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Background: Chronic obstructive pulmonary disease (COPD) poses a substantial 
global health burden, demanding advanced diagnostic tools for early detection 
and accurate phenotyping. In this line, this study seeks to enhance COPD 
characterization on chest computed tomography (CT) by comparing the spatial 
and quantitative relationships between traditional parametric response mapping 
(PRM) and a novel self-supervised anomaly detection approach, and to unveil 
potential additional insights into the dynamic transitional stages of COPD.

Methods: Non-contrast inspiratory and expiratory CT of 1,310 never-smoker 
and GOLD 0 individuals and COPD patients (GOLD 1–4) from the COPDGene 
dataset were retrospectively evaluated. A novel self-supervised anomaly 
detection approach was applied to quantify lung abnormalities associated with 
COPD, as regional deviations. These regional anomaly scores were qualitatively 
and quantitatively compared, per GOLD class, to PRM volumes (emphysema: 
PRMEmph, functional small-airway disease: PRMfSAD) and to a Principal Component 
Analysis (PCA) and Clustering, applied on the self-supervised latent space. Its 
relationships to pulmonary function tests (PFTs) were also evaluated.

Results: Initial t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization 
of the self-supervised latent space highlighted distinct spatial patterns, revealing 
clear separations between regions with and without emphysema and air trapping. 
Four stable clusters were identified among this latent space by the PCA and 
Cluster Analysis. As the GOLD stage increased, PRMEmph, PRMfSAD, anomaly score, 
and Cluster 3 volumes exhibited escalating trends, contrasting with a decline in 
Cluster 2. The patient-wise anomaly scores significantly differed across GOLD 
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stages (p  <  0.01), except for never-smokers and GOLD 0 patients. In contrast, 
PRMEmph, PRMfSAD, and cluster classes showed fewer significant differences. 
Pearson correlation coefficients revealed moderate anomaly score correlations 
to PFTs (0.41–0.68), except for the functional residual capacity and smoking 
duration. The anomaly score was correlated with PRMEmph (r  =  0.66, p  <  0.01) 
and PRMfSAD (r  =  0.61, p  <  0.01). Anomaly scores significantly improved fitting of 
PRM-adjusted multivariate models for predicting clinical parameters (p  <  0.001). 
Bland–Altman plots revealed that volume agreement between PRM-derived 
volumes and clusters was not constant across the range of measurements.

Conclusion: Our study highlights the synergistic utility of the anomaly detection 
approach and traditional PRM in capturing the nuanced heterogeneity of COPD. 
The observed disparities in spatial patterns, cluster dynamics, and correlations 
with PFTs underscore the distinct – yet complementary – strengths of these 
methods. Integrating anomaly detection and PRM offers a promising avenue for 
understanding of COPD pathophysiology, potentially informing more tailored 
diagnostic and intervention approaches to improve patient outcomes.

KEYWORDS

chronic obstructive pulmonary disease, computed tomography, GOLD, airway disease, 
emphysema, artificial intelligence, anomaly detection

1 Introduction

Chronic obstructive pulmonary disease (COPD) remains a major 
global health burden, ranking as the third leading cause of mortality 
worldwide (1). Characterized by progressive airflow limitation, COPD 
predominantly arises from prolonged exposure to harmful airborne 
particles, particularly in individuals with a history of smoking (2, 3). 
Early detection and accurate phenotyping of COPD are paramount, 
as timely intervention, including smoking cessation and appropriate 
treatments, may slow disease progression and improve patient 
outcomes. Although pulmonary function testing (PFT) and, in 
particular, gold standard spirometry, play a central role in COPD 
diagnosis, its ability to detect early-stage disease and reliably 
characterize its heterogeneity remains limited (4, 5).

Recent advances in imaging technology, particularly computed 
tomography (CT), have been instrumental to gain insights into COPD 
pathophysiology, by quantifying emphysema and small-airway 
disease. Several emphysema quantification methods are based on 
measuring the relative area of the lungs below a specific Hounsfield 
unit (HU) threshold, i.e., low attenuation areas (LAA), on inspiratory 
CT scans, showing significant correlations with pulmonary function 
test (PFT) parameters (6–8).

While large airways down to the first sub-segmental generations 
are clearly visible on CT, smaller, more distal subsegmental airways 
and respiratory bronchioles cannot be detected unless becoming more 
conspicuous due to mucus retention or peribronchial inflammation. 
However, small airways disease can be  indirectly assessed and 
quantified with CT scans in expiration, when small airway obstruction 
results in air trapping (8). Several methods, including measuring the 
LAA below −856 HU (LAA-856) on expiratory scans, have been 
proposed for evaluating air trapping (8). However, the optimal 
CT-based method to assess small-airway disease remains a subject of 
ongoing debate. In recent years, parametric response mapping (PRM) 
has emerged as a novel approach to phenotyping COPD by utilizing 

both inspiration and expiration CT scans (9). PRM allows 
differentiation between emphysematous and non-emphysematous air 
trapping regions. For small-airway disease, PRM identifies lung areas 
with densities greater than or equal to −950 HU on inspiration CT 
and less than −856 HU on expiration CT. However, PRM’s current 
method for small-airway disease assessment focuses on slight dynamic 
density changes within each voxel and may not fully consider 
emphysema’s potential contribution to air trapping assessment. As it 
is a mutually exclusive voxel-wise method, each voxel is assigned 
exclusively to either the emphysematous or non-emphysematous 
category, potentially oversimplifying the intricate interplay between 
emphysema and small-airway disease. Additionally, its method’s 
dependence on fixed thresholds introduces limitations in capturing 
variations across diverse patient populations, while the reliance on 
registration may be susceptible to specific methods and anatomical 
variations. Moreover, the sensitivity to CT-protocol variations poses a 
challenge in ensuring consistent and reproducible results across 
different imaging settings.

With advances in deep learning (DL) based artificial intelligence 
(AI), several algorithms have been developed to target the direct 
interpretation of CT scans, without the need to pre-define COPD 
features of interest. While the majority relies on supervised learning 
(10–14), self-supervised (15) and unsupervised methods (16) have 
been gaining a lot of attention. Their ability to capture complex disease 
heterogeneity without the need for explicit annotation, makes them 
particularly advantageous in scenarios where manual labeling may 
be  challenging or subjective. Moreover, these methods have the 
potential to discover novel disease subtypes or manifestations that 
may not be  predefined in the training dataset, enhancing their 
adaptability to the diverse and evolving nature of COPD.

In particular, Almeida et al. (15) introduced a self-supervised DL 
anomaly-detection approach that identifies COPD lung regions as 
anomalies, reflecting the varied manifestations of COPD across 
different phenotypes, including large and small airway disease, 
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parenchymal scars, and emphysema. The method harnesses 
informative latent representations and a generative model to identify 
deviations from the distribution of normal-appearing lung regions of 
individuals without airflow obstruction. These deviations are then 
presented as a lung anomaly map with anomaly scores. Importantly, 
it has demonstrated its value in distinguishing normal individuals 
from those with COPD and predicting lung function decline (17).

