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In recent years, there has been an increased interest in exploring the potential 
synergy between nanotechnology and nuclear medicine. The application 
of radioactive isotopes, commonly referred to as radiopharmaceuticals, is 
recognized in nuclear medicine for diagnosing and treating various diseases. 
Unlike conventional pharmaceutical agents, radiopharmaceuticals are designed 
to work without any pharmacological impact on the body. Nevertheless, the 
radiation dosage employed in radiopharmaceuticals is often sufficiently high to 
elicit adverse effects associated with radiation exposure. Exploiting their capacity 
for selective accumulation on specific organ targets, radiopharmaceuticals 
have utility in treating diverse disorders. The incorporation of nanosystems may 
additionally augment the targeting capability of radiopharmaceuticals, leveraging 
their distinct pharmacokinetic characteristics. Conversely, radionuclides 
could be  used in research to assess nanosystems pharmacologically. 
However, more investigation is needed to verify the safety and effectiveness 
of radiopharmaceutical applications mediated by nanosystems. The use of 
nano-radiopharmaceuticals as therapeutic agents to treat various illnesses and 
disorders is majorly covered in this review. The targeted approach to cancer 
therapy and various types of nanotools for nano-radiopharmaceutical delivery, 
is also covered in this article.
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Introduction

Numerous commonly accessible radiopharmaceuticals are used for illustrating the 
structure and operation of bodily tissues, organs, and cells. These radiopharmaceuticals are 
designed to treat a variety of cancers, joint problems, pain relief from bony metastases, and 
numerous other conditions of a similar nature. Essentially, nuclear medicine constitutes a 
medical discipline that employs radiotracers and carrier molecules to visualize the local 
biochemistry of the body. Impacts on organ absorption, retention, transportation, and 
biological distribution toward the targeted location depends on the biochemical properties of 
the carrier molecule and radiotracer. Thus, for a deeper understanding, it is imperative to 
comprehend the biochemistry of radiopharmaceuticals (1). Nuclear pharmacists need to 
be aware of the action process, or how radiopharmaceuticals localize and start working. This 
knowledge is crucial to evaluate the pharmacokinetics and substrate specificity of the 
labeled medication.
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According to Vallabhajosula et al., radiopharmaceuticals (2) offer 
us the chance to do prompt diagnostics utilizing blood flow, 
multimolecular cellular localization, bioenergies, tissue metabolism, 
the physiological activity of the specific organ, and intercellular and 
intracellular signaling networks. Depending on how each organ 
functions, distinct radiopharmaceuticals are utilized to scan different 
organs. Because inorganic iodine is more readily absorbed in the 
thyroid, labeled iodine, for instance, would be perfect for imaging 
thyroid cancers. In a similar vein, radiolabeled phosphate is frequently 
utilized for bone scans because it has been found that phosphate ions 
accumulate greater in bone. As a result, since tagged atoms are more 
concentrated in organs, they can be used for organ imaging. Numerous 
radiopharmaceutical agents in various phases of clinical development 
or already commercialized are presented in Table 1.

There is an abundance of mechanisms via which radiation therapy 
affects cancer cells. The principal applications of high-energy ionizing 
radiations, such as gamma rays and X-rays, involve ionizing water or 
biological components. In selective scenarios, particulate radiations 
like electron, proton, or neutron beams and alpha or beta particles are 
utilized to target cancerous tissues. As a major constituent of cellular 
composition, water is the principal target for ionizing radiations. 
These radiations induce the lysis of water molecules through 
radiolysis, resulting in the generation of charged species and free 
radicals, including hydroxyl radicals (OH•), hydrogen radicals (H•), 
superoxides (O2

−), and charged water species such as H2O+ and H2O+. 
In contrast to chemical lysis, this radiolysis process occurs due to the 
impact of radiation. Although many other biological components are 
harmed, DNA is the main target of ionizing radiation and radicals. 
Free radical interaction with cell membrane structures also results in 
structural damage that triggers apoptosis. The hydroxyl ion is well-
documented as a primary initiator of lipid peroxidation and cellular 

damage. Empirical evidence has illustrated that interaction with lipid 
bilayers enhances cellular permeability (14).

