accurately aligns with blood vessels can be gradually

identified, enabling the identification of all candidate MAs.

f = p1 × p2 × (µ1 − µ2)
2 (9)

where p1 and p2 refer to the number of the target pixels and

background pixels, respectively,µ1 andµ2 refer to the average gray

values of the target pixels and background pixels, respectively. f is

the fitness value.
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2.4 Fine segmentation of MAs by the
morphological strategy

Real MA regions were determined by the morphological

strategy, including removing vessels, hemorrhages, and exudates

from the candidate MA regions based on area features and

shape features, respectively. Previous studies have developed

multiple image processing and machine learning algorithms for the

automatic detection of MAs and recognized that the area size of

MAs was typically between 5 and 100 pixels. In addition, real MAs

were often localized next to the capillaries, appearing as dotted

or rounded structures (29–31). The vessels, hemorrhages, and

exudates were removed from the candidate MA regions according

to Equation (10). Hemorrhages and exudates caused by the injured

vessels were removed from the candidate MA regions according to

Equation (11) and the threshold for roundness was set to 0.51.

I(x, y) =











0, S > 100

1, 5 ≤ S ≤ 100

0, S < 5

(10)

Roundess =
4πS

C2
(11)

where S refers to the pixels of the candidateMA regions andC refers

to the circumference of the contour.

2.5 Dataset

The FFA dataset comprises 1,010 FFA images, each with

dimensions of 768 × 868 pixels, obtained from 65 eyes of 60 DR

patients aged between 31 and 81 years. These patients underwent

FFA examinations at the Eye Hospital affiliated with Nanjing

Medical University between 2015 and 2019. The FFA images

were captured using Heidelberg Retina Angiography (Heidelberg

Engineering, Germany) by experienced clinicians. Notably, the

FFA dataset did not include blurry or overexposed images. For

labeling MAs in FFA images, three retinal clinicians with over

10 years of experience independently annotated MAs, serving as

the benchmark standard. Patients with FFAs indicating mild or

moderate DR were eligible for inclusion. The following exclusion

criteria were used: (1) presence of other ocular diseases unrelated

to diabetes, such as retinal arteriovenous obstruction, age-related

macular degeneration, glaucoma, and uveitis; (2) any condition

causing poor image quality or inability to visualize the optic

disc and vessels, such as dense cataracts or corneal opacity; and

(3) history of previous ophthalmological interventions, such as

laser photocoagulation, vitrectomy, or anti-vascular endothelial

growth factor injection. To ensure the reliability and validity of

segmentation results, FFA images were independently divided into

three sets: 830 images for training, 90 images for testing, and

90 images for validation. Figure 2 shows the original FFA images

and MA detection results by the proposed model and benchmark

standard.

Another publicly available dataset was utilized to assess the

performance ofMA detection. This dataset consisted of FFA images

obtained from diabetic patients. The images were captured as part

of a study conducted at the Persian Eye Clinic (Feiz Hospital),

affiliated with the Isfahan University of Medical Sciences. The

dataset comprised retinal images from 70 patients, with 30 samples

categorized as normal and 40 samples representing various stages

of DR.

2.6 Evaluation metrics

Five different metrics, including accuracy (Acc) (30), sensitivity

(Se) (30), specificity (Sp) (30), positive predictive value (PPV) (31),

and intersection-over-union (IOU) (32), were employed to evaluate

the detection performance of MAs according to Equations (12–16):

Acc =
TP + TN

TP + FP + TN + FN
(12)

Se =
TP

TP + FN
(13)

Sp =
TN

TN + FP
(14)

PPV =
TP

TP + FP
(15)

IOU =
TP

TP + FP + FN
(16)

where TP denotes the region that was predicted as MAs and

was real MAs; FP denotes the region that was predicted as MAs

but was background; TN denotes the region that was predicted

as background and was real background; and FN denotes the

region that was predicted as background but was MAs. Accuracy

(Acc) is defined as the measure providing the ratio of total well-

segmented pixels based on the gold standard for hand-labeled

detection. Sensitivity (Se) and specificity (Sp) measures the ability

of the model to detect well-segmented MAs and background

pixels, respectively. PPV represents the correct proportion of the

sample with a positive prediction. The IOU reflects the degree

of coincidence between the MA detection result of the proposed

model and the benchmark standard.

2.7 Implementation

All experiments were conducted on a PC with an Intel Core

processor running at 2.50 GHz and equipped with 8 GB of RAM,

using the MATLAB 2013a software.

3 Results

Our proposed model encompassed the pre-processing of

FFA images, followed by coarse segmentation of candidate MA

Frontiers inMedicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2024.1372091
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2024.1372091

TABLE 1 Performance comparison between our proposed model and the microaneurysms-matched filter (MAs-MF) model.