While being a promising tool for the assessment of the severity of 
COPD, the regional anomaly scores derived from this method have 
not been further explored. Hence, our study aims to compare the 
quantitative and spatial relationships between PRM functional small 
airway disease and emphysema measurements to regional anomaly 
scores. This can further provide critical insights into COPD 
heterogeneity and implications for personalized patient care.

2 Materials and methods

The objective of our study, depicted in Figure 1, was to perform 
a quantitative and qualitative comparison of spatial relationships 
between traditional (1) Parametric response mapping (PRM) 
volumes and the (2) Self-Supervised Anomaly Detection method 
(15, 17). Our hypothesis posits that the anomaly scores derived 
from self-supervised learning align with PRM volumes, and their 
associations with clinical metrics are comparable. To enhance our 
understanding of what the self-supervised method learns, we also 

employ (3) Principal Component Analysis (PCA) & Clustering on 
the self-supervised representation level. This approach identifies 
stable clusters, allowing us to compare them with the 
aforementioned two methods.

2.1 Study cohort

In the present study, we utilized the Genetic Epidemiology of 
COPD (COPDGene) study. The COPDGene study (ClinicalTrials.gov 
Identifier NCT00608764) recruited never-smoker controls and 
current and former smokers, who had a smoking history of ≥10 pack-
years. The enrollment period was conducted between 2008 and 2011, 
targeting individuals aged 45–80 years.

Comprehensive assessments were performed, including paired 
chest CT scans during inspiration (Insp) and expiration (Exp), 
pulmonary function tests (PFT), and questionnaire evaluations. 
Specific details regarding the CT acquisition protocol can be found in 
Almeida et al. (17).

Ethical approval was obtained, and written consent was acquired 
from all participants after the study protocol received approval from 
the respective clinical center’s review board. The inclusion and 
exclusion criteria were previously described in Almeida et al. (15, 17).

In accordance with the established protocol defined in Almeida 
et al. (15, 17), the dataset was partitioned into distinct sets for training, 
evaluation and testing.

FIGURE 1

Methodology pipeline. A subject is composed of paired inspiratory and expiratory CT scans which are analyzed by 3 methods: (1) Parametric response 
mapping (PRM), which relies on the spatial alignment of the two scans and defines emphysema and airway disease areas based on strict thresholds; (2) 
Anomaly detection, which attributes region-wise anomaly scores based on the distribution of normal lung features, defined by a self-supervised 
contrastive method; (3) Principal Component Analysis (PCA) & Clustering, which applies dimensionality reduction (PCA) to the latent features from the 
self-supervised contrastive method to find stable clusters. All three methods produce lung maps, which were then compared qualitatively and 
quantitively.
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2.2 Parametric response mapping

Parametric response mapping (PRM) was applied to the paired 
Insp and Exp CT scans as described in the original work (9) of the test 
set. This process categorized the lung parenchyma into functional 
small-airway disease (PRMfSAD), emphysema (PRMEmph), and normal 
lung (PRMNormal). To minimize the contribution of airways and vessels, 
specific minimum and maximum attenuation values were defined for 
both scans. PRMEmph was defined by voxels between −1,000 HU 
and − 950 HU in the inspiratory CT and between −1,000 HU 
and −856 HU in the expiratory CT scan. PRMfSAD was defined by 
voxels between −950 HU and −810 HU in the inspiratory CT 
and − 1,000 HU and −856 HU in the expiratory CT. Lastly, PRMNormal 
was defined by voxels between −950 HU and −810 HU in the 
inspiratory CT and −856 and −500 HU in the expiratory CT scan. The 
top section of Figure 1 illustrates this step.

Following the PRM analysis, the subsequent sections detail the 
application of (2) Anomaly Detection and (3) PCA & Clustering, both 
involving two common steps: quantitative pre-processing and 
extraction of self-supervised latent features.

2.3 Pre-processing

2.3.1 Quantitative pre-processing
After segmentation of the lung parenchyma, 3D Regions of 

Interest (ROIs) of size 50 × 50 × 50 voxels (covering >70% of the lung 
parenchyma) were extracted from paired Insp and registered Exp 
(ExpR) CT scans, with 20% patch-overlapping, as previously described 
in Almeida et al. (15, 17).

2.3.2 Extraction of self-supervised latent features
Following the extraction of 3D patches, the objective was to create 

a representation per patch that encapsulated relevant information 
related to its imaging features. This representation vector, of size 1 × 
512, was later employed for both (1) Anomaly Detection and (2) PCA 
& Clustering. The self-supervised learning strategy described in 
Almeida et  al. (15, 17) was employed, where a subset of the 
COPDGene subjects was used to train a self-supervised contrastive 
model, without using any labels. This model is based on the idea of 
learning representations that maximize the agreement between 
differently augmented views of the same region via a contrastive loss, 
i.e., attracting regions that look similar and repel the ones that do not. 
Based on this, informative latent representations were generated per 
patch, as illustrated in Figure 1.

2.4 Visualization of the latent space: 
t-distributed stochastic neighbor 
embedding

For understanding the information conveyed in the self-
supervised latent features of each region and for visualization 
purposes, t-Distributed Stochastic Neighbor Embedding (t-SNE) (18) 
was applied as a non-linear dimensionality reduction technique. 
t-SNE is a common dimensionality reduction technique that maps 
high-dimensional data into a lower-dimensional space while 
preserving the pairwise similarities between data points. In order to 

preserve better global structure, non-standard affinity methods were 
initialized with the evaluation set, and later transformed to the test set. 
This was implemented using the openTSNE package (19).

2.5 Anomaly detection

Subsequently, having the patch-level latent representations, the 
anomaly detection model was applied, as illustrated in Figure 1.

The model aimed to quantify the degree to which a specific region 
or patient deviates from the pre-defined “normality,” as defined in 
Almeida et  al. (17). This normative baseline was defined by lung 
regions with less than 1% emphysema from individuals without 
airflow obstruction (never-smoker controls and GOLD0). The 
distribution of these “normal/healthy” latent features, as derived from 
the self-supervised contrastive approach, serves as the reference for 
the model. Region, i.e., patch-wise, anomaly scores are computed 
using the negative log-likelihood. Patient-level anomaly scores are 
subsequently obtained by aggregating scores from all regions. Further 
details can be found in Almeida et al. (15, 17).

For visualization purposes of the anomaly lung map, min-max 
normalization was applied to the anomaly scores, corresponding to 
the 5th and 95th percentiles of the dataset.

2.6 Principal component analysis and 
clustering

Principal Component Analysis (PCA) & Clustering served as a 
direct comparative approach to the anomaly detection model, as 
both operate on the self-supervised latent features of the test set. 
These representations were obtained by a region-similarity 
approach, which grouped similar patterns together (whether 
region- or intensity-wise). The objective with the PCA & Clustering 
was to explore and identify clusters of regions sharing similar 
characteristics within the informative latent features, and directly 
compare it to the anomaly detection method and to the reference 
PRM volumes.