Medical and scientific research has garnered much interest in 
nanomaterials (15). In their early iterations, significant amounts 
of drug were first delivered using nanoparticles as delivery agents. 
Subsequently, radionuclides were used to tag nanomaterials to 
investigate in-vivo biodistribution, pharmacokinetics, and 
pharmacodynamics. Nanomaterials attached to radionuclides 
have become increasingly promising for cancer treatment. 
Common characteristics of these formulations include high 
surface area-to-volume ratios, efficient radionuclide loading and 
labeling, and straightforward synthesis, enabling the production 
of constructs with diverse physico-chemical characteristics, 
shapes, and sizes.

Nanomaterials have a few other characteristics in addition to the 
ones stated above that may make them appealing for use in medicine. 
One of these is the ability to easily build nanotheranostics by 
multiplexing therapeutic and diagnostic radionuclides onto the same 
nanomaterial framework. Nanomaterials can be customized with 
vectors with homing components specifically designed to bind to 
overexpressed receptors on tumor cells. This enables the radiolabeled 
nanomaterial with several functions to engage with the target site via 
various receptors, resulting in increased selectivity and accumulation 
at higher concentrations (16). In addition to these characteristics, 
nanomaterials may be able to lower associated side effects and boost 
specificity (17). In principle, nanomaterial-based formulations can 
potentially augment both the conventional imaging capabilities and 
therapeutic efficacy of radionuclides. Additionally, they can 
be  readily tailored to address specific limitations inherent in 
traditional radionuclide therapy. Based on these potentialities of 
nanomaterials, the present review focuses on using 

TABLE 1 Radiopharmaceuticals in various clinical development phases.

Radiopharmaceutical Disease/disorder
Company 
name

Development 
phase/ 

commercial

Clinical phase 
identification 

number
References

177Lu-labeled PSMA-617 Metastatic Castration-Resistant 

Prostate Cancer

Endocyte Phase 3 NCT03511664 (3)

177Lu-labeled NeoBOMB1 GRPR over expressing tumor Novartis Phase I/IIa NCT03872778 (4)

166Ho microspheres Unresectable Hepatocellular 

Carcinoma

Marnix Lam, UMC, 

Utrecht

Early Phase II Study NCT05114148 (5)

166Ho microspheres Neuroendocrine Tumors Terumo – NCT02067988 (6)

177Lu-labeled PSMA-R2 Metastatic castration-resistant 

prostate cancer (mCRPC)

Advanced Accelerator 

Applications

Phase 1/2 study NCT03490838 (7)

225Ac-labeled aCD38 Multiple myeloma Actinium 

Pharmaceuticals

Open label Phase I trial NCT02998047 (8)

177Lu-labeled CTT-1403 Prostrate cancer Cancer Targeted 

Technology

Phase 1 clinical trial NCT03822871 (8)

227 conjugate PSMA-TTC Metastatic Castration Resistant 

Prostate Cancer (mCRPC)

Bayer Phase 1 NCT03724747 (9)

227Th-labeled aCD22-TTC (BAY 1862864) Lymphoma, non-Hodgkin Bayer Open-label Phase I NCT02581878 (10)

227Th-labeled MSLN-TTC Mesothelin tumor Bayer Phase I/II NCT03507452 (11)

225Ac-labeled FPX-01a Lung cancer J&J / Fusion Pharma Phase I NCT03746431 (8, 12)

Radium-223 chloridea Bone metastasis Bayer Commercialized – (13)

a-alpha emitter based radiopharmaceutical therapy (RPT) agents.
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nano-radiopharmaceuticals as therapeutic agents for treating various 
diseases/disorders.

Targeted approach for cancer therapy 
employing radiopharmaceuticals

Exploiting specific characteristics of tumors, such as angiogenesis 
and the distinct tumor microenvironment that differentiates it from 
the vasculature and surroundings of normal tissues, intravenously 
administered nanostructures exhibit a notable predilection for tumor 
accumulation over normal tissues (18). This is referred to as the EPR 
effect, a physiological phenomenon characterized by increased 
absorption and decreased clearance, permits passive buildup of 
nanostructures in tumors without causing comparable accumulation 
levels in nearby normal tissues (19). The targeting approach 
employing radiopharmaceuticals to target cancer cells is illustrated 
in Figure 1.

