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Objective: We aimed to investigate the association between serum phosphate 
levels and the risk for developing sepsis associated acute kidney injury (SAKI).

Methods: Septic patients from the Medical Information Mart for Intensive Care 
IV (MIMIC IV) and the eICU Collaborative Research Database (eICU-CRD) were 
enrolled. Restricted cubic spline (RCS) was used to visualize the relationship between 
phosphate levels and the risk of SAKI. Patients were divided into four categories based 
on their serum phosphate levels. Logistic regression analysis, receiver operating 
characteristic (ROC) curve and subgroup analysis were performed to evaluate the 
predictive value of serum phosphate for SAKI.

Results: A total of 9,244 and 2,124 patients from the MIMIC IV and eICU-CRD 
database were included in the final analysis. RCS curve revealed a non-linear 
correlation between phosphate levels and the risk of SAKI (p for non-linearity <0.05). 
Each 1 mg/dL increase in phosphate levels was associated with a 1.51 to 1.64-fold 
increased risk of SAKI (OR 2.51–2.64, p < 0.001) in the MIMIC IV cohort and a 0.29 to 
0.38-fold increased risk (OR 1.29–1.38, p < 0.001) in the eICU-CRD cohort. Compared 
to the normal-low category, hyperphosphatemia and normal-high category were 
independently associated with an increased risk of SAKI, while hypophosphatemia 
was independently associated with a decreased risk in the MIMIC IV cohort. A similar 
trend was observed in the eICU-CRD cohort, but statistical significance disappeared 
in the hypophosphatemia category and the adjusted model of normal high category. 
These finding was consistent in subgroup analysis.

Conclusion: Elevated serum phosphate, even within the normal range, is an 
independent risk factor for developing SAKI in septic patients. Abnormal change 
in serum phosphate levels may be a novel biomarker for early prediction of SAKI 
occurrence.

KEYWORDS

phosphorus, hyperphosphatemia, hypophosphatemia, acute renal failure, novel 
biomarker, prediction, risk factor

1 Introduction

Sepsis is a life-threatening condition characterized by organ dysfunction of caused 
by an imbalanced immune response to infection (1). It leads to abnormalities in 
circulation, cellular metabolism, and significant increase of mortality risk for certain 
patients (1). Currently, sepsis remains a major global health concern, with more than 
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19 million cases diagnosed annually, particularly in 
underdeveloped regions (2, 3). Sepsis-associated acute kidney 
injury (SAKI) is a common complication with an incidence 
ranging from 23 to 51%, which contributes to the increased 
mortality in septic patients. Previous studies showed that SAKI 
accounted for over 50% of all cases of acute kidney injury (AKI) 
(4, 5). Furthermore, patients with SAKI face a substantially 
higher risk of death compared to those with non-sepsis related 
AKI (6). Early prediction and identification of SAKI are crucial 
for effective treatment and better outcomes. Consequently, 
extensive attention has been devoted to discover biomarkers that 
can facilitate the early recognition of SAKI.

Phosphate is a mineral that is widely distributed in nature and 
is the second most abundant mineral in the human body, 
accounting for approximately 1% of total body weight (7). It serves 
as a vital structural component of bones, teeth and DNA/RNA, 
making lipid membranes and circulating lipoproteins bipolar (8). 
Additionally, phosphate plays key roles in different biological 
processes such as energy generation and storage (formation of a 
phosphate bond in ATP), pH buffering in blood, regulation of 
gene expression, enzyme activation, molecule modification, and 
subsequently affecting a variety of organ functions from renal 
excretion to immune response (8).

Several studies suggested the association between abnormal 
changes of serum phosphate levels and the prognosis of patients 
with sepsis (9–11). Li et  al. (9) found a nearly positive linear 
relationship between serum phosphate levels and the risk of death 
in patients with sepsis. Similarly, Xu et al. (10) demonstrated that 
hypophosphatemia might be an independent protective factor, 
while hyperphosphatemia might be an independent risk factor for 
28 days mortality in septic patients. They also suggested that 
serum phosphate levels obtained on the second day of ICU 
admission have a higher predictive value for 28 days mortality 
compared to those obtained on the first day. Furthermore, Shor 
et  al. (11) discovered that severe hypophosphatemia (serum 
inorganic phosphate <1 mg/dL) increases the risk of mortality by 
almost eightfold in septic patients compared to those without 
severe hypophosphatemia.

These findings highlight the importance of serum phosphate 
levels as potential biomarkers for assessing prognosis in septic 
patients. However, as a potential prognosis biomarker of sepsis, 
the association between serum phosphate and the risk of 
developing SAKI in patients with sepsis has not received enough 
attention. In this study, we  aimed to explore the potential 
association between serum phosphate levels and the incidence of 
SAKI using data from two publicly available database: the Medical 
Information Marketplace in Intensive Care IV (MIMIC-IV) 
database and the eICU Collaborative Research Database (eICU-
CRD). Our study provides new important clues of serum 
phosphate in early diagnosis of SAKI.

2 Materials and methods

2.1 Data sources

This multiple-center observational study utilized data from two 
independent large public clinical databases, namely the MIMIC-IV (12) 

and the eICU-CRD (13). The MIMIC-IV database contains hospital 
records of patients admitted to the Beth Israel Deaconess Medical Center 
(BIDMC) between 2008 and 2019. The eICU-CRD database includes over 
200,000 intensive care units (ICUs) admission records from various 
locations across the United States between 2014 and 2015. Access to these 
databases was granted to YF (Record ID: 43025968) after completing the 
National Institutes of Health (NIH) training course and passing the 
Protecting Human Research Participants test. The present study was 
conducted in accordance with the guidelines outlined in the Helsinki 
Declaration. Ethics approval for the MIMIC database was granted by the 
Massachusetts Institute of Technology and the Institutional Review Board 
of BIDMC. Informed consent was waived due to anonymized nature of 
the data. In addition, no additional institutional review board approval 
was required for the study of the eICU-CRD database (information 
available at: https://eicu-crd.mit.edu/about/acknowledgments/). This 
manuscript was prepared following the Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) statement (statement 
available at: https://www.strobe-statement.org/).

