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Background: Accurately differentiating between ovarian endometrioma and

ovarian dermoid cyst is of clinical significance. However, the ultrasound

appearance of these two diseases is variable, occasionally causing confusion and

overlap with each other. This study aimed to develop a diagnostic classification

model based on ultrasound radiomics to intelligently distinguish and diagnose

the two diseases.

Methods: We collected ovarian ultrasound images from participants diagnosed

as patients with ovarian endometrioma or ovarian dermoid cyst. Feature

extraction and selection were performed using the Mann-Whitney U-test,

Spearman correlation analysis, and the least absolute shrinkage and selection

operator (LASSO) regression. We then input the final features into the machine

learning classifiers for model construction. A nomogram was established by

combining the radiomic signature and clinical signature.

Results: A total of 407 participants with 407 lesions were included and

categorized into the ovarian endometriomas group (n = 200) and the dermoid

cyst group (n = 207). In the test cohort, Logistic Regression (LR) achieved

the highest area under curve (AUC) value (0.981, 95% CI: 0.963−1.000), the

highest accuracy (94.8%), and the highest sensitivity (95.5%), while LightGBM

achieved the highest specificity (97.1%). A nomogram incorporating both clinical

features and radiomic features achieved the highest level of performance (AUC:

0.987, 95% CI: 0.967−1.000, accuracy: 95.1%, sensitivity: 88.0%, specificity:

100.0%, PPV: 100.0%, NPV: 88.0%, precision: 93.6%). No statistical difference

in diagnostic performance was observed between the radiomic model and

the nomogram (P > 0.05). The diagnostic indexes of radiomic model were

comparable to that of senior radiologists and superior to that of junior

radiologist. The diagnostic performance of junior radiologists significantly

improved with the assistance of the model.
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Conclusion: This ultrasound radiomics-based model demonstrated superior

diagnostic performance compared to those of junior radiologists and

comparable diagnostic performance to those of senior radiologists, and it has

the potential to enhance the diagnostic performance of junior radiologists.

KEYWORDS

ultrasound radiomics, artificial intelligence, machine learning, ovarian endometrioma,
ovarian dermoid cyst

1 Introduction

Ovarian masses encompass a range of pathologies, including
both benign and malignant conditions. Sonography, particularly
transvaginal sonography, is a primary imaging modality for
the initial assessment and differential diagnosis of ovarian
masses. Among these masses, ovarian endometrioma and
ovarian dermoid cyst are frequently encountered (1, 2).
The ultrasound appearance of these two diseases is variable,
occasionally causing confusion and overlap with each other
(3). Accurately differentiating between these two conditions is
of clinical significance, given the distinct clinical management
approaches for each.

Ovarian endometrioma occurs when ectopic functional
endometrial glands and stroma within the ovary bleed, resulting
in the formation of a cyst (4). The characteristic ultrasound
features of an endometrioma include homogenous low-level
or ground glass internal echoes (5). However, Guerriero
et al. (6) reported that in women aged 18−24 years, 11% of
endometriomas and in women aged at least 45 years, 21%
of endometriomas did not exhibit typical features, with even
higher rates in the postmenopausal population. Van Holsbeke
et al. (7) reported that nearly 50% of endometriomas displayed
ultrasound features other than the typical “unilocular cyst
with ground glass echogenicity of the cyst fluid.” Additionally,
the ultrasound features of endometriomas can overlap with
those of other conditions such as hemorrhagic cyst, dermoid
cyst, and cystic ovarian neoplasms, making differentiation
challenging (3). Asch and Levine (8) revealed that only 60.3% of
endometriomas measuring at least 2 cm in greatest dimension
were correctly diagnosed prospectively by sonography. This
is attributed to the highly variable ultrasound appearance of
endometriomas, which can be influenced by the degradation of
blood over time (3).

Ovarian dermoid cyst, also known as ovarian mature cystic
teratoma, has a reported incidence ranging from 1.2 to 14.2
per 100,000 women, making it the most common type of
ovarian tumor (9). It accounts for 11% of all ovarian tumors
and 69% of all germ cell tumors (10). It is composed of
mature tissues derived from two or three embryonic layers,
including mature endodermal, mesodermal, and ectodermal tissue
(11). The typical ultrasound features of dermoid cysts described
in the literature are the presence of “dots and/or lines” and
the “echogenic white ball” (12, 13). However, in a study by
Heremans et al. (14), one or both of these typical features
was present in 81.1% of dermoid cyst cases, with some cases

showing none of the typical ultrasound features. The study
involved 454 patients with pathologically confirmed dermoid
cysts who underwent transvaginal sonography performed by an
experienced ultrasound examiner using standardized examination
techniques. The research revealed that 18.1% of dermoid cysts were
misdiagnosed, 6% of which were misdiagnosed as endometrioma.
The rate of misdiagnosis may be even higher among less
experienced radiologists.