Passive targeting encompasses the infiltration of the targeting 
agent into the tumor site via permeable blood vessels and other 
components generated by the tumor. This involves the agent traversing 
the bloodstream to reach the tumor site and subsequently accruing at 
the tumor site due to insufficient drainage mechanisms. The 
effectiveness of the radiopharmaceutical in this form of targeting is 
dependent on the circulation time. For passive targeting, a variety of 
polymer-radiopharmaceutical combinations have been studied (20). 
The biological interaction of radiopharmaceutical agents with tumor 
surfaces is known as active targeting. In active targeting, the 
radionuclide is conjugated to tumor-specific vectors (such as peptides 
or antibodies), with or without the incorporation of chelators. Tumors 
with poor permeability are most suited for active targeting, which 
identifies certain cells within the tumor milieu (21).

Types of nanotools for the delivery of 
nano radiopharmaceuticals

An array of nanotools have been widely investigated in the past 
years for the delivery of therapeutics in order to treat a number of 
diseases (Figure  2). The following section enlists a handful of 
nanotools for the delivery of nano radiopharmaceuticals.

 a. Polymeric nanoparticles
Polymeric nanoparticles (NPs) are solid colloidal particles that exhibit 

distinct characteristics like increased surface-to-volume ratio, 
biodegradability, quantum properties, low cytotoxicity, and the capacity 
to adsorb and transport additional molecules (22–24). Furthermore, NPs 
are solid in nature. One of the most crucial problems in pharmaceuticals 
is the utilization of polymeric nanoparticles in the drug delivery sector.

About 90% of nuclear medicine diagnostic procedures utilize 99mTc 
(25). Nanoradiopharmaceuticals based on 99mTc and, more recently, 
rhenium-186 have become indispensable tools for detecting and treating 
various illnesses or malfunctions in the body’s organs and systems (25, 
26). The emergence of these nano radiopharmaceuticals provides an 
appealing alternative for tumor treatment and diagnosis, introducing a 
novel approach to nuclear medicine, radioprotection, and dosimetry (27). 
Other radiopolymers such as rhenium-186 etidronate, samarium-153 
lexidronam, and strontium-89 chloride are currently employed to alleviate 
bone discomfort associated with bone metastases.

Despite variations in several aspects among these 
radiopharmaceuticals, no documented benefit in terms of a higher 
response rate has been observed, including physical half-life, beta energy, 
penetration spectrum, and biochemical characteristics (28). 
Technetium-99 m is the most widely employed SPECT radionuclide due 
to its optimal imaging properties, such as a 140 keV γ emission and a short 
half-life of 6.0 h. In exploring the biodistribution features of nanoparticles 
(NPs), 99mTc has been utilized for a more in-depth understanding. In an 

FIGURE 1

Targeting approach of radiopharmaceuticals in cancer therapy.
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effort to traverse the blood–brain barrier (BBB), Bikhezar et al. explored 
(29) the utilization of polymeric nanocarriers encapsulating MEK162 
(binimetinib, a MEK1/2 inhibitor). The in vitro model demonstrated the 
effective penetration of the nanosystem through the blood–brain barrier, 
suggesting its capability to transport therapeutic medications to brain 
tumor locations. Furthermore, it exhibited efficacy in suppressing tumor 
growth when employed in conjunction with temozolomide (TMZ) and 
radiation therapy (RT) for treating glioma spheroids (29). Ozgur et al. (30) 
investigated the radiopharmaceutical potential of pheophorbide, utilizing 
99mTc-labeled bovine serum albumin nanoparticles. These nanoparticles 
demonstrate promise for application in scintigraphic tumor imaging and 
drug delivery, as evidenced by their heightened uptake in breast and 
uterine tissues compared to 99mTc-labeled pheophorbide-a (30).