2.2 Study population

Adult patients with sepsis during their ICU stay were selected 
from the MIMIC IV and eICU-CRD, respectively. The screening 
criteria for septic patients were based on the Sepsis 3.0 definition (1) 
Patients were excluded if they met any of the following criteria: (1) age 
<18 years; (2) multiple hospital admissions, except for their initial ICU 
admission; (3) development of AKI prior to sepsis diagnosis (4) 
missing phosphate results at the time of sepsis diagnosis; (5) with 
hemodialysis use before SAKI development (6) presence of chronic 
kidney disease or parathyroid dysfunction; (7) ICU stay less than 48 h.

2.3 Exposure and endpoints

Serum phosphate results obtained within 24 h prior to the 
diagnosis of sepsis were utilized as the exposure variable. Patients was 
further divided into several subgroups based on the normal reference 
ranges and the optimal cut-off value suggested by the restricted cubic 
spline (RCS) curve. The normal reference ranges were determined as 
2.7 mg/dL–4.5 mg/dL according to the reference values from the 
MIMIC-IV database.

The primary outcome was the development of AKI within 48 h of 
sepsis diagnosis. AKI was determined using the creatinine criteria of 
KDIGO (14). Secondary outcomes included the use of continuous 
renal replacement therapy (CRRT) after the diagnosis of SAKI, the 
mortality and length of stay (LOS). Notedly, to minimize the influence 
of AKI on blood phosphate levels, the evidences of exposure and 
outcome variables were obtained before and after the diagnosis of 
sepsis, respectively. Additionally, patients who developed AKI prior to 
the occurrence of sepsis were excluded from the analysis.

2.4 Data extraction

The following structured data were extracted from the MIMIC-IV 
and eICU-CRD databases by PostgreSQL (version 9.6) and PgAdmin4 
software: (1) demographic variables included age, sex, ethnicity, weight; 
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(2) comorbidities included hypertension, heart failure, coronary heart 
disease, diabetes mellitus, chronic kidney disease, chronic pulmonary 
disease, liver disease and malignant cancer; (3) SOFA score at the time 
of sepsis diagnosis; (4) laboratory parameters of blood samples included 
the mean value of white blood cells (WBC), hemoglobin, platelets, 
sodium, potassium obtained within 48 h of sepsis diagnosis; the 
maximum value of serum creatinine and blood urea nitrogen (BUN) 
within 48 h of sepsis diagnosis; (5) the minimum value of mean blood 
pressure (MBP) within the 48 h of sepsis diagnosis; (6) treatment 
received: mechanical ventilation and vasoactive agent use from ICU 
admission until SAKI occurred. Vasoactive agent was identified as the 
use of norepinephrine, epinephrine, vasopressin, dopamine and 
dobutamine. Although lactate level is an important prognostic 
biomarker in patients with sepsis, it was not included in the final 
analysis due to a high proportion of missing values (over 45%).

2.5 Data clean

Scatter plots for bivariate correlations were performed to identify 
outliers. Any outliers detected were treated as missing values. Continuous 
variable data with a missing value percentage exceeding 10% were 
excluded from the analysis. For continuous variable data with missing 
values below 10%, these values were replaced with the mean or median 
according to their distribution, as appropriate. The proportion of missing 
values for all remaining data used in the final analysis is less than 10%.

2.6 Statistical analysis

For continuous variable data with normal distribution, data was 
displayed as mean ± standard deviation (SD) and further analyzed 
using student’s t-test in two groups comparison. For continuous 
variable data with non-normal distribution, data was displayed as 
median (interquartile range, IQR) and further analyzed using Mann–
Whitney U-test in two groups comparison. One-way ANOVA (for 

normally distributed values) or Kruskal–Wallis H test followed by 
Bonferroni post hoc tests (Correction = 0.05/6) was employed for 
multiple comparisons of continuous variables with normally and 
non-normally distributed values, respectively. Data for categorical 
variables were reported as numbers (percentages). The chi-square test 
was conducted to analyze categorical variable data. Restricted cubic 
spline (RCS) analysis was utilized to determine and visualize the 
correlation between serum phosphate levels and the risk of developing 
SAKI. Logistic regression analysis was performed to investigate the 
predictive value of serum phosphate for the risk for developing SAKI 
in crude and adjusted models. Multicollinearity was assessed using the 
variance inflation factor (VIF), and parameters with a VIF ≥10 were 
removed from the model due to multicollinearity issues. The clinical 
predictive value was further evaluated using receiver operating 
characteristic (ROC) curve analysis, with the area under the ROC 
curve (AUC) representing the clinical value. Subgroup analysis was 
conducted to explore potential interactions and assess the robustness 
of the findings. A significance level of <0.05 (two-tailed) was 
considered statistically significant. All statistical analyses were 
performed using Stata 15 and R software version 4.1.3.