2.6.1 PCA on the self-supervised latent features
PCA was applied to the latent vectors of each region of the test set, 

in order to mitigate multicollinearity along the 512 features. The 
eigenvectors of the covariance matrix were analyzed. Then to reduce 
the dimension space, the dataset was projected onto the first few 
uncorrelated principal components, representing dominant 
eigenvectors of the covariance matrix. The optimal number of 
Principal Components (PCs) was decided based on Horn’s parallel 
analysis (20), through a Scree Plot, and based on the Kaiser Criterion.

2.6.2 Clustering the PCA
Once determined the subset of PCs to retain, cluster analysis was 

conducted on the dataset. Various clustering methods, including 
K-means and Gaussian finite mixture model-based methods were 
compared using Silhouette, Davies-Bouldin and Calinski and 
Harabasz scores (21). The Silhouette score aimed for maximization, 
providing a measure of the separation among different clusters. 
Davies-Bouldin, targeted for minimization, assessed the similarity of 
each cluster to its next closest neighbor. Calinski and Harabasz, also 
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targeted for minimization, estimated the cohesion and separation of 
points within a cluster, based on the distance between cluster centroids.

Based on these scores, the optimal clustering method and number 
of clusters were determined and applied for further analysis. Further 
information is provided in the Supplementary materials. However, it’s 
important to note that these clusters were primarily generated for 
comparison purposes. They serve as a reference point to assess the 
efficacy of the anomaly detection method, since both employ the same 
self-supervised latent features.

2.7 Statistical analysis

Comparisons among PRM volumes, Patient-wise Anomaly 
Scores and each class of Anomaly Region Clusters were made 
according to the Global Initiative for Chronic Obstructive Lung 
Disease (GOLD) stages using the Jonckheere-terpstra test. A 
post-hoc Tukey-test was then applied for multiple pairwise-
comparisons between GOLD stages.

The relationships between pulmonary function tests, clinical 
data and each PRM class, anomaly scores and cluster groups were 
evaluated through Pearson’s correlation coefficient. Confidence 
intervals (CI) were calculated using bootstrap resampling method 
on 10,000 samples. Pulmonary function tests and clinical data 
included parameters such as FEV1% predicted, FEV1/FVC, 
Functional Residual Capacity (FRC), Total Lung Capacity (TLC), 
FRC/TLC, BODE index (body mass index, air-flow obstruction, 
dyspnea, exercise capacity), St. George’s Respiratory Questionnaire 
(SGRQ), the 6-min-walking-test (6MWT) and smoking duration. 
Correlations were interpreted as follows: 0.00–0.10 (negligible), 
0.10–0.39 (weak), 0.40–0.69 (moderate), 0.70–0.89 (strong), and 
0.90–1.00 (very strong) (22). Differences between correlation 
coefficients were assessed via the R package “cocor” (23), utilizing 
the Zou et al. (24) method. This involved calculating the difference 
between correlation coefficients for each pair of groups and 
determining a 95% confidence interval (CI) for that difference. If the 
CI included zero, the null hypothesis that the two correlations are 
equal was retained; if the CI did not include zero, the null hypothesis 
was rejected.

Linear mixed effects models (LMM) were utilized to predict 
clinical parameters based on the PRM volumes, with adjustments 
made for relevant covariates including age, gender, body mass index 
(BMI), smoking status (0: never-smoker control, 1: former smoker, 
and 2: current smoker), smoking duration, and a random term for the 
study site. To assess the contribution of the anomaly score beyond 
morphological lung changes in predicting clinical variables (FEV1%, 
FEV/FVC, FRC, TLC, FRC/TLC, BODE, SGRQ, and 6MWT), it was 
then introduced as an additional predictor in the PRM-adjusted LMM 
models. The overall conditional coefficient of determination (R2), 
adjusted for the number of regressors, was reported. Models were 
compared through the likelihood ratio test of nested models.

The agreements between PRM relative volumes and volumes 
obtained from the Cluster groups were assessed using the Bland–
Altman method (25). A p-value of <0.05 was considered as statistically 
significant and adjustments were made for multiple comparisons, 
using the Holm-Bonferroni method, when applicable.

All statistical analyses were performed using R software version 
4.3.4 (R Foundation for Statistical Computing, Vienna, Austria).

3 Results

Patient characteristics are summarized in Table 1.

3.1 Visualization of the latent space: 
t-distributed stochastic neighbor 
embedding

The comprehensive representation of the lung regions in the latent 
space, achieved through self-supervised contrastive learning, is 
visually depicted using t-SNE (Figure  2). Each point represents a 
feature vector (1 × 512) per lung region (3D patch). A clear separation 
between regions with and without emphysema and gas trapping is 
consistently illustrated. Also, regions exhibiting less than 1% 
Emphysema and less than 1% Air Trapping are distinctly discernable 
from diseased regions. Notably, factors such as gender information do 
not contribute to the separation of these latent features 
(Supplementary Figure S4).

3.2 PCA and cluster analysis

PCA applied to the region-wise latent vectors determined that 85 
factors should be retained, meeting the criteria of obtained eigenvalues 
surpassing those from random data, as per Horn’s parallel analysis and 
the Kaiser Criterion (Supplementary Figure S1). 
Supplementary Figure S2 provides a comparison between the number 
of clusters and the method applied to the 85 retained PCs. Cluster 
analysis identified four stable clusters (Clusters 1, 2, 3, and 4) through 
K-means with a mini-batch size of 1,000. More details about the 
clusters are available in the Supplementary materials.

3.3 Qualitative results

Figure 3 showcases representative CT images individuals from all 
GOLD grades. The first and second column represent a coronal slice 
of the inspiratory and expiratory CT scans, while the following 
columns are the visualization of PRM maps, maps of the anomaly 
score and cluster classes, overlayed on the inspiratory CT. Figure 4 
represents the spatial overlap between region-wise anomaly scores and 
PRMEmph and PRMfSAD for two former-smoker individuals: GOLD 0 
(A) and GOLD 3 (B), with more than 30 years of smoking history.

3.4 PRM volumes, anomaly score, cluster 
groups by GOLD score

Figure 5 depicts a comparison between PRM volumes, anomaly 
score and relative size of the 4 clusters, relatively to the GOLD stage. 
Significant differences were found between PRM volumes, anomaly 
scores and all cluster classes according to the GOLD stage (Table 2), 
except for class 4. With an increase in the GOLD stage, PRMEmph, 
PRMfSAD, Anomaly Score and relative volume of cluster 3 increased, 
while cluster 2 decreased. Post-hoc Tukey analysis 
(Supplementary Table S1) revealed significant intergroup differences 
in the anomaly score between all GOLD stages (p < 0.01 corrected), 
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except between controls and GOLD 0. No differences were observed 
between controls and GOLD 0, controls and GOLD 1, and GOLD 0 
and GOLD 1 for PRMEmph; and controls and GOLD 0 and GOLD 4 
and GOLD 3 for PRMfSAD. Cluster 1 showed significant differences 
between high grades COPD (GOLD 3 and 4), and Cluster 2 between 
GOLD 2 and 3. Notably, statistically significant differences between 
never-smoker controls and GOLD 0 subjects were only found by 
Cluster 3.