Model Evaluation metrics

Acc (%) Se (%) Sp (%) PPV (%) IOU (%)

Clinician 99.94± 0.04 96.65± 0.08 99.96± 0.02 92.91± 0.09 90.02± 0.08

MAs-MF 99.43± 0.06 90.95± 0.46 99.46± 0.05 42.42± 0.97 40.64± 1.07

Our model 99.80± 0.05 92.10± 0.20 99.85± 0.04 75.07± 0.44 70.57± 0.55

FIGURE 3

Detection results of MAs by microaneurysms-matched filter (MAs-MF).

regions and fine segmentation of MA regions. To assess the

MA detection performance of our proposed model, two distinct

experiments were conducted. In Experiment 1, our proposed

model was juxtaposed against the MF model optimized by the

GA algorithm (referred to as MAs-MF). In Experiment 2, our

proposed model was compared against previous MA detection

models. To maintain the integrity of our experiments, the

outcomes presented for the clinician in Table 1 were segmented

by a skilled clinician who did not participate in the dataset

labeling process.

3.1 The ablation experiment suggests that
our proposed model improves MA
detection performance

We compared our proposed model against the MAs-MF model

to evaluateMA detection performance. The results ofMA detection

are shown in Figure 3. The metrics of MA detection are shown in

Table 1.

From Figure 3 and Table 1, we can observe that there

were several label errors of small blood vessels for MA

detection results in the MAs-MF model, as shown in the red

squares in Figure 3. Compared with the MAs-MF model,

the MA detection performance of the proposed model

was close to the MA detection results of the clinicians.

Compared with the MAs-MF model, the proposed model

had greater values of accuracy (Acc), sensitivity (Se),

specificity (Sp), PPV, and IOU, which were 99.80 (0.37↑),
92.10 (1.15↑), 99.85 (0.39↑), 75.07 (32.65↑), and 75.57

(29.93↑), respectively.

3.2 The comparison experiment suggests
that the proposed model has an obvious
MA detection advantage over previous MA
detection models

We further compared our proposed model against other MA

detection models, such as Otsu’s method (33), Region Growing

(34), MF (25), Global Threshold (35), K-means, (36) and Fuzzy

c-means, (37) to evaluate MA detection performance. The results

of MA detection are shown in Figure 4, and the metrics of MA

evaluation are shown in Table 2.

As shown in Figure 3 and Table 2, Otsu’s method, Region

Growing, MF, Global Threshold, K-means, and Fuzzy c-means

models could not accurately detect the boundaries of MA regions

and normal regions. Additionally, there were some omissions and

false detections, which are marked by red squares in Figure 4.

The proposed model had greater values of PPV and IOU than

other models. Furthermore, our proposed model demonstrated

performance in MA detection that closely aligned with the

benchmark standard, surpassing the performance of other MA

detection models.

To further evaluate MA detection performance, we used a

publicly available dataset, which was obtained during a study

conducted at the Persian Eye Clinic (Feiz Hospital) in Isfahan

University of Medical Sciences (32), including retinal images from

70 patients, with 30 samples classified as normal and 40 samples

representing different stages of DR. As shown in Table 3, MA

detection using our proposed model had an average accuracy of

99.42%, a sensitivity of 90.21%, a specificity of 98.86%, a PPV of

71.93%, and an IOU of 64.89%, showing an obvious advantage over

other MA detection models.
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FIGURE 4

MA segmentation results from di�erent models.
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TABLE 2 Comparison of microaneurysm (MA) segmentation performance between our proposed model and other previously reported models.

Model Evaluation metrics

Acc (%) Se (%) Sp (%) PPV (%) IOU (%)

Otsu’s method 99.71± 0.08 79.55± 0.97 99.80± 0.08 63.85± 0.85 54.43± 1.11

Region growing 99.73± 0.07 81.80± 0.89 99.80± 0.07 63.92± 0.82 55.42± 1.07

Matched filter 99.73± 0.07 84.60± 0.57 99.79± 0.06 63.57± 0.80 57.40± 0.99

Global threshold 99.73± 0.08 78.06± 0.75 99.82± 0.06 62.88± 0.88 53.43± 1.12

K-means 99.76± 0.07 80.39± 0.68 99.83± 0.05 60.27± 0.75 52.36± 0.98

Fuzzy c-means 99.74± 0.06 76.52± 0.56 99.84± 0.05 63.23± 0.57 52.71± 0.92

Our model 99.80± 0.05 92.10± 0.20 99.85± 0.04 75.07± 0.44 70.57± 0.55

TABLE 3 Comparison of MA detection performance between our proposed model and previous detection models using the publicly available dataset.