3 Results

3.1 Baseline information and clinical results 
from the MIMIC IV and eICU-CRD 
databases

A total of 11,368 eligible patients were included in this study, 
including 9,244 in the MIMIC IV cohort and 2,124 in the eICU-CRD 
cohort (see Figure 1). In the MIMIC IV cohort, 2,215 patients (24.0%) 
developed SAKI within 48 h of sepsis diagnosis (see Table 1). Patients 
with SAKI were found to be older and heavier compared to those 
without SAKI (all p ≤ 0.001). There was a higher proportion of males 
in the SAKI subgroup (p < 0.001). The proportions of coronary heart 
disease, heart failure, hypertension, diabetes mellitus, and liver disease 

FIGURE 1

The flow chart of patient selection in the MIMIC IV and eICU-CRD databases. CRRT, continuous renal replacement therapy; ICU, intensive care unit; 
SAKI, sepsis associated acute kidney injury.
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TABLE 1 Baseline information and clinical outcomes in patients with and without SAKI.

Variable All patients MIMIC IV database eICU database

MIMIC IV eICU Non-SAKI SAKI p-value Non-SAKI SAKI p-value

Number 9,244 2,124 7,029 2,215 1,396 728

Age (years) 64.31 ± 15.58 64.26 ± 16.29 63.65 ± 17.28 66.37 ± 15.58 <0.001 64.57 ± 16.51 63.67 ± 15.86 0.231

Male (%) 5,154 (55.76) 1,087 (51.18) 3,832 (54.52) 1,322 (59.68) <0.001 712 (51.00) 375 (51.51) 0.824

Ethnicity, white (%) 5,847 (63.25) 1,690 (79.57) 4,450 (63.31) 1,397 (63.07) 0.839 1,113 (79.73) 577 (79.26) 0.799

Weight (kg) 82.17 ± 25.18 81.81 (27.49) 81.49 ± 25.31 84.33 ± 24.62 <0.001 80.31 (26.88) 84.69 (28.44) <0.001

Coronary heart disease 

(%)

1,498 (16.21) 232 (10.92) 995 (14.16) 503 (22.71) <0.001 145 (10.39) 87 (11.95) 0.273

Heart failure (%) 2,112 (22.85) 269 (12.66) 1,466 (20.86) 646 (29.16) <0.001 180 (12.89) 89 (12.23) 0.660

Hypertension (%) 4,915 (53.17) 294 (13.84) 3,643 (51.83) 1,272 (57.43) <0.001 198 (14.18) 96 (13.19) 0.528

Diabetes mellitus (%) 2,285 (24.72) 367 (17.28) 1,633 (23.23) 652 (29.44) <0.001 234 (16.76) 133 (18.27) 0.383

Chronic pulmonary 

disease (%)

2,391 (25.87) 391 (18.41) 1800 (25.61) 591 (26.68) 0.314 286 (20.49) 105 (14.42) 0.001

Liver disease (%) 1,316 (14.24) 250 (11.77) 869 (12.36) 447 (20.18) <0.001 140 (10.03) 110 (15.11) 0.001

Malignant cancer (%) 1,132 (12.25) 84 (3.95) 859 (12.22) 273 (12.33) 0.896 53 (3.80) 31 (4.26) 0.604

White blood cell (k/μL) 11.6 (8.4, 15.8) 12.6 (8.5, 18.4) 11.5 (8.4, 15.4) 12.5 (8.7, 17.1) <0.001 12.4 (8.5, 17.4) 13.3 (8.6, 20.0) 0.003

Hemoglobin (g/dL) 10.62 ± 2.02 10.10 ± 1.91 10.64 ± 1.99 10.54 ± 2.13 0.048 10.11 ± 1.88 10.08 ± 1.96 0.784

Platelets (k/μL) 176 (126, 242) 178 (118, 245) 181 (130, 247) 162 (116, 225) <0.001 183 (125, 253) 169 (106, 229) <0.001

Sodium (mmol/L) 138.74 ± 5.49 136.12 ± 18.88 138.99 ± 5.37 137.96 ± 5.76 <0.001 138.12 ± 12.38 132.29 ± 26.92 <0.001

Potassium (mmol/L) 4.05 ± 0.64 3.99 ± 0.67 4.00 ± 0.60 4.21 ± 0.73 <0.001 3.93 ± 0.61 4.11 ± 0.74 <0.001

Creatinine (mg/dL) 0.9 (0.7, 1.3) 1.1 (0.7, 2.0) 0.8 (0.7, 1.1) 1.4 (1.1, 2.1) <0.001 0.9 (0.7, 1.4) 1.8 (1.2, 3.1) <0.001

Blood urea nitrogen 

(mmol/L)

20 (14, 30) 26 (16, 41) 18 (13, 26) 28 (20, 40) <0.001 21 (14, 33) 37 (23, 55) <0.001

Mean blood pressure 

(mmHg)

55.81 ± 12.66 57.12 ± 12.28 56.83 ± 12.71 52.58 ± 11.94 <0.001 58.33 ± 12.53 54.80 ± 11.43 <0.001

Mechanical ventilation 

(%)

5,837 (63.14) 928 (43.69) 4,162 (59.21) 1,675 (75.62) <0.001 598 (42.84) 330 (45.33) 0.272

Vasoactive drug (%) 3,166 (34.25) 744 (35.03) 2,103 (29.92) 1,063 (47.99) <0.001 420 (30.09) 324 (44.51) <0.001

SOFA score 3 (2, 4) 4 (2, 7) 3 (2, 4) 3 (2, 5) <0.001 3 (2, 6) 6 (3, 8) <0.001

Phosphate (mg/dL) 3.34 ± 0.70 3.58 ± 1.54 3.22 ± 0.58 3.70 ± 0.91 <0.001 3.31 ± 1.32 4.08 ± 1.78 <0.001

Continuous variables are displayed as mean (standard deviation) or median (first quartile–third quartile); categorical variables are displayed as count (percentage); SOFA, Sequential Organ 
Failure Assessment.

were significantly higher in patients with SAKI (all p < 0.001). SAKI 
patients also exhibited higher levels of WBC, potassium, creatinine, 
and BUN, but lower levels of hemoglobin, platelets and sodium (all 
p < 0.05). The MBP was lower in the SAKI subgroup compared to the 
non-SAKI subgroup (p < 0.001). More patients in the SAKI subgroup 
received more mechanical ventilation and vasoactive drug treatment 
(all p < 0.001). SAKI patients also had the higher SOFA scores (3[2,5] 
vs. 3[2,4], p < 0.001). Serum phosphate levels were higher in patients 
with SAKI (3.70 ± 0.91 vs. 3.22 ± 0.58, p < 0.001).