3.5 Relationships between PRM volumes, 
anomaly score, cluster groups

Table 3 shows the Pearson correlation coefficient and p-values 
corrected with Holm-Bonferroni for PRM volumes, anomaly score 
and cluster groups. Each PRM volume showed statistically 
significant correlations with PFTs and clinical data. Both PRMfSAD, 
PRMEmph, Anomaly score and Cluster 3 are negatively correlated 
with spirometry volumes (FEV1 and FEV1/FVC) and with the 
walking distance, and positively correlated with FRC, TLC, FRC/
TLC, BODE and smoking duration. Pearson correlation coefficients 
for the anomaly score are moderate, with the exception of FRC and 
smoking duration, and very well comparable with the ones from 
PRM volumes, while less strong for the Cluster 3. The anomaly 
score showed significantly higher correlations than PRMfSAD for 
SGRQ and the distance walked in the 6-min walking test; and 
stronger than PRMEmph for FRC/TLC and smoking duration. No 
significant differences were found between correlations of the 

anomaly score and PRMfSAD for FEV1, FEV1/FVC, BODE and 
smoking duration; and between the anomaly score and PRMEmph for 
FEV1, FRC, SGRQ and the distance walked in the 6-min walking 
test. The anomaly scores also showed significantly higher 
correlations than all Clusters for all clinical variables, except for 
TLC. Clusters 1 and 2 follow the same trends as the PRM Healthy 
volumes: positively correlated with FEV1, FEV1/FVC and walking 
distances and negatively correlated with FRC, TLC, FRC/TLC, 
BODE, SGRQ, and smoking duration.

Figure  6 illustrates linear relationships between patient-wise 
anomaly scores and PRM-derived emphysema and fSAD volumes. 
The anomaly score shows to be significantly correlated with PRMEmph 
(r = 0.66, p < 0.01) and PRMfSAD (r = 0.61 p < 0.01). As depicted in 
Table  4, adding the anomaly score to the PRM baseline models 
statistically improves the fit of all LMM to predict clinical measures, 
including FEV1, FEV/FVC, FRC, FRC/TLC, BODE, SGRQ, and 
6MWT (only to PRMfSAD). No differences were found for predicting 
the TLC and the 6MWT (for PRMEmph).

Bland–Altman plots for the volume (log transformed) agreement 
of PRM-derived volumes and clusters which showed significant 
correlation to the PFTs and clinical data (Clusters 1, 2, 3) are 
presented in Figure 7 showing the differences (D) against averages 
(A). Since the Bland–Altman plots displayed non-constant bias even 
after log transformation of the measurements, a regression-based 
approach (25) was used to compute the bias and limits of agreement 
(LoA). The mean differences are given by 

, 1ˆ 5.04 1.80PRM ClusterD A= − + , , 2ˆ 6.84 1.68PRM ClusterD A= − + , 

TABLE 1 Subject demographics (sex, age, body mass index [BMI]), functional parameters (post-bronchodilator forced expiratory volume in one second 
[FEV1%_pred]; FEV1/Forced Vital Capacity [FVC]; Functional Residual Capacity [FRC]; Total Lung Capacity [TLC]; FRC/TLC; Body-Mass Index, Airflow 
Obstruction, Dyspnea, and Exercise Capacity Index [BODE]; St. George‘s Respiratory Questionnaire [SGRQ]; 6-min walking test [6MWT]), smoking 
duration and low-attenuation (LAA) percentages [LAA-950% and LAA-856%], for the evaluation population, from the COPDGene dataset.

Never-
smoker 
controls 
(N  =  29)

GOLD 0 
(N  =  538)

GOLD 1 
(N  =  128)

GOLD 2 
(N  =  315)

GOLD 3 
(N  =  195)

GOLD 4 
(N  =  105)

p-value

Sex [f/m] 11/18 280/258 74/54 161/154 116/79 50/55 0.011

Age (y) 62.2 ± 9.1 59.5 ± 8.3 63.2 ± 8.7* 64.8 ± 8.6 66.2 ± 7.9 65.4 ± 7.0 <0.001

BMI 27.8 ± 4.3 28.6 ± 5.6 27.1 ± 4.2 28.5 ± 6.0 28.4 ± 6.5 25.4 ± 4.8* <0.001

FEV1%_pred 100.6 ± 13.2 96.4 ± 10.7 90.4 ± 9.0* 65.8 ± 8.8* 39.4 ± 5.5* 23.2 ± 4.2* <0.001

FEV1/FVC 0.8 ± 0.1 0.8 ± 0.0 0.6 ± 0.0* 0.6 ± 0.1* 0.4 ± 0.1* 0.3 ± 0.1* <0.001

FRC 2.5 ± 0.6 2.9 ± 0.7 3.4 ± 0.9* 3.5 ± 0.9 4.5 ± 1.2* 5.1 ± 1.3* <0.001

TLC 5.2 ± 1.4 5.7 ± 1.2 6.4 ± 1.5* 5.9 ± 1.3 6.3 ± 1.6 6.6 ± 1.4 <0.001

FRC/TLC 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.1* 0.7 ± 0.1* 0.8 ± 0.1* <0.001

BODE 0.1 ± 0.3 0.3 ± 0.7 0.5 ± 0.9 1.4 ± 1.3* 3.9 ± 1.4* 5.5 ± 1.2* <0.001

SGRQ 4.3 ± 8.1 13.0 ± 15.6 17.5 ± 17.9 31.0 ± 20.8* 45.5 ± 18.0* 55.8 ± 16.6* <0.001

6MWT 

(meters) 539.4 ± 88.7 476.3 ± 100.4 468.9 ± 105.4 415.6 ± 109.0* 344.5 ± 118.8* 267.4 ± 102.5* <0.001

Smoking 

duration (y) - 32.8 ± 10.9 38.3 ± 10.2* 40.3 ± 9.5 41.3 ± 8.7 40.3 ± 8.5 <0.001

LAA-950% 1.9 ± 2.0 2.6 ± 2.9 5.1 ± 5.1 8.3 ± 8.4 15.5 ± 12.2 27.9 ± 13.4 <0.001

LAA-856% 9.4 ± 6.8 12.0 ± 9.8 19.9 ± 11.2 28.7 ± 15.9* 47.5 ± 17.3* 63.7 ± 11.8* <0.001

Attenuation percentages were measured by VIDA Diagnostics. All data are given as mean ± standard deviation. For some cases, data was not available: 17 for 6MWT, 17 for BODE, 76 for FRC, 
3 for TLC, 61 for FRC/TLC, 3 for LAA-950%, 76 for LAA-856%. p-value was obtained by the Jonckheere-Terpstra test or a logistic regression, when applicable. * denotes p < 0.05 vs. previous 
GOLD stage for the post-hoc Tukey-test comparison.
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, 3ˆ 2.17 0.46PRM ClusterD A= − + . The 95% LoA are then 

, 1ˆ 5.04 1.80
0.80

PRM ClusterD A= − +
± , 

, 2ˆ 6.84 1.68
1.05

PRM ClusterD A= − +
± , 

, 3ˆ 2.17 0.46
1.31

PRM ClusterD A= − +
±

. Thus, the degree of agreement is 

not constant across the range of measurements.