Due to the similarities in ultrasound appearance between
ovarian endometriomas and dermoid cysts in certain cases, and
the subjective and observer-dependent nature of ultrasound image
interpretation, accurate differential diagnosis of these two lesions
poses challenges, particularly for junior radiologists. Recently,
artificial intelligence (AI) technologies have offered advanced
computational tools to complement the expertise of radiologists
and have shown promising results in enhancing diagnostic
capabilities for various diseases, including ovarian diseases (15–
17). In this study, a diagnostic classification model based on
ultrasound radiomics was developed to intelligently distinguish
and diagnose the two diseases, and its diagnostic efficacy was
compared to that of both senior and junior radiologists. To
the best of our knowledge, this specific subject has been rarely
investigated until now.

2 Materials and methods

2.1 Ethical approval

In this retrospective study, the use of previously obtained
ultrasound images was approved by the ethical committees of the
South China Hospital of Shenzhen University (approval number:
HNLS20230112101-A). The requirement for patient informed
consent was waived due to the retrospective nature of the study.

2.2 Study design and participants

This retrospective case–control study was conducted at the
South China Hospital of Shenzhen University from June 2021
to October 2023. All participants underwent transvaginal or
transrectal sonography scan at our hospital and were diagnosed
as patients with ovarian endometrioma or ovarian dermoid cyst.
Eventually, a total of 407 participants with 407 lesions were
included in the study. Most of the masses were confirmed through
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pathological examination, while the remainder were determined
based on expert judgment with imaging follow-up (lasting more
than 6 months). The patients were randomly divided into a
training cohort (n = 326) and a test cohort (n = 81), with an 8:2
ratio. Medical history of patients and clinical information such as
age, maximum diameter of the lesion, and presenting symptoms
were extracted from medical records. The symptoms included
dysmenorrhea, chronic pelvic pain, dyspareunia, abdominal pain,
and abdominal fullness.

The inclusion criteria for this study were as follows: (1)
Patients diagnosed with either ovarian endometrioma or dermoid
cyst, confirmed through either pathological examination or expert
judgment with imaging follow-up (more than 6 months); (2)
Availability of ultrasound images; (3) If the patients had multiple
ovarian lesions, only the largest lesion was included. The exclusion
criteria were as follows: (1) Low-quality ultrasound images that
were unsuitable for further analysis; (2) Patients with inadequate
clinical information.

2.3 Image acquisition

Ultrasound images, in JPG format, were extracted from
datasets. The ultrasound examinations were conducted in a
transvaginal manner for non-virgins and in a transrectal manner
for women with an intact hymen, utilizing various equipment such
as the Mindray DC-80 and GE Voluson E10. Image quality control
measures were implemented to exclude images of low quality.
All images were obtained by certified radiologists, each having
more than 3 years of independent diagnostic experience in pelvic
ultrasonography. On average, four images per patient with ovarian
lesions were collected, and the image displaying the maximum
lesion diameter was ultimately selected for analysis.

2.4 Image segmentation and feature
extraction

We used ITK-SNAP software (Version 3.8.0, USA) to manually
segment regions of interest. Two experienced radiologists
independently performed the segmentation for all lesions.
Calculation of intraclass correlation coefficient (ICC) ≥ 0.75
was considered indicative of robustness. Feature extraction
was conducted using an in-house program implemented in
Pyradiomics.1 The handcrafted features can be categorized into
three groups: (1) geometry, (2) intensity, and (3) texture. Geometry
features describe the shape characteristics of the lesions. Intensity
features depict the first-order statistical distribution of the voxel
intensities within the lesions. Texture features describe the
patterns, or the second- and high-order spatial distributions of the
intensities. Here the texture features are extracted using several
different methods, including the gray-level co-occurrence matrix
(GLCM), gray-level run length matrix (GLRLM), gray level size
zone matrix (GLSZM) and neighborhood gray-tone difference
matrix (NGTDM) methods.