In the eICU-CRD cohort, the incidence rate of SAKI was 34.3% 
(728/2124) (shown in Table 1). Patients in the SAKI subgroup had 
higher body weight (p < 0.01). The proportions of chronic pulmonary 
diseases and liver diseases were lower in the SAKI subgroup (all 
p = 0.001), while the SOFA score was higher (6[3,8] vs. 3[2,6], 
p < 0.001). Similarly, levels of serum WBC, potassium, creatinine, and 
BUN were higher in patients with SAKI, while platelets and sodium 
were decreased (all p < 0.05). SAKI patients had lower MBP, and 

received more vasoactive drug treatment (all p < 0.001). There were no 
significant differences between the two groups in terms of age and sex 
(p > 0.05). Patients in the SAKI subgroup had higher serum phosphate 
levels (4.12 ± 1.72 vs. 3.28 ± 1.25, p < 0.001).

3.2 Visualization of the correlation 
between phosphate and the risk of 
developing SAKI

We utilized the RCS method to illustrate the correlation between 
serum phosphate and the risk of developing SAKI. Figure 2 displays 
the findings, indicating a positive non-linear relationship between 
serum phosphate levels and the risk of SAKI in the MIMIC IV cohort 
(Figure 2A), and a J-shaped relationship was found in the eICU-CRD 
cohort (Figure  2B), with p for nonlinear of 0.06 and <0.001, 
respectively. The RCS curves suggest that a cut-off value of 3.3 mg/dL 
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is optimal for serum phosphate. Serum phosphate levels above 3.3 mg/
dL were considered as an independent risk factor for developing SAKI 
(OR >1 and lower 95% CI >1). Conversely, serum phosphate levels 
below 3.3 mg/dL were significantly associated with a reduced risk of 
SAKI development in both the MIMIC IV and eICU-CRD cohorts 
(OR <1 and upper 95% CI <1). However, the significant association 
between serum phosphate and SAKI risk was lost when phosphate 
levels reached extremely low values in the eICU-CRD cohort (as 
shown in Figure 2B).

3.3 Clinical outcomes of patients in 
different phosphate categories

It appears that serum phosphate within the normal reference 
range (2.7 mg/dL–4.5 mg/dL) may have varying predictive values of 
SAKI development depending on the cut-off value (3.3 mg/dL) 
obtained from RCS curve. To further investigate the significance of 
phosphate levels, patients were categorized into four groups based on 
their phosphate values: hypophosphatemia category (≤2.7 mg/dL), 
low-normal category (2.7 mg/dL–3.3 mg/dL), high-normal category 
(3.4 mg/dL–4.5 mg/dL) and hyperphosphatemia category 
(>4.5 mg/dL).

In both MIMIC IV and eICU-CRD cohorts, we  observed a 
consistent trend of the SAKI incidence across the different categories. 
Patients in the hyperphosphatemia category had the highest incidence 
of SAKI, followed by the high-normal, low-normal and 
hypophosphatemia categories (as shown in Table 2). In the MIMIC IV 
cohort, significantly differences were found in the comparisons 
between each category (all adjusted p < 0.05). In the eICU-CRD 

cohort, the incidence of SAKI in patients in the hyperphosphatemia 
category (54.11%) was significantly higher than that in the other three 
groups (all adjusted p < 0.05). However, there was no statistical 
difference between the hypophosphatemia and low-normal categories, 
or between the low-normal and high-normal categories (all adjusted 
p > 0.05).

Regarding hospital mortality and ICU mortality rates, patients in 
the hyperphosphatemia category had significantly higher mortality 
rates compared to those in the other three categories in both the 
MIMIC IV and eICU-CRD cohorts (all adjusted p < 0.05). In the 
MIMIC cohort, the mortality rates were significantly increased in the 
hypophosphatemia category, compared to the low-normal category 
(adjusted p < 0.05), but no significant difference was found between 
the low-normal and the high-normal categories (adjusted p > 0.05). In 
the eICU-CRD cohort, there were no statistically significant 
differences in mortality rates among the hypophosphatemia, 
low-normal and the high-normal categories (adjusted p > 0.05). 
We also observed significant differences in hospital and ICU LOS 
between multiple groups in the MIMIC IV cohort (all p < 0.001), but 
not in the eICU-CRD cohort (p = 0.309 and 0.919).

3.4 Investigate the predictive value of 
phosphate for SAKI development using 
logistic regression analysis

To further investigate the predictive value of phosphate for SAKI 
development, logistic regression analysis was conducted (as shown in 
Table  3). Serum phosphate levels were considered to be  an 
independent risk factor for SAKI development, with each 1 mg/dL 

FIGURE 2

The restricted cubic spline described the non-linear relationship between serum phosphate and the risk of developing SAKI in patients with sepsis in 
the MIMIC IV (A) and eICU-CRD (B) cohorts. A positively non-linear correlation between phosphate and the risk of developing SAKI (p for non-linearity 
<0.05) were found in both cohorts. The optimal cut-off value was 3.3  mg/dL. CI, confidence interval; OR, odds ratio. OR is shown as a solid line, CI as a 
dotted line.
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TABLE 3 Logistic regression analysis for the predictive value of serum phosphate on SAKI.