Liposomes and micelles derivatized with diethylenetriamine 
pentaacetic acid (DTPA) have been demonstrated to encapsulate 
radiolabeled 111In and 177Lu. The utilization of 111In-labeled NPs has 
been prevalent in assessing the biodistribution of NPs. Notably, these 
NPs exhibited substantial aggregation in the liver and spleen of healthy 
Lewis rats 12 h post-injection, with minimal intestinal excretion. 
Importantly, the complexes retained high radioactivity concentration, 
indicating minimal release of metals (31, 32). Additionally, studies 
have shown that 111In-labeled gold nanoparticles effectively target 
αvß3 integrin both in vivo and in vitro using human melanoma and 
glioblastoma models. Another investigation revealed that a 
ruthenium-based radiosensitizer, combined with 111In-labeled 
polymeric nanoparticles, may induce combinational and targeted 
therapeutic effects on cancer cells overexpressing the human 
epidermal growth factor receptor (EGFR) (33, 34).

 b. Lipid based nanoparticles
Liposomes, characterized by a lipid bilayer structure, serve as drug 

delivery systems with a hydrophilic interior capable of incorporating 
radiopharmaceutical agents. Various techniques have been employed for 

radiolabeling liposomes, including the use of lipophilic chelators like 
2-hydroxyquinoline with preformed liposomes to load radionuclides via 
ionophores. Other approaches involve employing DOTA chelators or 
PEGylation for surface labeling onto the lipid bilayer, as well as using 
chelators like DOTA for the passive encapsulation of radioisotopes or 
membrane labeling during the preparation process (35).

111In 111In-labeled vinca alkaloid, namely vinorelbine is an 
antiproliferative agent that has demonstrated reduced toxicity and 
improved tumor reduction in mouse models. Vinorelbine is available in 
liposomal formulation. Because of their dual energy release characteristics 
that can be used to both impact cell death and for imaging, rhenium 
isotopes are especially well-suited for theranostic purposes. As 
demonstrated in a mouse model of head and neck cancer, the concurrent 
administration of other cytotoxic medications, such as doxorubicin, can 
increase the potency of such radioisotopes. Chang et al. (36) developed a 
liposome formulation by combining 188Re with sorafenib.

Liposomes conjugated with vasoactive intestinal peptide have 
exhibited enhanced accumulation of encapsulated Tc-HMPAO 
(hexamethylpropyleneamine oxime) in a breast cancer model. 
Furthermore, liposomes created with pertechnetate and surface charge 
modifications have demonstrated the ability to evade the 
reticuloendothelial system (37). Comparable intratumoural accumulation 
of Tc-liposome and Doxil liposomal formulations serves as confirmation 
of the said approach. Developing 67Ga liposomes with specific surface 
charges that allow for in vivo tumor and inflammation differentiation is 
also possible. 64Cu has also been shown to improve in vivo tumor 
accumulation in neuro-endocrine, head, and neck, and breast 
malignancies (38). Because 1-[18F]fluoro-3,6-dioxatetracosane penetrates 
the blood brain barrier differently than 18F-deoxyfluoroglucose, liposomes 
containing it function better for in vivo neuroglioma imaging.

Patients undergoing combination therapy involving a liposome 
formulation and another chemotherapeutic, such as cisplatin, have 

FIGURE 2

Nanotools for the delivery of pharmaceuticals.
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exhibited positive correlations between patient outcomes and the 
intratumoral retention of radiotagged liposomal anticancer 
formulations. Medication-free radiotagged liposome diagnostic 
companion kits have advanced because of these results, despite the 
increased drug concentration inside the tumor, which does not always 
translate into increased efficacy. DoxilTM’s comparable effectiveness to 
free doxorubicin across a range of cancer types is an example of the 
abovementioned concept. However, liposomal DoxilTM reduces 
cardiac tissue toxicity and lowers dosage frequency (39).

In vitro characterization studies, including assessments of particle 
size, zeta potential, and high-performance liquid chromatography 
(HPLC), were conducted alongside in vivo toxicity tests. These 
investigations utilized 99mTc-labeled cationic PEGylated liposomes 
produced through conventional thin-film hydrolysis (40). The 
outcome illustrated that adding free liposomes utilizing a pH gradient 
approach improved the radiotracer’s uptake and localization. Even 
greater specificity was demonstrated, nevertheless, by tracer 
encapsulation that occurred during liposome synthesis.

 c. Quantum dots
Quantum Dots (QDs) have emerged as potent tools for drug 

delivery in various scientific fields, including molecular biology, cell 
biology, molecular imaging, and medical diagnostics. These QDs have 
been extensively investigated under diverse conditions, both in cells 
and living animals, primarily for imaging purposes. Apart from 
non-specific QD distribution/accumulation usage such lymph node 
mapping, vascular imaging, etc. (41), several research groups have also 
succeeded in active tumor targeting with QD-based probes (42).

