
Frontiers in Medicine 01 frontiersin.org

Identification of germline 
population variants misclassified 
as cancer-associated somatic 
variants
Rebecca D. Pollard 1,2, Matthew D. Wilkerson 3,4 and 
Padma Sheila Rajagopal 5,6*
1 Maret School, Washington, DC, United States, 2 Metis Foundation, San Antonio, TX, United States, 
3 Center for Military Precision Health, Uniformed Services University, Bethesda, MD, United States, 
4 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health 
Sciences, Bethesda, MD, United States, 5 Cancer Data Science Laboratory, Center for Cancer 
Research, National Cancer Institute, Bethesda, MD, United States, 6 Women’s Malignancies Branch, 
Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States

Introduction: Databases used for clinical interpretation in oncology rely on 
genetic data derived primarily from patients of European ancestry, leading to 
biases in cancer genetics research and clinical practice. One practical issue 
that arises in this context is the potential misclassification of multi-ancestral 
population variants as tumor-associated because they are not represented in 
reference genomes against which tumor sequencing data is aligned.

Methods: To systematically find misclassified variants, we  compared somatic 
variants in census genes from the Catalogue of Somatic Mutations in Cancer 
(COSMIC) V99 with multi-ancestral population variants from the Genome 
Aggregation Databases’ Linkage Disequilibrium (GnomAD). By comparing 
genomic coordinates, reference, and alternate alleles, we  could identify 
misclassified variants in genes associated with cancer.

Results: We found 192 of 208 genes in COSMIC’s cancer-associated census genes 
(92.31%) to be  associated with variant misclassifications. Among the 1,906,732 
variants in COSMIC, 6,957 variants (0.36%) aligned with normal population variants 
in GnomAD, concerning for misclassification. The African / African American 
ancestral population included the greatest number of misclassified variants and 
also had the greatest number of unique misclassified variants.

Conclusion: The direct, systematic comparison of variants from COSMIC for 
co-occurrence in GnomAD supports a more accurate interpretation of tumor 
sequencing data and reduces bias related to genomic ancestry.
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1 Introduction

With the rapid advances of targeted therapies and associated biomarkers, genetic data is 
increasingly necessary to facilitate clinical management of cancer (1, 2). Collaborative databases 
are used by clinicians to help classify variants from molecular testing as associated with 
malignancy, inherited rare cancer syndromes, or normal population variation (3, 4). As with 

OPEN ACCESS

EDITED BY

Alice Chen,  
Consultant, Potomac, MD, United States

REVIEWED BY

Gagandeep Dhillon,  
University of Maryland, Baltimore, 
United States
Jin Wu,  
Roswell Park Comprehensive Cancer Center,  
United States

*CORRESPONDENCE

Padma Sheila Rajagopal  
 sheila.rajagopal@nih.gov

RECEIVED 25 December 2023
ACCEPTED 28 February 2024
PUBLISHED 20 March 2024

CITATION

Pollard RD, Wilkerson MD and 
Rajagopal PS (2024) Identification of germline 
population variants misclassified as cancer-
associated somatic variants.
Front. Med. 11:1361317.
doi: 10.3389/fmed.2024.1361317

COPYRIGHT

© 2024 Pollard, Wilkerson and Rajagopal. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Brief Research Report
PUBLISHED 20 March 2024
DOI 10.3389/fmed.2024.1361317

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1361317&domain=pdf&date_stamp=2024-03-20
https://www.frontiersin.org/articles/10.3389/fmed.2024.1361317/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1361317/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1361317/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1361317/full
mailto:sheila.rajagopal@nih.gov
https://doi.org/10.3389/fmed.2024.1361317
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1361317


Pollard et al. 10.3389/fmed.2024.1361317

Frontiers in Medicine 02 frontiersin.org

many genetics efforts, underrepresentation of non-European ancestral 
populations in these clinical databases is a critical bottleneck to their 
universal applicability.

Numerous clinical challenges currently arise from the 
overwhelming overrepresentation of patients of European ancestry in 
cancer genetics data. These include inadequate training of clinical tools 
(as observed in the first generation of commercially available polygenic 
risk scores) (5, 6); less accurate prediction of treatment response for 
specific populations in clinic (7–9); inadvertent biases against offering 
available interventions or studies to patients (10); and insufficient 
representation in precision oncology registries to inform future 
translational research work (11, 12).