Phosphate (mg/dL) MIMIC IV database eICU database

OR (95% CI) p-value OR (95% CI) p-value

Unadjusted 2.64 (2.44–2.85) <0.001 1.38 (1.30–1.47) <0.001

Model 1 2.72 (2.51–2.95) <0.001 1.38 (1.30–1.47) <0.001

Model 2 2.55 (2.34–2.78) <0.001 1.29 (1.21–1.38) <0.001

Model 3 2.51 (2.31–2.72) <0.001 1.31 (1.23–1.40) <0.001

Model 1 = adjusting sex, age, ethnicity and comorbidities (hypertension, coronary heart disease, heart failure, diabetes, chronic kidney disease, chronic pulmonary disease, liver disease, 
malignant cancer). Model 2 = Model 1 + adjusting blood pressure, laboratory parameters (serum white blood cells, hemoglobin, platelet, sodium and potassium), mechanical ventilation, usage 
of vasoactive drugs, SOFA score. Model 3 = Model 2 + removing parameters with VIF ≥10 (age, blood pressure, serum hemoglobin, sodium and potassium). CI, confidence interval; OR, odds 
ratio; SAKI, sepsis-associated acute kidney injury; SOFA, Sequential Organ Failure Assessment.

increase in phosphate levels raising the risk of SAKI development by 
1.51 to 1.64-fold (OR 2.51–2.64 in different models, all p < 0.001) in 
the MIMIC IV and by 0.29 to 0.38-fold (OR 1.29–1.38, all p < 0.001) 
in the eICU-CRD cohort.

Using the low-normal category as the reference, 
hyperphosphatemia was identified as an independent risk factor 
for developing SAKI, which led to an increased risk by 6.77 to 
9.32-fold (OR 7.77–10.32, all p < 0.001) in the MIMIC IV and 
1.14 to 2.15-fold (OR 2.24–3.15, all p < 0.001) in the eICU-CRD 
cohorts (shown in Table 4). Hypophosphatemia was considered 
as an independent protective factor for SAKI development in the 
MIMIC IV cohort (OR 0.68–0.70, all p < 0.001), but not statically 
significance was found in the eICU-CRD cohort (OR 0.85–0.93, 
all p > 0.05).

Notably, compared to the low-normal category, serum phosphate 
in high-normal category was independently related to an 
approximately 95% (OR 1.89–2.02, all p < 0.001) increased risk of 
developing SAKI in the MIMIC IV cohort (shown in Table 4). In the 
eICU-CRD cohort, serum phosphate in high-normal category also 

independently associated with a 35% increased risk of SAKI 
development (Model 1, OR 1.35, 95% CI 1.03–1.76, p = 0.026), but the 
statistical significance disappeared after adjusting for potential 
confounders (Models 2–3, p ≥ 0.05).

3.5 Subgroup analysis

In the subgroup analysis (as shown in Figure 3), serum phosphate 
levels were independently were found to be independently associated 
with the risk factor of SAKI development in all subgroups of the 
MIMIC IV and eICU-CRD cohorts (OR >1, p < 0.001), except for the 
malignant cancer (+) subgroup from the eICU-CRD cohort (OR 1.07, 
95% CI 0.76–1.51, p = 0.708).

In the MIMIC IV cohort, two interactive factors between serum 
phosphate and the risk for developing SAKI were identified, phosphate 
× age and phosphate × MBP (all p for interaction <0.001). In the 
eICU-CRD cohort, significant interactions were observed between 
phosphate and MBP (p for interaction = 0.009), phosphate and 

TABLE 2 Clinical outcomes of patients in different phosphate categories.

Outcomes Hypophosphatemia 
(≤2.7  mg/dL)

Normal-low 
(2.8–3.3  mg/

dL)

Normal-high 
(3.4–4.5  mg/

dL)

Hyperphosphatemia 
(>4.5  mg/dL)

p-value

MIMIC IV database

Number 1,293 3,615 3,917 288

SAKI (%) 167 (12.92)a 635 (17.57)b 1,125 (28.72)c 288 (68.74)d <0.001

Hospital mortality (%) 175 (13.53)a 344 (9.52)b 426 (10.88)a,b 182 (43.44)c <0.001

ICU mortality (%) 130 (10.05)a 270 (7.47)b 309 (7.89)a,b 165 (39.38)c <0.001

Hospital LOS (day) 7.8 (5.5, 11.7)a 9.9 (6.6, 15.9)b 11.7 (7.1, 19.8)c 10.1 (5.3, 17.8)b <0.001

ICU LOS (day) 3.8 (2.7, 6.0)a 4.4 (2.9, 7.9)b 5.0 (3.1, 10.0)c 5.6 (3.6, 10.1)c <0.001

eICU database

Number 617 503 542 462

SAKI (%) 159 (25.77)a 137 (27.24)a,b 182 (33.58)b 250 (54.11)c <0.001

Hospital mortality (%) 118 (19.12)a 89 (17.69)a 108 (19.93)a 131 (28.35)b <0.001

ICU mortality (%) 83 (13.45)a 62 (12.33)a 83 (15.31)a 99 (21.43)b <0.001

Hospital LOS (day) 10.2 (6.7, 17.5)a 10.8 (7.0, 17.9)a 10.2 (6.5, 17.2)a 10.0 (6.1, 16.8)a 0.309

ICU LOS (day) 4.9 (3.0, 8.4)a 5.0 (3.0, 9.1)a 5.1 (3.1, 8.8)a 5.1 (3.1, 9.1)a 0.919

Continuous variables are displayed as mean (standard deviation) or median (first quartile–third quartile); categorical variables are displayed as count (percentage). For multiple comparisons 
among each category, p-value was adjusted by Bonferroni method (Correction = 0.05/6), and the statistically significant differences were indicated with superscript letters (Bonferroni-adjusted 
p < 0.05). CRRT, continuous renal replacement therapy; ICU, intensive care unit; LOS, length of stays; SAKI, sepsis-associated acute kidney injury.
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vasoactive drug (p for interaction = 0.001), as well as phosphate and 
SOFA (p for interaction = 0.009).