Model Evaluation metrics

Acc (%) Se (%) Sp (%) PPV (%) IOU (%)

Otsu’s method 95.37± 0.12 79.76± 0.97 97.43± 0.16 64.43± 0.95 55.83± 1.05

Region growing 98.78± 0.11 82.22± 0.29 98.75± 0.21 67.21± 0.65 56.87± 1.21

Matched filter 98.54± 0.15 83.76± 0.29 98.46± 0.11 66.45± 0.86 56.87± 0.76

Global threshold 98.76± 0.09 79.12± 0.69 99.29± 0.16 64.64± 0.72 55.65± 1.08

K-means 98.55± 0.12 81.43± 0.87 99.12± 0.21 63.32± 0.86 54.65± 0.91

Fuzzy c-means 97.87± 0.11 79.47± 0.72 98.54± 0.13 64.54± 0.75 53.81± 0.87

Our model 99.42± 0.35 90.21± 0.54 98.86± 0.12 71.93± 0.41 64.89± 0.35

4 Discussion

MA detection is highly important for the diagnosis of DR (5).

FFA is a technique used for the evaluation of retinal and choroidal

circulation. MAs are immediately visible following the arterial

phase of FFA (33). In this study, we propose a three-step model for

MA detection in FFA images. Initially, FFA image pre-processing is

conducted to enhance the contrasts of FFA images. Subsequently,

candidate MA regions are coarsely segmented using an improved

MF algorithm. Finally, real MA regions are identified through a

morphological strategy. This proposed model aims to enhance the

accuracy and efficiency of MA detection in FFA images, thus aiding

in the early diagnosis and management of DR.

Automatic segmentation of MAs is still a tricky problem

due to their tiny sizes, low contrasts, and high similarities to

retinal vessels. The high-noise and low-contrast of FFA images

can also affect the quality of FFA images and reduce the accuracy

of MA detection (33). The goal of image enhancement is to

decrease image noise and enhance the contrasts of the targets

and backgrounds. In this study, top-hat transformation, gray-

stretching, and a Gaussian filter were used for the improvement

of FFA image quality. Top-hat transformation and gray-stretching

can efficiently solve the problem of uneven illumination, while a

Gaussian filter can efficiently reduce the potential impacts of retinal

noises on FFA images.

We also evaluated the MA detection performance of the

proposedmodel by comparing it with otherMAdetectionmethods.

Compared with Otsu’s method, Region Growing, MF, K-means,

Global Threshold, and Fuzzy c-means (3, 25, 34–37), the proposed

model has the greatest accuracy and efficiency for MA detection

in FFA images. The evaluation metrics of the proposed model,

including accuracy, sensitivity, specificity, PPV, and IOU, have the

highest value. Moreover, the proposed model has a similar MA

detection performance as the clinicians.

Recently, deep learning-based algorithms have gained

popularity for medical image analysis. However, these algorithms

typically demand high-performance computing resources, such

as central processing units (CPUs) and graphics processing units

(GPUs), as well as a substantial amount of labeled data for training.

Unfortunately, many hospitals lack access to such resources and

specialized personnel (38). Given this context, there is a pressing

need for simpler methods for analyzing FFA images. In contrast

to deep learning-based approaches, the proposed model does not

necessitate a large number of labeled images or high-performance

computing resources. Moreover, it offers comparable accuracy

to manual labeling by clinicians but with faster detection speed.

This feature makes it a practical and efficient solution for MA

detection in clinical settings where resources and expertise may

be limited.

5 Conclusion

This study provides a new model for the detection of

MAs in FFA images, which consists of three steps. First, the

quality of FFA images was improved by the image enhancement

methods, including top-hat transformation, gray-stretching, and

Frontiers inMedicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2024.1372091
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2024.1372091

the Gaussian filter. Then, the candidate MAs were coarsely

segmented by the MF algorithm. Finally, real MA regions

were determined by the morphological strategy. Compared

with manual MA labeling or other existing MA detection

algorithms, the proposed model shows promising performance

for the early diagnosis of DR by detecting MA lesions. This

model is expected to assist ophthalmologists in efficiently

detecting MA lesions, thereby enhancing the overall efficiency of

DR diagnosis.

6 Limitations of this study

The number of MAs tends to increase as the severity of

DR worsens. While the proposed model effectively detects the

presence of MA lesions in FFA images, there are limitations

to its clinical application. Indeed, MA formation is associated

with various pathological changes such as basement membrane

thickening, pericyte degeneration, and endothelial injury, which

can lead to retinal vessel leakage, edema, and even hemorrhage.

Given that vessel leakage, edema, and hemorrhage are closely

linked to the size and volume of MAs, accurately detecting

these parameters can provide additional valuable information

for DR screening and monitoring. To achieve broader clinical

applicability, the proposed model should be integrated with

algorithms for detecting the size and volume of MAs, as

well as for identifying edema and hemorrhages. This enhanced

model would significantly improve the accuracy of assessing DR

severity and estimating DR risk. Due to the high variability

in pathological features and the quality of FFA images, deep

learning techniques could play a crucial role in detecting

and quantifying these features more accurately and efficiently.

Therefore, in the future, we plan to incorporate deep learning

approaches to further enhance the efficiency of MA detection

in FFA images and improve the overall diagnostic capabilities

for DR.
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