In the context of clinical variant interpretation databases, one 
such potential issue is the misclassification of variants as somatic 
(associated with the cancer) when they are, in fact, germline 
(associated with patients’ ancestral populations). This may occur 
depending on the reference genome used and can be  clinically 
problematic if misclassified variants are directly relevant to diagnosis, 
treatment, or prognosis (13). In other words, such variants may 
be used as an indication for potential treatment when they may not 
be cancer-specific, or may be accidentally used by oncologists to 
provide inaccurate prognostic information or molecular pathologists 
in the course of diagnosis. Misclassified variants are also critical to 
be aware of in the context of cancer research. Human variant origin 
(whether germline or somatic) is often a necessary specification in 
translational oncology studies ranging from drug mechanism of 
action to inclusion criteria for clinical trials (14, 15).

While some variant callers have advanced filtering of germline 
variants from tumor-only data using multiple population databases, 
they require a baseline knowledge of bioinformatics and typically 
remove germline variants without characterizing more information 
about the potential germline variants (16). Other efforts have 
interrogated somatic variants that have been included in population 
databases (17).

To evaluate this concern, we compared ostensibly somatic variants 
from the Catalogue Of Somatic Mutations In Cancer (COSMIC) 
database (18), used to categorize cancer-specific variants, to 
population-specific variants from the Genome Aggregation Database 
(GnomAD) (19). We  observed that over 92% of the 208 cancer-
associated genes in COSMIC had at least one misclassified variant, 
and that 6,957 variants (0.36% of all variants in COSMIC) were 
concerning for misclassification. Of these, we found that the African 
/ African American genetic ancestry population in GnomAD 
contained the most variants associated with misclassification in 
COSMIC and the greatest number of unique misclassified variants. 
Our findings emphasize the need for accurate variant classification 
across populations for clinicians and translational researchers.

2 Methods

2.1 Reference databases

The Catalogue Of Somatic Mutations In Cancer (COSMIC) 
contains variants observed in cancers. These variants are aggregated 
through expert curation via publication review (focused on specific 
genes / diseases) and tumor genome-wide screening data (18). 
Variants in COSMIC were obtained using the unified file from v99.

The Genome Aggregation Database (GnomAD) contains variants 
and allele frequencies collected from over 76,000 individuals. Variants 
from GnomAD used in this project were obtained from the annotated 
Linkage Disequilibrium datasets in v2, in which variants were assigned 
by GnomAD to 8 ancestral populations: African/African American, 
Latino/Admixed American, Ashkenazi Jewish, East Asian, Finnish 
European, Estonian, North-Western European and Southern European.

The COSMIC Cancer Gene Census is an ongoing effort by 
COSMIC to categorize genes that drive cancers (20). The census is 
updated on an ongoing basis and available with explanations for each 
gene and its relationship to cancer here: https://cancer.sanger.
ac.uk/census.

2.2 Data preparation

Data processing and visualization were performed in Python 
v3.10.7 by leveraging the Pandas library and matplotlib v3.5.3.

The COSMIC dataset was converted from a tab-separated value 
(.TSV) format to a comma-separated value (.CSV) format using the 
Pandas library. Reference and alternate allele columns were added by 
parsing the “CDS” column in Pandas. The. CSV file was partitioned 
by transcript accessions to generate 34,317 separate files.

For the GnomAD datasets, we generated. CSV files of variants in 
each ancestral population. We  lifted over the coordinates from 
GRCh37 to GRCh38 and added a “genomic coordinate” column based 
on the GRCh38 chromosome and position columns.

2.3 Data analysis and variant 
misclassification identification

We iteratively compared each partitioned COSMIC. CSV file and 
each GnomAD. CSV file based on 3 parameters: genomic coordinate, 
reference allele, and alternate allele, with misclassified variants defined 
as matches across both files. These matches were subsequently merged, 
and duplicate rows deleted, within ancestral populations. Our pipeline 
systematically quantified the total number of variants and unique 
genes per ancestral population.