3.6 Assessment of clinical predictive value 
of serum phosphate levels using ROC 
curve

ROC analysis revealed a moderate clinical predictive value of 
serum phosphate levels for SAKI incidence, with an AUC of 0.695 and 
0.632 in the MIMIC IV and eICU-CRD cohorts, respectively. Further 
details can be found in Figure 4.

4 Discussion

In this multicenter study, we  were able to fully validate the 
association between serum phosphate and the development of SAKI 
in patients with sepsis using two independent databases. Our findings 
demonstrated that elevated serum phosphate levels were significantly 
associated with an increased risk of developing SAKI. Not only 
hyperphosphatemia (>4.5 mg/dL), but also high-normal phosphate 
levels within the normal reference range, were identified as 
independent risk factors for SAKI. Furthermore, hyperphosphatemia 
was associated with an increased risk of both hospital and ICU 
mortality. Although hypophosphatemia (<2.7 mg/dL) appeared to be a 

TABLE 4 Logistic regression analysis for patients in different phosphate categories.

Unadjusted Model 1 Model 2 Model 3

MIMIC IV database

Hypophosphatemia (≤2.7 mg/dL) 0.70 (0.58–0.84) <0.001 0.68 (0.56–0.82) <0.001 0.69 (0.57–0.84) <0.001 0.69 (0.57–0.83) <0.001

Normal-low (2.7–3.3 mg/dL) Reference

Normal-high (3.4–4.5 mg/dL) 1.89 (1.69–2.11) <0.001 2.02 (1.80–2.26) <0.001 1.97 (1.75–2.22) <0.001 1.90 (1.69–2.12) <0.001

Hyperphosphatemia (>4.5 mg/dL) 10.32 (8.25–12.90) <0.001 9.93 (7.90–12.49) <0.001 7.77 (6.10–9.90) <0.001 8.16 (6.44–10.33) <0.001

eICU database

Hypophosphatemia (≤2.7 mg/dL) 0.93 (0.71–1.21) 0.580 0.89 (0.68–1.17) 0.421 0.85 (0.64–1.13) 0.268 0.88 (0.67–1.16) 0.355

Normal-low (2.7–3.3 mg/dL) Reference

Normal-high (3.4–4.5 mg/dL) 1.35 (1.03–1.76) 0.026 1.35 (1.03–1.76) 0.029 1.24 (0.93–1.63) 0.138 1.31 (1.00–1.73) 0.050

Hyperphosphatemia (>4.5 mg/dL) 3.15 (2.41–4.12) <0.001 3.08 (2.34–4.04) <0.001 2.24 (1.68–3.00) <0.001 2.47 (1.86–3.27) <0.001

Model 1 = adjusting sex, age, ethnicity and comorbidities (hypertension, coronary heart disease, heart failure, diabetes, chronic kidney disease, chronic pulmonary disease, liver disease, 
malignant cancer). Model 2 = Model 1 + adjusting blood pressure, laboratory parameters (serum white blood cells, hemoglobin, platelet, sodium and potassium), mechanical ventilation, usage 
of vasoactive drugs, SOFA score. Model 3 = Model 2 + removing parameters with VIF ≥10 (age, blood pressure, serum hemoglobin, sodium and potassium). CI, confidence interval; OR, odds 
ratio; SAKI, sepsis-associated acute kidney injury; SOFA, Sequential Organ Failure Assessment.

FIGURE 3

The results of the subgroup analysis in the MIMIC IV and eICU-CRD cohorts. Two significant interactions, including phosphate × age and phosphate × 
MBP, were found in the MIMIC IV cohort, and three interactions, including phosphate × MBP, phosphate × vasoactive drug and phosphate × SOFA 
score were identified in the eICU-CRD cohort. All subgroup results supported that elevated serum phosphate was associated with the increased risk of 
SAKI occurrence (all OR >1). CI, confidence interval; OR, odds ratio; SOFA, Sequential Organ Failure Assessment.
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protective factor based on our results, this relationship did not hold 
consistently across different cohorts. Nonetheless, it is worth noting 
that even within the normal reference range, high-normal phosphate 
levels were found to be a significant risk factor for SAKI, which should 
be  a cause for concern in clinical practice. To the best of our 
knowledge, few studies have systematically investigated the potential 
relationship between serum phosphate and the risk of developing 
SAKI. Thus, our data provide valuable evidence supporting the use of 
serum phosphate as a biomarker for the early diagnosis of SAKI.