Dynamically radio-labeled Quantum Dots (r-QDs), incorporating 
109Cd into the core/shell structure of QDs with various compositions, 
were synthesized. The in vitro and in vivo characterization of these 
r-QDs was subsequently investigated (43). The near-infrared emission, 
extended circulation half-life, minimal cytotoxicity, tiny dimensions, 
and low accumulation in the reticuloendothelial system, and precision 
in measuring their biodistribution in mice were the intriguing features 
of these r-QDs. The study showcased the desirable properties of 
intrinsically radio-labeled Quantum Dots (QDs), suggesting that their 
biological potential could be  further enhanced through ongoing 
development and optimization.

One research employed antibody-conjugated Cd125mTe/ZnS QDs to 
target the pulmonary endothelium of mice. Biodistribution investigations 
and SPECT imaging were used to assess the targeting efficacy, although 
no optical imaging was described (44). Functionalized Cd125mTe/ZnS QDs 
interact with the reticuloendothelial system, and the potential advantages 
of vascular targeting were investigated (45). The study revealed a 
consistent radioactive distribution in the mouse lungs, with notably lower 
accumulation in the liver and spleen than non-targeted Cd125mTe/ZnS 
QDs. This indicated the antigen-specific absorption of antibody-
conjugated Cd125mTe/ZnS QDs. Biodistribution tests were also conducted 
in animals with depleted phagocytic cells using clodronate-loaded 
liposomes, revealing a significant reduction in QD absorption and 
elimination from the circulation.

 d. Mesoporous nanoparticles
Because of their high capacity, ease of breakdown, and low toxicity, 

mesoporous nanomaterials have proven to be good drug carriers (46). For 
example, mesoporous tantalum oxide (mTa2O5) nanoparticles were 
modified by Chen et al. using polyethylene glycol (PEG) to create novel 
nanocomposites (mTa2O5-PEG). Chemotherapy medications like 
doxorubicin (DOX) can be efficiently loaded and delivered by these 
mTa2O5-PEG nanocomposite materials. Ta, a high Z element, can boost 

radiation’s anti-tumor effects and increase the amount of X-rays deposited 
within tumor tissues in mTa2O5-PEG/DOX nanoparticles. In comparison 
to free DOX administered at a similar dose in conjunction with 
radiotherapy (RT) in vivo, the toxicity of DOX-loaded mTa2O5-PEG 
nanoparticles combined with RT was significantly reduced (15). In a 
separate study by Liu et  al., bi-based mesoporous litchi-shaped 
Na0.2Bi0.8O0.35F1.91:20%Yb nanoparticles were loaded into amphiphilic 
polyethylene glycol (PEG) as a drug delivery vehicle. This nanocomposite 
exhibited controlled release of chemotherapy medication like 
DOX. According to Liu et al. (47), NBOF-PEG nanoparticles containing 
the high-Z element Bi, can potentially enhance the anti-tumor efficacy of 
radiotherapy by increasing X-ray absorption in tumor tissues.

Conclusion

Collaborative research at the nanotechnology-nuclear medicine 
interface offers potential solutions to current challenges in radionuclide 
therapy. Cross-training scientists across disciplines is essential for sustained 
multidisciplinary growth, fostering innovative findings and translational 
opportunities. This research highlights distinct advantages and limitations 
in imaging modalities, nanomaterial radiolabeling, and nano-
radiopharmaceutical compositions. Despite incremental improvements, 
challenges persist, including precise radiation dose selection, reliance on 
costly noble metals, and the long-term toxicity of accumulated 
nanoparticles. A holistic strategy, which balances drawbacks and benefits, 
necessitates multidisciplinary efforts at the convergence of nuclear 
medicine and nanomedicine. This approach holds promise for tailored 
solutions, facilitating the seamless transition of novel agents from bench to 
bedside soon. Striking a balance between potential drawbacks, such as 
elimination kinetics and manufacturing/regulatory challenges, and the 
evident benefits of nano-radiopharmaceuticals in loading efficiency and 
therapeutic efficacy is crucial. Anticipating future trends and promising 
preclinical outcomes, we foresee a prospective landscape where novel 
agents seamlessly transition from bench to bedside. This collaborative 
endeavor, driven by multidisciplinary experts, is pivotal for advancing 
convergent research and realizing the full potential of this intersection.
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