4 Discussion

In this study, we aimed to explore the potential of a deep-learning 
self-supervised anomaly detection method for phenotyping Chronic 
Obstructive Pulmonary Disease (COPD) using computed tomography 
(CT) scans of 1,310 never-smoker controls and GOLD 0–4 from the 
COPDGene cohort. COPD remains a significant global health burden, 
necessitating early detection and accurate phenotyping for effective 
intervention. While traditional methods like parametric response 
mapping (PRM) have provided insights into COPD pathophysiology 
(27, 28), they may not fully capture the complexity and heterogeneity 
of the disease. This present study marks the first of its kind, comparing 
PRM-derived functional small-airway disease and emphysema 
measurements against regional anomaly scores derived from a 

recently proposed self-supervised deep-learning anomaly 
detection approach.

Before delving into the comparison itself, it was important to 
understand what spatial distribution is encoded by the self-supervised 
latent features. As unveiled through t-distributed Stochastic Neighbor 
Embedding (t-SNE) analysis, it showcases a notable attraction among 
similar disease-related areas, concurrently distancing healthy regions 
from those corresponding to healthy patients. Notably, this 
visualization is rooted in the self-supervised contrastive learning of 
lung regions and, as such, does not rely on labels. It is noteworthy that 
this approach effectively captures features stemming from emphysema 
and gas trapping, while factors such as gender information do not 
contribute to this attraction. Furthermore, an intriguing observation 
surfaces in COPD patients, where even regions with low levels of 
emphysema exhibit spatial resemblances with areas demonstrating 
higher emphysema levels. This pattern potentially hints at underlying 
features beyond emphysema that play a role in clustering these regions 
together, possibly indicating the presence of early-stage COPD 
markers that could progress into advanced emphysematous changes.

Investigating the spatial relationships between small airway 
disease and emphysema manifestations captured by PRM alongside 
regions identified as anomalies by the self-supervised approach has 
revealed interesting insights. Traditionally, the progression of COPD 
involves the narrowing or destruction of small airways preceding the 

FIGURE 2

t-Distributed Stochastic Neighbor Embedding (t-SNE) visualizations of the self-supervised contrastive latent space vectors. Each dot represents a 
region (3D ROI) or more specifically, an embedding of its latent representation into a two-dimensional space, and its color represents a clinical or 
radiological characteristic (GOLD, emphysema and air trapping measures at the patch-level). The dotted regions in the t-SNE maps emphasize distinct 
groups (bottom – healthy, center right and upper right – diseased), serving as illustrative examples. For each dotted region, several examples are 
provided to illustrate representative inspiratory patches extracted from those dotted regions. Readers are guided to recognize consistent groups 
positioning across visualizations, enhancing overall interpretation of the t-SNE plots. (A) Visualization is colored by regions with and without 
emphysema and airway disease. (B) Visualization is colored by regions with less than 1% emphysema from healthy individuals (green), regions with 
more than 1% emphysema from healthy individuals (dark green), regions with less than 1% emphysema from COPD individuals (yellow) and regions 
with more than 1% emphysema from COPD individuals (red). (C) Same as in B but related to airway disease. Healthy individuals were defined as 
controls and GOLD 0, while COPD individuals as GOLD 1, 2, 3, or 4.
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development of emphysema (29), a transition not easily detectable 
using conventional spirometry or visible on CT scans (27, 30). Our 
exemplary patients’ regions, colored solely by PRMfSAD, often exhibit 

areas with higher anomaly scores in the anomaly maps, as illustrated 
in Figures 3, 4A. This observation raises the intriguing possibility that 
the anomaly detection approach serves as an additional means to 

FIGURE 3

Visual comparison of PRM maps, anomaly score and cluster volumes on exemplary subjects across several GOLD stages (0–4). As the severity 
increases (GOLD score), so do the areas detected as emphysema and functional small airway disease by PRM. On the same fashion, the region 
anomaly scores also shift from green to red for more severe cases. Interestingly, these areas overlap PRMEmph and PRMfSAD. Particularly for low GOLD 
levels, it attributes higher scores to PRMfSAD areas, possibly indicative of differential progressive features. Lastly, the cluster maps reveal four 
aggregations, indicative of different disease components.

FIGURE 4

Exemplary coronal sections of overlapping of PRM and anomaly maps for two former-smoker individuals. Example (A) is a 64  years-old former-smoker 
female who does not fulfill the criteria for COPD (GOLD 0; FEV1% post-bronchodilator 126% of predicted value; FEV1/FVC 78%; smoking history of 
30  years). Example (B) is a 72  years-old former-smoker male with severe COPD (GOLD 3; FEV1% post-bronchodilator 31% of predicted value; FEV1/FVC 
34%; smoking history of 37  years). Top left corresponds to the inspiratory scans, top right to the PRM maps, bottom left to the expiratory registered 
scan, bottom right to the anomaly score map. The bigger image corresponds to the overlapping of the anomaly maps to the PRM maps, in which 
regions deviating from the norm are overlapping with PRMfSAD. The closer to red, the higher the anomaly detected. PRM healthy tissue (green), PRM 
functional small-airway disease (yellow), and PRM emphysema (red).
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highlight transitional stages in the disease process, paramount for 
understanding early pathological changes (31). It may also suggest 
that small airway disease undergoes dynamic changes before evolving 

into more advanced stages of emphysema, particularly relevant for 
individuals with normal lung function (GOLD 0, Figure  4A). 
Therefore, more importantly than the spatial similarity, the divergence 

FIGURE 5

Distribution of PRM emphysema (A), PRM airway disease (fSAD) (B), patient-wise anomaly score (C) and cluster classes (D), according to the GOLD 
stage. While PRMEmph, PRMfSAD and the anomaly score clearly increase with the disease severity, the relative volumes of the cluster classes showed 
distinctly different distributions according to GOLD severity; cluster 3 increases, whereas cluster 2 decreases with an increase in GOLD stage. GOLD, 
Global Initiative for Obstructive Lung Disease.

TABLE 2 Mean  ±  standard deviation of parametric response mapping (PRM) volumes, anomaly score and cluster groups, according to the GOLD stage.