1 http://pyradiomics.readthedocs.io

2.5 Feature selection and model
construction

We conducted Mann-Whitney U-test statistical test and feature
screening for all radiomic features. Only radiomic features with
the P value <0.05 were kept. For features with high repeatability,
Spearman correlation analysis was performed and the correlation
coefficients between features were calculated to evaluate their
multi-collinearity. If the correlation coefficient between any two
features was greater than 0.9, only one of the features was retained.
To retain the ability to accurately depict features to the greatest
extent, we used a greedy recursive deletion strategy for feature
filtering, that is, the feature with the greatest redundancy in the
current set is deleted each time. Additionally, we utilized the
least absolute shrinkage and selection operator (LASSO) regression
model to reduce the number of features for signature construction.
Depending on the regulation weight λ, LASSO shrinks all
regression coefficients toward zero and sets the coefficients of many
irrelevant features exactly to zero. In order to determine the optimal
λ, 10-fold cross-validation with minimum criteria was employed,
where the final value of λ resulted in the minimum cross-validation
error. The retained features with non-zero coefficients were used
for regression model fitting and combined into a radiomics
signature. Following this, a radiomics score for each patient was
obtained by a linear combination of retained features weighed
by their model coefficients. The Python scikit-learn package was
employed for LASSO regression modeling.

After LASSO feature screening, the model construction and
evaluation were carried out using the scikit-learn package in
Python (version 3.70). We input the final features into the machine
learning models such as Logistic Regression (LR), Support Vector
Machine (SVM), k-nearest neighbor (KNN), LightGBM, Multi-
Layer Perception (MLP) and so on to construct the models. To
determine the optimal model hyper parameters for model fitting
and obtain the final rad signature, the 5-fold cross-verification
were performed. The diagnostic efficacy of the radiomic model was
assessed in the test cohort, and receiver operating characteristic
(ROC) curves were plotted for visual evaluation of the models’
diagnostic performance. Additionally, diagnostic indices, including
area under curve (AUC), specificity, sensitivity, accuracy, positive
predictive value (PPV), negative predictive value (NPV), and
precision were also calculated.

A radiomic nomogram was developed by combining the
radiomic signature with the clinical signature. The diagnostic
performance of the radiomic nomogram was assessed in the test
cohort using ROC curves. Calibration curves were plotted to
evaluate the calibration efficiency of the nomogram, and Hosmer-
Lemeshow analytical fit was employed to assess the calibration
ability of nomogram. In addition, decision curve analysis (DCA)
was used to evaluate the clinical utility of the predictive models.

2.6 Radiologist evaluation

Four radiologists were divided into two groups based on
their years of experience in gynecological ultrasonography: senior
radiologists (WC and HT with over 15 years of experience) and
junior radiologists (BW and JZ with less than 5 years of experience).
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FIGURE 1

Flowchart of the study subjects screening based on inclusion and exclusion criteria.

TABLE 1 Baseline clinical characteristics of participants between ovarian endometriomas group and dermoid cyst group.

Clinical features All (n = 407) Ovarian endometriomas
group (n = 200)

Dermoid cyst group
(n = 207)

P value

Age (years) 32.37 ± 7.53 32.90 ± 6.82 31.86 ± 8.15 0.098

Diameter (mm) 39.54 ± 11.89 40.22 ± 12.53 38.88 ± 11.27 0.494

Symptom <0.001

0 281 (69.04%) 107 (53.50%) 174 (84.06%)

1 126 (30.96%) 93 (46.50%) 33 (15.94%)

Symptom 0 means the participants were asymptomatic. Symptom 1 means the participants had clinical symptoms.

Each radiologist was tasked with independently interpreting the
test cohort. After a period of 2 months, the junior radiologists
were instructed to reevaluate each lesion with the assistance of
the radiomic model.

2.7 Statistical analysis

The clinical features, including age, maximum diameter of
the lesion, and presenting symptom, were analyzed using t-test,
Mann–Whitney U-test, or Chi-square test to compare the clinical
characteristics of the patients. A two-sided P-value <0.05 was used
to determine statistical significance. Python (version 3.70) was

employed to perform the ICCs, Spearman rank correlation test, Z
score normalization, and LASSO regression analysis. Additionally,
the DeLong testing method was utilized to compare the AUCs of
clinical, radiomic, and nomogram models (18).