The clinical value of serum phosphate has increasingly drawn 
attention. While several studies have investigated the potential 
association between abnormal phosphate levels and the prognosis of 
sepsis, most of them have focused on mortality rather than AKI. In 
fact, the relationship between serum phosphate and the prognosis of 
sepsis so far remains controversial. For instance, Black et  al. (15) 
demonstrated that the highest quartile of phosphate (>4.0 mg/dL) was 
associated with increased odds of mortality. Similarly, Haider et al. 
(16) reported that hyperphosphatemia was an independent risk factor 
for mortality in critically ill patients, increasing the risk of death by 
229% (OR 3.29, p < 0.001). The association between 
hyperphosphatemia and increased all-cause mortality has also been 
observed in cohorts of COVID-19 (17), severe burns (18) and 
pancreatitis cohorts (19). However, these associations have been 
negated in cohorts of patients undergoing coronary artery bypass 
grafting and hemodialysis (20, 21). Approximately 20% of critically ill 
patients experienced hypophosphatemia (22), and this incidence rates 
were 14.0 and 29.0% in the present study. Hypophosphatemia, on the 
other hand, has been found to be a general biomarker of severity in 
critically ill patients and may increase the risk of 28 days mortality by 
50% (OR = 1.5) (23). Severe hypophosphatemia (<1 mg/dL) in sepsis 
patients has been shown to increase the risk of death by 11.2-fold (11). 

However, there are conflicting reports regarding the association 
between hypophosphatemia and mortality rates in sepsis patients, 
with some studies suggesting a decreased risk of mortality (9, 10, 24). 
These discrepancies in findings can be attributed to differences in 
target populations, timing of phosphate measurement, and the 
threshold values used to define abnormal phosphate levels. A recent 
meta-analysis including 38,320 patients with sepsis or septic shock 
from 10 researches confirmed a significant association between 
increased serum phosphate levels and increased risk of mortality 
(RR = 1.46, 95% CI 1.22–1.74, p < 0.001). However, no significant 
association was found between low serum phosphate levels and 
mortality risk (p = 0.588) (25). It is important to note that pooled 
results from meta-analyses should be interpreted with caution due to 
the inherent heterogeneity of the original data.

As another important endpoint in sepsis, few studies have 
investigated the clinical value of serum phosphate in predicting AKI 
in the sepsis cohort. A single-center retrospective study including 
5,036 participants showed that the admission serum phosphate 
levels ≥4.4 mg/dL were associated with an increased risk of 
developing AKI (OR 1.72, 95% CI 1.20–2.47) compared to a 
reference phosphate level of 2.4–2.9 mg/dL. However, serum 
phosphate levels <4.4 mg/dL showed no association with the risk of 
developing AKI (26). Another study by Moon et  al. (27) 
demonstrated that the third and fourth quartiles of serum 
phosphate levels were associated with a 40% (OR = 1.4) and 180% 
(OR = 2.8) increased risk of developing AKI, respectively, compared 
to the first quartile. This was observed in hospitalized patients both 
with and without chronic kidney disease (CKD). Furthermore, 
increased serum phosphate levels have been identified as predictive 
biomarkers for the development of AKI in conditions such as tumor 
lysis syndrome (28, 29) and rhabdomyolysis (30). In present study, 

FIGURE 4

The clinical predictive value of serum phosphate for the development of SAKI was identified in patients from MIMIC IV (A) and eICU-CRD (B) cohorts 
using the receiver operating characteristic (ROC) curves. Serum phosphate showed moderate clinical value for predicting the development of SAKI 
(AUC  =  0.695 and 0.632).
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we confirmed the predictive value of hyperphosphatemia for an 
increased risk of developing AKI in sepsis patients, which is partly 
consistent with previous studies. We  observed a nearly positive 
relationship between serum phosphate levels and the risk of SAKI 
development. Hyperphosphatemia was consistently identified as a 
significant risk factor for SAKI development in two independent 
cohorts. Hypophosphatemia, on the other hand, was negatively 
associated with the risk of SAKI development, but statistical 
significance was only found in the MIMIC IV cohort. The lack of 
significance in the eICU-CRD cohort may be  attributed to the 
smaller sample size. Interestingly, our findings also revealed that 
serum phosphate levels within the normal reference range could 
have opposite predictive values for developing AKI in septic 
patients. Similar observations have been reported in previous 
studies indicating that even slight increases in serum phosphate 
levels within the normal range are associated with an increased risk 
of vascular calcification, arterial stiffness, and microvascular 
dysfunction (31, 32). Thus, our findings suggested that except for 
hyperphosphatemia, phosphate levels even within the normal range 
also requires much attention in septic patients.

The exact mechanism by which phosphate affects the occurrence 
of SAKI is still unclear, and it is challenging to elucidate the 
interrelationship between serum phosphate and kidney injury in 
septic cohort. Ikeda et al. (33) reported that in the LPS-induced 
septic mouse model, the protein expression level of type II sodium-
dependent phosphate cotransporter (Npt2a) in the brush border 
membrane was significantly decreased rapidly after LPS injection. 
The decrease in Npt2a in the brush border membrane can lead to 
abnormal renal proximal tubular reabsorption of phosphate, which 
is thought to be the primary mechanism of phosphate regulation 
(34). They also found that some hormones associated with 
phosphate regulation, such as intact parathyroid hormone (PTH) 
and intact fibroblast growth factor 23 (FGF23), were also 
upregulated in the septic status (33). On one hand, the toxic effects 
of excessive phosphate overload would contribute to organ damage, 
including kidney injury. Phosphate has been shown to mediate 
inflammatory reactions, oxidative stress responses, cytotoxic effects 
and chronic vascular calcification (35). Phosphate is an independent 
risk factor for the presence of an inflammatory status, and its levels 
are positively correlated with classic inflammatory biomarkers such 
as C-reactive protein and interleukin-6 (36). Dietary phosphate 
overload is associated with the infiltration of pro-inflammatory M1 
macrophages and elevated levels of TNF-α (37, 38). In addition, 
oxidative stress damage has been reported as a critical method of 
phosphate-mediated organ injury (39, 40). Phosphate can also 
aggravate endothelial cell apoptosis by regulating the cleavage of 
caspase-3 protein (38). Abnormally high extracellular phosphate 
levels cause cell proliferation, epithelial-mesenchymal transition, 
endoplasmic reticulum stress and apoptosis through the regulation 
of MAPK and AKT signaling pathways (41). Notably, the imbalance 
of inflammatory response, excessive oxidative stress response, 
endothelial and epithelial injury induced by infection also has been 
shown to be involved in the occurrence of sepsis-associated organ 
dysfunction and damage (42). Kidney tissue would be  more 
susceptible to damage from the combined effect of sepsis and 
phosphate toxicity. On the other hand, as an essential regulator of 
serum phosphate levels, damage to renal tissue may lead to 
abnormal excretion and reabsorption of phosphate. In addition, 