Controls 
(N  =  29)

GOLD 0 
(N  =  538)

GOLD 1 
(N  =  128)

GOLD 2 
(N  =  315)

GOLD 3 
(N  =  195)

GOLD 4 
(N  =  105)

p-value

PRM

 Healthy (%) 92.6 ± 4.1 84.4 ± 14.8 75.4 ± 16.2* 64.2 ± 19.3* 47.3 ± 18.4* 25.4 ± 10.3* <0.001

  Functional small-

airway (%)
7.1 ± 4.0 14.7 ± 13.8 22.0 ± 13.8* 28.9 ± 14.0* 39.4 ± 11.5* 45.1 ± 8.5

<0.001

 Emphysema (%) 0.3 ± 0.3 0.9 ± 1.7 2.6 ± 3.6 6.8 ± 8.0* 13.3 ± 11.3* 29.5 ± 13.6* <0.001

Anomaly detection (cOOpD)

 Anomaly score −404.1 ± 54.3 −372.0 ± 63.8 −318.9 ± 100.8* −287.8 ± 80.8* −228.0 ± 77.4* −170.9 ± 82.2* <0.001

Clusters

 1 16.8 ± 1.4 16.2 ± 3.4 15.5 ± 3.2 15.3 ± 3.3 14.9 ± 2.7 13.2 ± 2.7* <0.001

 2 69.7 ± 9.0 60.7 ± 17.8 55.7 ± 17.7 48.9 ± 19.4 42.2 ± 16.4* 48.5 ± 15.1 <0.001

 3 13.5 ± 9.3 21.1 ± 15.7* 27.7 ± 17.4 34.2 ± 18.5 41.7 ± 16.3* 38.2 ± 13.8 <0.001

 4 0.0 ± 0.0 1.9 ± 13.6 1.1 ± 10.2 1.6 ± 12.5 1.2 ± 10.8 0.0 ± 0.0 n.s.

GOLD, Global Initiative for Obstructive Lung Disease. p-value was obtained by the Jonckheere-Terpstra test. * denotes p < 0.05 vs. previous GOLD stage for the post-hoc Tukey-test comparison.
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TABLE 3 Correlation of PRM volumes, anomaly score, and cluster groups with PFTs and clinical data.

Method

Pulmonary function tests and clinical data

FEV1
FEV1/
FVC TLC FRC

FRC/
TLC BODE SGRQ 6MWT

Duration 
smoking

PRM

Healthy (%) 0.71**** 

(0.68, 0.74)

0.80**** 

(0.77, 0.82)

−0.30**** 

(−0.35, 

−0.24)

−0.72**** 

(−0.75, 

−0.69)

−0.73**** 

(−0.76, 

−0.70)

−0.64**** 

(−0.68, −0.60)

−0.46**** 

(−0.51, 

−0.41)

0.42**** 

(0.37, 0.47)

−0.27**** 

(−0.30, −0.20)

PRMfSAD %

−0.61**** 

(−0.66, 

−0.57)

−0.68**** 

(−0.72, 

−0.64)

0.24**** 

(0.18, 0.30)

0.70**** 

(0.67, 0.73)

0.78**** 

(0.76, 0.81)

0.53**** 

(0.48, 0.57)

0.39**** 

(0.34, 0.44)

−0.34**** 

(−0.39, 

−0.30)

0.28**** 

(0.20, 0.31)

PRMEmph %

−0.66**** 

(−0.69, 

−0.63)

−0.75**** 

(−0.77, 

−0.72)

0.30**** 

(0.24, 0.36)

0.56**** 

(0.51, 0.61)

0.44**** 

(0.39, 0.50)

0.64**** 

(0.60, 0.68)

0.43**** 

(0.38, 0.48)

−0.42**** 

(−0.47, 

−0.37)

0.18**** 

(0.11, 0.21)

Anomaly detection (cOOpD)

Anomaly 

score

−0.65**** 

(−0.69, 

−0.60)

−0.68**** 

(−0.72, 

−0.64)

0.16**** 

(0.09, 0.22)

0.55**** 

(0.51, 0.60)

0.56**** 

(0.51, 0.62)

0.57**** 

(0.52, 0.62)

0.46**** 

(0.41, 0.51)

−0.41**** 

(−0.47, 

−0.35)

0.27**** 

(0.19, 0.30)

Clusters

1 0.22**** 

(0.17, 0.29)

0.27**** 

(0.21, 0.34)

−0.22**** 

(−0.28, 

−0.15)

−0.34**** 

(−0.41, 

−0.27)

−0.35**** 

(−0.43, 

−0.27)

−0.23**** 

(−0.29, −0.16)

−0.15**** 

(−0.21, 

−0.09)

0.16**** 

(0.10, 0.22)

−0.10*** 

(−0.15, −0.03)

2 0.33**** 

(0.28, 0.38)

0.34**** 

(0.28, 0.39)

−0.06* 

(−0.12, 

−0.01)

−0.22**** 

(−0.28, 

−0.16)

−0.17**** 

(−0.25, 

−0.09)

−0.25**** 

(−0.30, −0.19)

−0.21**** 

(−0.26, 

−0.15)

0.20**** 

(0.14, 0.26)

−0.16**** 

(−0.19, −0.07)

3

−0.41**** 

(−0.46, 

−0.36)

−0.42**** 

(−0.47, 

−0.37)

0.11*** 

(0.05, 0.17)

0.32**** 

(0.27, 0.38)

0.29**** 

(0.22, 0.36)

0.32**** 

(0.27, 0.38)

0.27**** 

(0.22, 0.32)

−0.24**** 

(−0.30, 

−0.19)

0.18**** 

(0.10, 0.21)

4 0.04 (−0.01, 

0.10)

0.04 (−0.02, 

0.09)

−0.01 

(−0.06, 

0.04)

−0.06 

(−0.10, 

−0.02)

−0.08* 

(−0.11, 

−0.05)

−0.04 (−0.10, 

0.02)

−0.04 (−0.10, 

0.01)

0.00 (−0.05, 

0.06)

0.00 (−0.07, 

0.04)

Confidence intervals are denoted in brackets, per each Pearson correlation coefficient. Correlations are colored according to Cohen’s effect size (26) and only the significant ones are colored. 
None or very weak effect size is defined by |r| < 0.3, weak 0.3 < |r| <0.5, moderate 0.5 < |r| < 0.7 and large by |r| > 0.7. PRM, parametric response mapping; fSAD, functional Small Airway Disease; 
Emph, Emphysema; FEV1, Forced Expiratory Volume in 1 s, FEV1/FVC, FEV/Forced Vital Capacity; FRC, Functional Residual Capacity; TLC, Total Lung Capacity; BODE, Body mass index, 
air-flow Obstruction, Dyspnea, Exercise capacity; SGRQ, St George’s Respiratory Questionnaire; 6MWT, 6 min walking test. **** p < 0.0001, *** p < 0.001, ** p < 0.01, *p < 0.05.