3 Results

3.1 Baseline characteristics of
participants

A total of 407 participants with 407 lesions were analyzed
and categorized into the ovarian endometriomas group (n = 200)
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FIGURE 2

Workflow of ultrasound-based radiomic analysis.

and the dermoid cyst group (n = 207) based on pathology
results or judgment of experts with imaging follow-up. Figure 1
illustrates the flowchart outlining the screening process of study
subjects according to the inclusion and exclusion criteria. The
mean age of the ovarian endometriomas group and the dermoid
cyst group was 32.90 ± 6.82 years and 31.86 ± 8.15 years,
respectively, (P = 0.098). The maximum diameter of the lesion
in the ovarian endometriomas group and the dermoid cyst group
was 40.22 ± 12.53 mm and 38.88 ± 11.27 mm, respectively,
(P = 0.494). No significant differences were observed in terms
of age and maximum diameter of the lesion between the two
groups (P > 0.05). In the ovarian endometriomas group, 53.50%
of participants were asymptomatic, whereas 46.50% had clinical
symptoms. In the dermoid cyst group, 84.06% of participants were
asymptomatic, while 15.94% had clinical symptoms. There was a
significant difference in the proportion of symptomatic participants
between the two groups (P < 0.05). Table 1 presents the baseline
clinical characteristics of participants in both groups.

3.2 Feature extraction and selection

Figure 2 shows the workflow of ultrasound-based radiomic
model construction in this study. A total of 7 categories, 107
handcrafted features are extracted, including 18 first order features,
14 shape features, and 75 texture features. Details of the handcrafted
features can be found in Figures 3–5. Figure 3 illustrates the
count and proportion of handcrafted features, Figure 4 presents the
statistics of radiomic features, and Figure 5 displays the Spearman
correlation coefficients between each feature.

FIGURE 3

Number and ratio of handcrafted features.

Non-zero coefficients were selected to establish the Rad-score
through LASSO logistic regression model. A total of 22 features
with non-zero coefficients were selected for the establishment
of the Rad score using a LASSO logistic regression model. The
coefficients and mean standard error (MSE) of 10-fold cross-
validation are presented in Figures 6, 7, respectively. Figure 8
displays the histogram depicting the values of coefficients in
the final selected non-zero features. All radiomic features were
extracted, and prediction models were constructed based on the
selected features.
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FIGURE 4

Statistics of radiomic features.

3.3 Development and performance of
radiomic models

Several models were constructed and compared to identify
the most optimal performing model. The optimal model was
obtained by utilizing rad features compared with LR, SVM, KNN,
LightGBM, and MLP classifiers. LightGBM and LR achieved the
highest AUC value of 0.987 (95% CI: 0.978−0.997) and 0.981
(95% CI: 0.963−1.000) in the training cohort and test cohort,
respectively, for discriminating between ultrasound images of
ovarian endometriomas and dermoid cysts. Diagnostic indices,
including AUC, sensitivity, specificity, accuracy, PPV, NPV, and
precision, for various models in the training and test cohorts are
presented in Table 2. The ROC curves and AUC of different
models in the training and test cohorts are shown in Figures 9, 10,
respectively.

3.4 Performance comparison of clinical,
radiomic, and nomogram models

The nomogram, using the LightGBM algorithm, incorporating
both clinical features and radiomic features, demonstrated the
highest level of performance (AUC: 0.987, 95% CI: 0.967−1.000,
accuracy: 95.1%, sensitivity: 88.0%, specificity: 100.0%, PPV:

100.0%, NPV: 88.0%, precision: 93.6%). Table 3 presents the
diagnostic indices, including AUC, sensitivity, specificity, accuracy,
PPV, NPV, and precision of clinical, radiomic, and nomogram
models in both the training and test cohorts. Figure 11 depicts
the nomogram for clinical use, with a total score reflecting the
probability of ovarian dermoid cyst. Figures 12, 13 illustrate
the ROC curves and AUC values of the clinical, radiomic,
and nomogram models in the training cohort and test cohort,
respectively.

The DeLong test revealed that there was no statistical difference
in diagnostic performance between the radiomic model and
nomogram model in the training cohort (P = 0.093) and in the
test cohort (P = 0.131). Furthermore, both models demonstrated
good performance in distinguishing ultrasound images of ovarian
endometriomas and dermoid cysts.