during cell death and impaired membrane integrity, intracellular 
phosphate is released into the systemic circulation, resulting in 
elevated serum phosphate levels. This potential mechanism may 
explain the lower risk of developing AKI in patients with 
hypophosphatemia, suggesting less tissue destruction in the 
kidneys. As a retrospective observational study, we are not able to 
explore the potential mechanisms or diseases pathogeneses 
underlying the associations we found. Further studies are needed 
to explore these potential mechanisms and gain a better 
understanding of how phosphate contributes to kidney injury, 
especially in the acute phase of septic patients.

It is an interesting future question whether modulation of 
phosphate levels will improve the outcomes of SAKI, although 
limited research has investigated this issue. Dietary phosphate 
overload is known to be  detrimental, as it may accelerate the 
inflammatory response and the formation of calcium phosphate 
crystals leading to vascular disease and organ dysfunction (37, 38, 
43). Recently, Hamid et al. (44) found that a phosphate-restricted 
diet had a positive effect on improving survival rates in mice with 
AKI by effectively downregulating the expression levels of FGF23, 
PTH and calcitriol. The phosphate restriction diet also prevented 
metabolic acidosis, hypocalcemia, hyperkaliemia and cardiac 
electrical abnormalities. This is a novel approach to AKI treatment, 
but its therapeutic effect in the SAKI populations should be further 
demonstrated. In addition to the regulation of circulating phosphate 
levels, the maintenance of local intestinal phosphate levels has also 
been reported to be associated with the risk of developing sepsis. 
Maintaining intestinal phosphate abundance and inhibiting local 
phosphate depletion could help to inhibit the development of 
entheogenic sepsis (45, 46). This may be a useful alternative in the 
treatment of sepsis and its complications.

Our study has several strengths. Firstly, we  were able to 
systematically investigate the association between serum phosphate 
and the development of AKI in sepsis cohorts, which had not been 
done previously. Secondly, we took various confounding factors into 
account, including CKD, dialysis, and parathyroid dysfunction. Since 
these conditions can significantly influence serum phosphate levels, 
we  excluded patients with CKD, hyperparathyroidism, 
hypoparathyroidism, and those who received dialysis therapy prior 
to the diagnosis of sepsis. Additionally, we adjusted for other potential 
confounders such as blood pressure, vasoactive drugs, and 
comorbidities in our logistic models. Thirdly, by using phosphate 
results charted before the diagnosis of sepsis, rather than within the 
first 24 or 48 h after diagnosis, we aimed to minimize any unexpected 
effects of AKI on serum phosphate levels. Lastly, we utilized data 
from two independent databases, MIMIC and eICU-CRD, to 
enhance the reliability and generalizability of our findings.

Despite these strengths, there are some limitations that should 
be acknowledged, and the results should be interpreted with caution. 
Above all, although we  made efforts to minimize the impact of 
confounding factors, retrospective studies are inherently susceptible 
to unknown confounders that may influence our conclusions. 
Additionally, the use of older databases may introduce bias due to the 
evolving sepsis guidelines and management practices over time. 
What’s more, the sample size of our study may still be insufficient, and 
there is a possibility of small sample bias and selection bias. Since 
we focused on hospitalized patients, Berkson bias cannot be avoided. 
In addition, as serum phosphate is a dynamic biomarker, using a 
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single value may not fully capture the relationship over time. Finally, 
although we emphasize the predictive value of blood phosphate on the 
development of SKAI, it is still unclear whether it has clinical value in 
distinguishing SAKI from general AKI. Further high-quality clinical 
trials and trajectory analyses are needed to evaluate the effect of serum 
phosphate levels on the incidence of AKI in sepsis patients. Research 
into the differential predictive value of blood phosphate in SAKI and 
other types of AKI is also crucial.

5 Conclusion

Our study provides evidence supporting the significant association 
between the elevated serum phosphate levels and the increased risk of 
developing SAKI in septic patients. Additionally, attention should 
be given to higher phosphate levels within the normal range, as they 
may still contribute to the risk of AKI development in septic patients. 
The protective role of hypophosphatemia remains undetermined. 
Monitoring serum phosphate levels may offer valuable insights for 
early detection and management of SAKI in septic patients.
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Glossary

AKI Acute kidney injury

ATP Adenosine 5′-triphosphate

AUC Area under the ROC curve

BIDMC Beth Israel Deaconess Medical Centre

BUN Blood urea nitrogen

CKD Chronic kidney disease

CRRT Continuous renal replacement therapy

eICU-CRD eICU Collaborative Research Database

ICUs Intensive care units

LOS Length of stay

MIMIC IV Medical Information Mart for Intensive Care IV

NIH National Institutes of Health

RCS Restricted cubic spline

ROC Receiver operating characteristic

SAKI Sepsis associated acute kidney injury

SCr Serum creatinine

SD Standard deviation

STROBE Strengthening the Reporting of Observational Studies in Epidemiology

WBC White blood cells
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