FIGURE 6

Scatterplots depicting the relationship between the anomaly score and PRM emphysema (A) and PRMfSAD (B). Both show linear regression between 
patient-wise anomaly score and PRM volumes in all subjects (PRMEmph: r  =  0.66, p  <  0.01; PRMfSAD: r  =  0.61 p  <  0.01).
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TABLE 4 Linear mixed effects models were employed to predict several clinical variables including FEV1%, FEV/FVC, FRC, TLC, FRC/TLC, BODE, SGRQ, 
and 6MWT, with adjustments made for age, gender, BMI, smoking status, smoking duration, and study site (baseline models).

Dependent 
variable

Predictor Adjusted 
conditional 

R2

p-value 
adjusted

FEV1%

Age, gender, BMI, smoking status, smoking duration (center) 0.22

Age, gender, BMI, smoking status, smoking duration, PRMfSAD (center) 0.46

p < 0.001Age, gender, BMI, smoking status, smoking duration, PRMfSAD, anomaly score (center) 0.56

Age, gender, BMI, smoking status, smoking duration, PRMEmph (center) 0.53

p < 0.001Age, gender, BMI, smoking status, smoking duration, PRMEmph, anomaly score (center) 0.58

FEV1/FVC

Age, gender, BMI, smoking status, smoking duration (center) 0.26

Age, gender, BMI, smoking status, smoking duration, PRMfSAD (center) 0.54

p < 0.001Age, gender, BMI, smoking status, smoking duration, PRMfSAD, anomaly score (center) 0.63

Age, gender, BMI, smoking status, smoking duration, PRMEmph (center) 0.63

p < 0.001Age, gender, BMI, smoking status, smoking duration, PRMEmph, anomaly score (center) 0.66

TLC

Age, gender, BMI, smoking status, smoking duration (center) 0.50

Age, gender, BMI, smoking status, smoking duration, PRMfSAD (center) 0.54

n.sAge, gender, BMI, smoking status, smoking duration, PRMfSAD, anomaly score (center) 0.55

Age, gender, BMI, smoking status, smoking duration, PRMEmph (center) 0.56

n.sAge, gender, BMI, smoking status, smoking duration, PRMEmph, anomaly score (center) 0.56

FRC

Age, gender, BMI, smoking status, smoking duration (center) 0.32

Age, gender, BMI, smoking status, smoking duration, PRMfSAD (center) 0.67

p < 0.001Age, gender, BMI, smoking status, smoking duration, PRMfSAD, anomaly score (center) 0.69

Age, gender, BMI, smoking status, smoking duration, PRMEmph (center) 0.54

p < 0.001Age, gender, BMI, smoking status, smoking duration, PRMEmph, anomaly score (center) 0.58

FRC/TLC

Age, gender, BMI, smoking status, smoking duration (center) 0.23

Age, gender, BMI, smoking status, smoking duration, PRMfSAD (center) 0.68

p < 0.001Age, gender, BMI, smoking status, smoking duration, PRMfSAD, anomaly score (center) 0.69

Age, gender, BMI, smoking status, smoking duration, PRMEmph (center) 0.36

p < 0.001Age, gender, BMI, smoking status, smoking duration, PRMEmph, anomaly score (center) 0.41

BODE

Age, gender, BMI, smoking status, smoking duration (center) 0.21

Age, gender, BMI, smoking status, smoking duration, PRMfSAD (center) 0.37

p < 0.001Age, gender, BMI, smoking status, smoking duration, PRMfSAD, anomaly score (center) 0.45

Age, gender, BMI, smoking status, smoking duration, PRMEmph (center) 0.49

p < 0.001Age, gender, BMI, smoking status, smoking duration, PRMEmph, anomaly score (center) 0.51

SGRQ

Age, gender, BMI, smoking status, smoking duration (center) 0.24

Age, gender, BMI, smoking status, smoking duration, PRMfSAD (center) 0.35

p < 0.001Age, gender, BMI, smoking status, smoking duration, PRMfSAD, anomaly score (center) 0.41

Age, gender, BMI, smoking status, smoking duration, PRMEmph (center) 0.39

p < 0.001Age, gender, BMI, smoking status, smoking duration, PRMEmph, anomaly score (center) 0.42

6MWT

Age, gender, BMI, smoking status, smoking duration (center) 0.41

Age, gender, BMI, smoking status, smoking duration, PRMfSAD (center) 0.42

p < 0.001Age, gender, BMI, smoking status, smoking duration, PRMfSAD, anomaly score (center) 0.45

Age, gender, BMI, smoking status, smoking duration, PRMEmph (center) 0.48

n.s.Age, gender, BMI, smoking status, smoking duration, PRMEmph, anomaly score (center) 0.48

PRM volumes (PRMEmph and PRMfSAD) were then incorporated as predictors. Subsequently, these models were compared to those further adjusted for the anomaly score. Conditional R2 values 
are adjusted for the number of regressors added. Bold values indicate a higher R2 for each dependent variable. All models were statistically significant compared to the baseline model. p-values 
are reported for the comparison between PRM baseline models and anomaly-adjusted PRM models, and are corrected for multiple comparisons.
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observed between anomaly maps and PRM classes indicates the 
potential of the anomaly detection method to detect early-stage 
disease manifestations not yet captured by traditional phenotyping 
methods, particularly in regions of individuals with a long smoking 
history (Figure 4). Further investigations, including the assessment of 
normal CT voxels alongside CT airway measurements and PRM 
analyses, are warranted to elucidate the underlying pathophysiological 
mechanisms responsible for these observations and to validate these 
findings in prospective longitudinal studies. Furthermore, our study 
revealed a significant positive correlation between the patient-wise 
anomaly scores and PRM-derived fSAD (r = 0.61, p < 0.01) and 
Emphysema volumes (r = 0.66, p < 0.01). Overall, these findings 
underscore the complementary nature of the two approaches and the 
potential benefit of integrating them to achieve a more comprehensive 
assessment of COPD heterogeneity.

Moreover, our study reveals a parallel finding to Hwang HJ et al. 
(32), where a novel emphysema air-trapping composite (EAtC) has 
been proposed. In particular, their functional air trapping (fAT) 
component captures air trapping in both emphysematous and 
non-emphysematous areas. Just as in their work, our investigation 
suggests that employing the anomaly detection comprehensive 
approach yields better or comparable correlations with clinical 
variables (SGRQ, 6MWT; =FEV1, =FEV1/FVC, =BODE 
and = smoking duration) compared to conventional PRM-based 
small-airway disease assessments, which focus solely on 
non-emphysematous air trapping. Similarly, the anomaly score 
exhibited stronger correlations than PRMEmph for parameters like FRC/
TLC and smoking duration, while no differences were found for 
FEV1, FRC, SGRQ and the distance walked in the 6-min walking test. 
This suggests the ability of the anomaly detection approach in 

characterizing small-airway disease and emphysema more 
comprehensively, potentially encompassing aspects that conventional 
methods might overlook. Subsequent analysis confirmed this 
hypothesis, as adding the anomaly score to LMM adjusted for both 
PRM volumes, significantly improved the prediction of clinical 
variables (FEV1, FEV/FVC, FRC, FRC/TLC, BODE, SGRQ). This 
provides further evidence that the anomaly score captures nuanced 
features beyond the structural characteristics from the PRM analysis 
and underscores their complementary nature.