We also evaluated the models through decision curve analysis
(DCA). The result demonstrated that, when compared to scenarios
without any prediction model, both the nomogram and radiomic
models significantly enhanced the intervention outcomes for the
participants. The prediction probability was 0.15−0.85 for the
nomogram and radiomic models and 0.20−0.75 for the clinical
model. These findings indicate that the use of radiomic and
nomogram models in predicting ovarian endometriomas and
dermoid cysts offers superior clinical benefits. Figures 14, 15 depict
the DCA curves for clinical, radiomic, and nomogram models in
training cohort and test cohort, respectively.
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FIGURE 5

Spearman correlation coefficients between each feature.

3.5 Performance comparison with
radiologists

For senior radiologists, the average AUC, sensitivity, and
specificity were 0.965 (95% CI: 0.948−0.981), 97.6%, and 95.5%,
respectively. These values were comparable to those obtained by
the radiomic models. In contrast, junior radiologists exhibited
lower diagnostic performance, with an average AUC, sensitivity,
and specificity of 0.907 (95% CI: 0.884−0.926), 90.8%, and 90.5%,
respectively, when compared to the radiomic models. In the test
cohort, junior radiologists with AI assistance displayed a significant
improvement in diagnostic performance, achieving an average
AUC, sensitivity, and specificity of 0.971 (95% CI: 0.953−0.989),
97.1%, and 97.0%, respectively. Supplementary Figure 1 illustrates
the ROC curves and AUC values for senior radiologists, junior
radiologists, and junior radiologists with AI assistance.

4 Discussion

Accurate differential diagnosis of ovarian endometrioma and
dermoid cyst by sonography is crucial due to the distinct

pathology, clinical presentations, and treatments associated with
each condition. Endometrioma is characterized by the presence
of endometrium-like epithelium and/or stroma, which undergoes
cyclic bleeding (19). Women with endometrioma may experience
different forms of pain (including dysmenorrhea, chronic pelvic
pain, and dyspareunia) or be asymptomatic. Management options
for endometriomas encompass expectant management, medical
treatment, and surgical intervention (20). Surgical treatments
involve techniques like such as cystectomy, electrocoagulation,
ablation, ultrasound-guided aspiration and sclerotherapy, or
combination of these methods (21). In contrast, dermoid cysts are
composed of tissues derived from completely differentiated cells
from ectodermal, mesodermal, or endodermal. Ectoderm, such
as hair and other skin derivatives, are often present in dermoid
cysts. They may also contain endoderm tissues (including thyroid
or gastrointestinal tissue) or mesoderm tissues (including bone,
fat, cartilage, or even neural tissue) (11). While most patients
with dermoid cysts are asymptomatic, a small percentage may
experience abdominal pain and abdominal fullness due to the
presence of the mass (22). Surgical removal is an effective treatment
for dermoid cysts with a diameter of around 5 cm in premenopausal
women and a smaller size in the postmenopausal woman due to the
heightened risk of malignant transformation (23).
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FIGURE 6

Coefficients of 10-fold cross-validation based on LASSO algorithm.

FIGURE 7

MSE of 10-fold cross-validation based on LASSO algorithm.
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FIGURE 8

Histogram depicting the values of coefficients in the final selected non-zero features.

TABLE 2 Diagnostic performance of different models for discriminating between ultrasound images of ovarian endometriomas and dermoid cysts.

Cohort Model AUC (95%
CI)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

PPV (%) NPV (%) Precision
(%)

Train LR 0.979
(0.966−0.993)

94.5 92.5 96.4 96.1 93.0 96.1

Train SVM 0.983
(0.968−0.998)

95.6 94.8 96.4 96.2 95.0 96.2

Train KNN 0.984
(0.973−0.994)

93.4 94.8 92.0 92.0 94.8 92.0

Train LightGBM 0.987
(0.978−0.997)

95.6 96.3 94.9 94.9 96.3 94.9

Train MLP 0.979
(0.965−0.993)

94.9 94.0 95.7 95.5 94.3 95.5

Test LR 0.981
(0.963−1.000)

94.8 95.5 94.2 94.0 95.6 94.0

Test SVM 0.974
(0.947−1.000)

94.8 95.5 94.2 94.0 95.6 94.0

Test KNN 0.977
(0.954−1.000)

94.1 93.9 95.6 93.9 94.2 93.9

Test LightGBM 0.967
(0.940−0.995)