To facilitate a streamlined comparison of all misclassified variants, 
we merged all 8 ancestral populations into a list of unique variants 
listed by genomic coordinates, reference (ref) and alternate (alt) allele 
columns, and allele frequencies per population.

2.4 Statistical analysis

Chi-squared testing was used to identify significant differences by 
population among misclassified variants and genes.

3 Results

3.1 Cancer-associated genes at greatest 
risk for variant misclassification

Figure 1 demonstrates the project concept. Among 208 cancer-
associated genes in the COSMIC cancer gene census, 192 (92.3%) 
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were found to have misclassified variants. ABL had the greatest 
number of unique misclassified variants identified at 274, but 19 genes 
(ABL1, PTPRT, HLA-A, JAK2, AFF3, PREX2, EGFR, ETV6, MLLT3, 
ALK, EBF1, MTOR, NOTCH1, AFDN, KMT2C, FA1, FAM135B, 
FAT3, and MUC4) were associated with over 100 unique misclassified 
variants. Supplementary Table S1 lists all 192 genes by number of 
unique positions in the gene and variants observed.

3.2 Frequency of misclassified variants 
from COSMIC in each ancestral population

We identified 6,957 unique variants out of 1,906,732 (0.36%) total 
in COSMIC that aligned with normal population variants in GnomAD 
(Figure 2). We evaluated how many of these variants were reported in 
each ancestral population. The population with the greatest inclusion 
of misclassified variants was the African/African American 
population, with 5,320 misclassified variants (76.47%). The Ashkenazi 
Jewish population had the second greatest inclusion of misclassified 
variants, with 4,668 (67.10%). Comparatively, the other populations 
included between 59 and 64% of the misclassified variants. The 
difference of included misclassified variants across populations was 
statistically significant (p < 1×10−5).

3.3 Proportion of misclassified variants 
from COSMIC across ancestral populations

To assess the extent to which the total number of variants in 
GnomAD may influence the number of misclassified variants 
reported in each population, we  compared the number of 
misclassified variants per population to the overall numbers of 

variants per population in GnomAD (Figure  3). The African/
African American population had the largest number reported 
variants at 17,478,395, with variants misclassified in COSMIC 
representing 0.03%. The Southern European population had the 
smallest number of reported variants at 9,071,699, with variants 
misclassified in COSMIC representing 0.05%. However, the 
proportion of misclassified variants across all GnomAD variants 
per population was not statistically significant.

3.4 Unique misclassified variants specific to 
each population

We compared shared variants pairwise by population to determine 
the extent of population-specific versus shared variants across 
populations (Figure 4). In each pairwise comparison, we reported 
number shared variants across those populations. We also report the 
number of variants unique to that population. The African/African 
American population had more misclassified variants unique to its 
population (1,019) relative to any other population, followed by the 
East Asian (326) and Ashkenazi Jewish (216) populations. In contrast, 
European populations and the Admixed American/Latino population 
had <100 unique variants.

4 Discussion

In this project, we compared variants in the COSMIC cancer gene 
census to variants in GnomAD across ancestral population to identify 
potentially misclassified population-level variants. We  sought to 
demonstrate in a straightforward fashion the clinical relevance of our 
findings by directly comparing across these databases and providing 

FIGURE 1

Project overview. Variants that overlapped between COSMIC and GnomAD based on genomic coordinate, reference allele, and alternate allele were 
incorporated, and variant allele frequencies per population per GnomAD were reported.
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a systematic assessment that reflects the breadth of this issue across an 
established list of cancer-specific genes.

Although we  observed a comparatively low fraction of all 
variants in COSMIC were affected by potential misclassification, 
concerningly, we  found that over 90 percent of genes in the 
COSMIC cancer gene census had at least one misclassified variant. 
Given that COSMIC is routinely used in molecular pathology 
laboratories to make recommendations for diagnosis, prediction, 
and prognostication based on cancer-specific variants, it is crucial 
to identify and address issues that systematically affect accurate 
variant classification (21).