While the debate surrounding air trapping in emphysematous 
regions remains, evidence from both Hwang HJ et al. (32) and our study 
supports the notion that small-airway disease is not confined solely to 
areas with preserved alveoli but can coexist within emphysematous zones 
as well. This duality emphasizes the interplay between different disease 
manifestations and highlights the potential for anomalies, as captured by 
the anomaly detection approach, to encompass both emphysematous and 
non-emphysematous regions. Additionally, it may also explain why, in 
contrast to PRMfSAD and PRMEmph, the patient-wise anomaly score 
significantly differs across all GOLD stages (p < 0.01), except between 
never-smoker controls and GOLD 0.

Our cluster analysis and visualization of PRM-derived regions 
have illuminated distinct patterns within the dataset. By employing 
principal component analysis (PCA) for dimensionality reduction, 
we successfully identified four stable clusters that exhibited variations 
corresponding to different stages of the disease. Notably, Cluster 1 
appears to embody regions that persist consistently across all GOLD 
stages, indicative of common characteristics shared across disease 
phenotypes. Cluster 2, on the other hand, emerges as a distinct subset 
that represents healthy regions and unaffected by the disease, 
potentially explaining its volume decline as disease severity increases. 

FIGURE 7

Bland–Altman plots regression-based limits of agreement. Dotted line represents the mean difference between the methods (A) PRM and Cluster 1:  
D̂PRM,Cluster1=−5.04 + 1.80 A; (B) PRM and Cluster 2 D̂PRM,Cluster2=−6.84 + 1.68 A; (C) PRM and Cluster 3 D̂PRM,Cluster3=−2.17 + 0.46 A. Dashed line represents 
the 95% Limits of Agreement: (A) PRM and Cluster 1: D̂PRM,Cluster1=−5.04 + 1.80 A ± 0.80; (B) PRM and Cluster 2 D̂PRM,Cluster2=−6.84 + 1.68 A ± 1.05; (C) PRM 
and Cluster 3 D̂PRM,Cluster3=−2.17 + 0.46 A ± 1.31. Red points refer to the agreement to PRM emphysema and yellow to the agreement to PRM small 
airway disease.

https://doi.org/10.3389/fmed.2024.1360706
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Almeida et al. 10.3389/fmed.2024.1360706

Frontiers in Medicine 13 frontiersin.org

The most intriguing finding lies in Cluster 3, where regions manifest 
features closely aligned with PRM-derived fSAD (Figure 7), which 
suggests an association with early-stage COPD characteristics. It is 
conceivable that Cluster 1 represents areas that have never experienced 
the impact of COPD, while Cluster 3 may signify regions embarking 
on the initial stages of disease progression. This interpretation finds 
support in the progressively increasing representation of Cluster 3 
across GOLD classes, hinting at its role in the evolution of the disease 
from milder to more advanced stages. Although the correlations 
observed between PFTs and PRM-derived Emphysema and fSAD 
classes are superior to Cluster 3, Cluster 3 is the only able to 
differentiate never-smoker controls and GOLD 0 subjects. Amidst 
these notable clusters, Cluster 4 adds a layer of complexity. While 
present in a smaller subset of patients (n = 24), notably it covers over 
50% of the lung in 22 individuals, showing distinct clinical features 
like high gas trapping (31.3 ± 23.4%) and extensive smoking history 
(33 ± 12 years). Still, the decision to retain it was supported by robust 
clustering metrics detailed in the Supplementary materials.

The non-constant bias observed in the Bland–Altman analysis 
suggests that the agreement between PRM-derived volumes and 
cluster volumes is not uniform across the entire range of 
measurements. This non-uniformity may stem from inherent 
differences in how PRM and the clustering method characterize and 
quantify lung regions. The regression-based equations provide a 
nuanced understanding of this non-constant bias, indicating that the 
discrepancy between methods is influenced by the magnitude of the 
measurements. These findings may imply that the clusters, despite 
their ability to capture distinct patterns related to COPD stages, may 
not uniformly agree with PRM-derived volumes across all levels of 
disease severity. The varying agreement observed in different parts of 
the measurement range could be  attributed to the complex and 
heterogeneous nature of COPD, where different phenotypes and 
disease manifestations may impact the agreement between methods 
differently. Moreover, it’s important to acknowledge an unexpected 
discrepancy observed in the distribution of clusters between the left 
and right lungs. Visual inspection of the original inspiratory and 
expiratory CT scans did not consistently support the distinct left/right 
lung asymmetry detected by the clustering algorithm. Notably, 
we observed an apparent concentration of clusters 3 and 4 in the left 
lung and clusters 1 and 2  in the right lung. This left/right lung 
asymmetry prompts caution in the interpretation of cluster-specific 
findings. While our primary objectives center around the comparative 
analysis between PRM and anomaly detection, this unexpected 
observation underscores the need for transparency regarding potential 
sources of bias in the clustering component. This information adds a 
layer of transparency to our study, acknowledging that the agreement 
between PRM and clustering might be influenced by factors that vary 
across different regions of the lung or disease states. Importantly, it’s 
worth noting that the anomaly score, which consistently demonstrated 
significant correlations with PRM-derived measurements and clinical 
data, exhibited a more uniform agreement, providing a robust and 
complementary perspective on COPD phenotyping. Our findings also 
indicate that the anomaly detection method provides a more robust 
and complementary perspective on COPD phenotyping compared to 
Clustering. This is demonstrated by statistically significant higher 
correlations between anomaly scores and clinical variables, along with 
larger effect sizes. Anomaly detection’s ability to identify deviations 
from the distribution of “normal” samples makes it better suited for 
capturing subtle variations indicative of disease pathology, contrasting 

with Clustering’s reliance on proximity-based grouping, while based 
on the exact same latent features.

Furthermore, while our findings indicate a strong potential for 
anomaly detection in COPD phenotyping, further research is 
needed to establish its generalizability across diverse populations. 
Additionally, our current exploration does not delve into 
distinguishing COPD from other comorbidities, such as lung 
cancer, warranting careful consideration and validation in 
future investigations.

In conclusion, we introduce the anomaly detection approach as a 
novel perspective in COPD phenotyping, extending the lens beyond 
threshold-based analysis and methodologies focused on distinct 
imaging features. By identifying anomalies spanning a spectrum of 
disease features, including those beyond functional small-airway 
disease and emphysema, we unveil a more comprehensive viewpoint, 
offering an additional layer of information that goes beyond traditional 
PRM phenotyping. The resulting insights offer a window into the 
intricate distribution of the disease. This transparency in AI 
diagnostics empowers clinicians to personalize interventions while 
supplementing established methods. By integrating this innovative 
approach into clinical practice, we lay the groundwork for refined 
diagnostics and tailored interventions, ultimately leading to enhanced 
patient outcomes.
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