92.6 87.9 97.1 96.7 89.3 96.7

Test MLP 0.980
(0.960−1.000)

94.8 93.9 95.7 95.4 94.3 95.4

The characteristic ultrasound feature of endometrioma is
“unilocular cyst with ground glass echogenicity of the cyst fluid”
(Supplementary Figure 2) while the typical ultrasound features
of dermoid cysts are the presence of “dots and/or lines” and the
“echogenic white ball” (Supplementary Figure 3). However, these
diseases do not show typical ultrasound features. In some cases, the
ultrasound appearance of ovarian endometrioma and dermoid cyst

may exhibit overlapping features. The variability in the ultrasound
appearance of endometriomas can be attributed to different stages
of blood degradation (24) and occasionally, it can mimic the
characteristics of a dermoid cyst. For instance, atypical ultrasound
features of endometrioma include the presence of a “fluid-fluid
level” and an avascular internal nodule or papillary projection,
which are more frequently observed in postmenopausal women
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FIGURE 9

The ROC curves and AUC of different models in the training cohort.

FIGURE 10

The ROC curves and AUC of different models in the test cohort.
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TABLE 3 Diagnostic performance of clinical, radiomic, and nomogram models.

Cohort Model AUC (95% CI) Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

PPV (%) NPV (%) Precision
(%)

Train Clinical 0.800 (0.740−0.860) 73.0 72.7 73.3 72.0 74.0 72.0

Train Radiomic 0.987 (0.978−0.997) 95.6 96.3 94.9 94.9 96.3 94.9

Train Nomogram 0.993 (0.984−1.000) 96.9 96.6 97.2 96.6 97.2 96.6

Test Clinical 0.594 (0.514−0.674) 63.1 48.5 79.8 68.1 60.3 68.1

Test Radiomic 0.967 (0.940−0.995) 92.6 87.9 97.1 96.7 89.3 96.7

Test Nomogram 0.987 (0.967−1.000) 95.1 88.0 100.0 100.0 88.0 93.6

FIGURE 11

The nomogram with a total score reflecting the probability of ovarian dermoid cyst.

FIGURE 12

The ROC curves and AUC of the clinical, radiomic, and nomogram models in the training cohort.
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FIGURE 13

The ROC curves and AUC of the clinical, radiomic, and nomogram models in the test cohort.

(25). During our clinical practice, we have witnessed confusion
between the “fluid-fluid level” feature of endometrioma and the
“fat-fluid level” feature of the dermoid cyst. Additionally, the
avascular internal nodule or papillary projection of endometrioma
may be misdiagnosed as the “echogenic white ball” feature of
the dermoid cyst. The interpretation of ultrasound images heavily
relies on the expertise of the radiologist. However, there is a
relative shortage of experienced radiologists, and the human eye
may struggle to differentiate subtle differences in the ultrasound
features of these two conditions in certain cases. Therefore,
it is necessary to use artificial intelligence technology to help
reduce variability and ensure a more standardized approach across
different observers.

To address this issue, we developed a machine learning
model based on ultrasound radiomics to assist in the differential
diagnosis of ovarian endometrioma and dermoid cyst in this
study. The radiomics models showed satisfactory results in
intelligently distinguishing between the two diseases. LightGBM
and SVM achieved the highest AUC values of 0.987 (95% CI:
0.978−0.997) and 0.981 (95% CI: 0.963−1.000) in the training
cohort and test cohort, respectively. The results demonstrated
that this diagnostic model exhibited superior performance
compared to junior radiologists and comparable performance
to senior radiologists in both the training cohort and test
cohort. More importantly, the diagnostic indexes for junior

radiologists, such as AUC, sensitivity, and specificity, exhibited
remarkable improvements when assisted by the AI model.
The results showed increased values for AUC (0.907 vs.
0.971), sensitivity (90.8% vs. 97.1%), and specificity (90.5%
vs. 97.0%). These findings illustrated that the implementation
of this model can enhance the diagnostic performance of
junior radiologists. The radiomic nomogram was established in
combination with radiomic signature and clinical signatures.
Due to the retrospective nature of the study, collecting clinical
information proved challenging, resulting in only the extraction of
patient age, maximum lesion diameter, and presenting symptoms
in this study. The results revealed that only the proportion
of symptomatic participants demonstrated significant difference
between the two groups (P < 0.05). Due to the lack of
informative clinical features, the nomogram did not yield a
substantial improvement in diagnostic performance compared to
the radiomics model. The DeLong test indicated no statistical
difference in diagnostic performance between the radiomic
model and the nomogram model. In future studies, a wider
range of clinical features will be collected to enhance the
diagnostic performance of the nomogram. Moreover, the results
of DCA demonstrated that the utilization of both radiomic
and nomogram models can provide valuable clinical insights for
guiding treatment decisions.
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FIGURE 14

The DCA curves for clinical, radiomic, and nomogram models in training cohort.