Among the 19 genes associated with over 100 unique 
misclassified variants, several are concerning because of variants’ 
role in prediction of therapy use for patients. ABL1 mutations, 
although usually specific to known resistance mutations, can 
be  used to select alternative therapies in chronic myeloid 
leukemia (18). While JAK2 V617F and exon 12 mutations are well 
known to contribute to development of leukemia, other variants 
are still considered if identified (22). EGFR and ALK mutations 

are critically relevant for prediction of treatment response in lung 
cancer (23). Numerous clinical trials actively seek patients with 
somatic variants in these genes as well as genes underlying 
therapeutic targets, such as mTOR, to study therapy response. 
Misclassification is critically important to correctly identifying 
somatic origin, and accordingly appropriate prediction of patient 
treatment response, in this setting.

In their documentation, COSMIC reports that they use the 
Cancer Mutation Census (CMC) as a tool to help users annotate 
somatic mutations. This effort actually already includes data from 
ClinVar (germline pathogenic variants associated with inherited 
disease) (24) and gnomAD, but is aligned to GRCh37, not 
automatically integrated into COSMIC, uses its own definition of 
“mutation significance” rather than drawing on existing equivalent 
efforts [such as OncoKB (25)] and confusingly combines 
definitions from ClinVar that were intended for germline variants. 
We  would certainly suggest that COSMIC consider updating, 
refining, integrating this effort and consider using it as a filtration 
step for curated variants.

FIGURE 2

Variants concerning for misclassification in COSMIC by ancestral population. The X-axis displays the number of overlapping variants between COSMIC 
and GnomAD, while the Y-axis specifies the total count. Variants may be in multiple ancestral groups.
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The overrepresentation of variants, and particularly unique 
population-specific variants, corresponding to the African / 
African-American ancestral population is also strongly 
concerning for inadvertent bias. This finding is likely associated 
with the known phenomenon of decreased linkage disequilibrium 
and increased occurrence of variants in African ancestral 
populations (26–28). We observed no significant difference in 
proportion of misclassified variants among proportion of variants 
in GnomAD across populations, suggesting that the number of 
misclassified variants in a population relates to the total number 
of variants present. Projects such as the Human Pangenome 
Reference demonstrate the limitations of the current reference 
genome and opportunities in moving to genomic references with 
greater diversity, with “3.7 million additional single-nucleotide 
polymorphisms (SNPs) in regions non-syntenic to GRCh38” 
among other expansions (29). From a clinical standpoint, moving 
towards these comprehensive reference efforts at a rate much 
faster than the transition from GRCh37 to GRCh38 may have the 
opportunity to adequately serve more patients.

There are limitations to this work we wish to acknowledge. Our 
overlap search across COSMIC and GnomAD is currently limited 
to single nucleotide variants. As broad population-level data for 
structural variants, mutational signatures, and chromosome-scale 
changes becomes more widely available in future, this could easily 
be incorporated into the same framework. From the variant to the 
gene level, it would be  fair to draw comparisons across other 
cancer driver gene datasets. It would also be ideal to expand and 
streamline this analysis in future across other germline and somatic 
variant classification and annotation databases (such as ClinVar 
and OncoKB) (25). One effort examined overlapping variants 
between GnomAD and The Cancer Genome Atlas, but intentionally 
focused on rare population variants to study potential biological 
etiologies including statistical chance, convergent evolution, and 
correlated mutational rates at specific genetic sites (30). 
Realistically, the need to apply this search across multiple germline 
and somatic databases reflects an ongoing limitation of the field 
regarding data siloing, and the issue of adequate population 
representation remains active across all of these (31).

FIGURE 3

Misclassified variants (aligned between GnomAD and COSMIC) compared to total variants in GnomAD by population. The X-axis lists the specific 
population, while the Y-axis reports the number of total variants in GnomAD (blue) and number of overlapping variants between COSMIC and 
GnomAD concerning for misclassification (purple).
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The variants that we identified in this study that are misclassified as 
somatic when actually germline underscores the need for ongoing efforts 
to improve inclusivity of genetic data across diverse ancestral populations. 
As we demonstrate, by correctly identifying variants linked to disease as 
opposed to population, this effort directly offers benefit to all 
oncology patients.
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