FIGURE 15

The DCA curves for clinical, radiomic, and nomogram models in test cohort.

Frontiers in Medicine 13 frontiersin.org

https://doi.org/10.3389/fmed.2024.1362588
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1362588 March 5, 2024 Time: 18:16 # 14

Liu et al. 10.3389/fmed.2024.1362588

Radiomics involves the conversion of medical images into
high-dimensional quantitative data, enabling the extraction of
comprehensive sets of quantitative signatures that characterize
microscopic tissue aspects (26). These data can subsequently be
analyzed using either conventional biostatistics or AI methods
(27). By utilizing sophisticated image processing techniques, all
medical images are transformed into mineable high-throughput
image features, which can further correlate with pathology
diagnoses based on these processed feature signatures (28).
A number of studies have been published regarding the AI
assisted diagnosis for ovarian masses (29–31). However, these
studies have predominantly focused on distinguishing between
benign and malignant masses (15, 32). For example, Gao et al.
(33) devised a deep convolutional neural network model which
automated the detection of adnexal masses in ultrasound images
to distinguish between malignant and benign masses. This model
exhibited a higher accuracy rate compared to radiologists and
matched the level of expert ultrasound image readers. Zhang
et al. (34) and Wang et al. (35), respectively, developed radiomics
and a deep learning algorithm to differentiate benign and
malignant ovarian lesions on routine MRI. The results indicated
that AI technologies could assess the nature of ovarian masses
on MRI with a higher level of accuracy and specificity than
radiologists. Additionally, several studies (36–39) have further
used AI technologies to discriminate between borderline and
malignant ovarian tumors observed on ultrasound or MR
images. These models have shown promising diagnostic efficiency
and provided complementary clinical diagnostic information.
Nevertheless, there has been a notable scarcity of research centered
on the differential diagnosis of benign ovarian lesions. Only
Ştefan et al. (4) and Lupean et al. (40) reported the differential
diagnosis of endometriomas and functional hemorrhagic cysts
on ultrasound and MR images. As far as we know, this is
the first study concentrating on the discrimination between
ultrasound images of ovarian endometrioma and dermoid cyst
using AI technology.

Notwithstanding the utility, machine learning methods
are known to have some limitations (41) and this study has
following limitations: (1) the sample size of our dataset is
relatively small, giving rise to potential selection bias; (2)
human error is unavoidable in the manual delineation of
lesion boundaries, leading to potential omission of some
characteristics; (3) the radiomics model was developed using
retrospective data, and not all data are confirmed by pathology;
(4) our models were developed solely using ultrasound data,
and the inclusion of additional medical images or clinical
signatures may enhance their performance; (5) this study was
conducted at a single center. In the future, larger multicenter
prospective trials incorporating a broader range of clinical
features will be necessary to enhance the clinical evidence
and evaluate the effectiveness of our diagnostic model in
clinical practice.

5 Conclusions

We initially developed a diagnostic model based on
ultrasound radiomics that exhibited a satisfactory predictive

ability in distinguishing between ovarian endometrioma
and ovarian dermoid cyst. The model demonstrated superior
diagnostic performance compared to that of junior radiologists
and comparable diagnostic performance to that of senior
radiologists. Moreover, the utilization of this model has the
potential to enhance the diagnostic performance of junior
radiologists when it comes to ovarian lesion diagnosis,
while also providing valuable clinical insights for guiding
treatment decision.
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SUPPLEMENTARY FIGURE 1

The ROC curves and AUC for senior radiologists, junior radiologists, and
junior radiologists with AI assistance.

SUPPLEMENTARY FIGURE 2

The typical ultrasound feature of endometrioma is “unilocular cyst with
ground glass echogenicity of the cyst fluid.”

SUPPLEMENTARY FIGURE 3

The typical ultrasound features of dermoid cysts are “dots and/or lines” (A)
and “echogenic white ball” (B).
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