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Burkitt Lymphoma (BL) is a highly treatable cancer. However, delayed diagnosis 
of BL contributes to high mortality in BL endemic regions of Africa. Lack of 
enough pathologists in the region is a major reason for delayed diagnosis. The 
work described in this paper is a proof-of-concept study to develop a targeted, 
open access AI tool for screening of histopathology slides in suspected BL cases. 
Slides were obtained from a total of 90 BL patients. 70 Tonsillectomy samples 
were used as controls. We fine-tuned 6 pre-trained models and evaluated the 
performance of all 6 models across different configurations. An ensemble-
based consensus approach ensured a balanced and robust classification. The 
tool applies novel features to BL diagnosis including use of multiple image 
magnifications, thus enabling use of different magnifications of images based 
on the microscope/scanner available in remote clinics, composite scoring of 
multiple models and utilizing MIL with weak labeling and image augmentation, 
enabling use of relatively low sample size to achieve good performance on the 
inference set. The open access model allows free access to the AI tool from 
anywhere with an internet connection. The ultimate aim of this work is making 
pathology services accessible, efficient and timely in remote clinics in regions 
where BL is endemic. New generation of low-cost slide scanners/microscopes 
is expected to make slide images available immediately for the AI tool for 
screening and thus accelerate diagnosis by pathologists available locally or 
online.
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Introduction

Burkitt’s lymphoma (BL) is a relatively rare, aggressive form of non-Hodgkin’s lymphoma 
and the fastest growing human tumor with a doubling time reported to be about 24 h (1, 2). 
BL has a high prevalence in regions where malaria and Epstein–Barr virus (EBV) are endemic, 
particularly sub-Saharan Africa, where it represents up to 41% of all childhood cancers (3). 
The survival of pediatric BL patients is significantly lower in Africa (30–60% overall survival 
rate [OS]) compared to that of high-income countries (75–90% OS) (4, 5). Despite being 
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highly curable (6), significantly higher mortality in BL in sub–Saharan 
Africa is caused by delayed or incorrect diagnosis (7) and limited 
efficacy of the available treatment regimens (5).

Given how rapidly BL grows, early BL diagnosis is critical to 
reducing mortality, particularly in low-resource settings, where there 
is often limited ability to support late-stage, very ill patients compared 
to high-resource settings. Obstacles to histopathologic diagnosis of BL 
in Africa (1), include limitations in the resources to generate high-
quality glass slides for microscopic review. This, combined with a 
severely limited number of pathologists available to provide timely 
diagnosis (7) creates significant delays and inefficiencies in diagnosis. 
To address this gap, we report on the development of an artificial 
intelligence (AI) tool focused on screening/preliminary diagnosis of 
BL using H&E slide images of different magnifications (Figure 1) 

(8–14). Leveraging the capabilities of contemporary deep learning 
techniques (15–17), we provide proof of concept for an AI model that 
would efficiently analyze histopathological images extracted from 
biopsy samples. The objective of the deep learning model we present 
here is to classify patient tissue sections as either BL or non-BL with 
high accuracy and sensitivity/recall (18–20). Our method is innovative 
in that it uses a significantly lower sample size (less than 160 patient 
samples) to train the model than is usually reported, but still captures 
the variance in the data and attains good performance on inference 
testing. Another novelty is that we use ensemble scoring, aggregating 
the classification results from six different models to provide a more 
accurate, robust and generalizable diagnosis.

The purpose of this AI model is to generate preliminary diagnoses 
and help international pathologists to prioritize cases for final diagnosis, 

FIGURE 1

Proposed model for Al based preliminary diagnosis of BL. (A) For children suspected of BL, technicians would process tissue slices and upload de-
identified whole slice images to an online secure storage location. This would trigger our Al pipeline resulting in an ensemble model based preliminary 
diagnosis being uploaded back to the storage. The files would then be accessed by a pathologist, who can use the Al based diagnoses to prioritize the 
samples for analysis and final diagnosis. (B) Curated H&E-stained whole slice images were preprocessed and used to train 6 models (ResNet50, 
EfficientNet and GoogLeNet, along with their attention enabled counterparts), generating an ensemble. For inferencing, the slice images uploaded to 
the storage would be similarly processed and scored by the ensemble model to generate a preliminary diagnosis. Icons in A were taken from www.
fiaticon.com and www.istockphoto.com
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i.e., to provide a screening tool that can accelerate timely and appropriate 
diagnosis of BL. The integration of our remotely accessible AI model into 
the healthcare infrastructure of low-resource settings should represent a 
significant stride forward in the fight against BL. While the model is 
accessible globally, the benefit should be particularly consequential to 
regions with scarce availability of specialized pathologists (5). By 
significantly reducing the diagnostic delays associated with traditional 
pathology and facilitating early detection and reliable diagnoses, this 
cutting-edge AI tool holds immense potential to help improve the 
management and outcomes of BL patients in sub-Saharan Africa.

Materials and methods

Data collection

As per University of Washington Institutional Review Board policy, 
this project did not need IRB approval as it did not meet federal 
definition of human subjects research. Whole Slide Images (WSI) of BL 
as well as benign control lymphoid tissues were obtained from Phenopath 
Laboratories (Seattle, United States) as well as Moi University, Kenya. The 
images were de-identified, ensuring the complete anonymity of the 
patients involved. These images encompassed a diverse array of cases, 
including lymph node samples from patients diagnosed with cancer 
from Africa, as well as tonsils samples from those without any cancer 
diagnosis. In total, our dataset consisted of 90 BL patients and 70 control 
(tonsillectomies or incisional biopsies of hypertrophic tonsils) patients. 
7 BL slides were obtained from Moi University and the rest of the slides 
were obtained from Phenopath Laboratories. Slides were hematoxylin 
and eosin stained, scanned and digitized at 5X, 10X, 20X and 40X (i.e., 
2 μm /pixel, 1 μm/pixel, 0.5 μm /pixel and 0.25 μm/pixel) magnifications. 
Motic@ Easyscan (Moi University) and an Aperio AT2 scanner 
(Phenopath) were used to scan the slides. For both the tonsil and BL 
samples, those with significant cautery or crush artifacts were excluded 
from the analysis.

Data preprocessing

Our preprocessing pipeline starts by converting the raw WSI into 
smaller, manageable tiles using the OpenSlide library. These tiles were 
extracted at varying magnification levels, including 5x, 10x, 20x, and 
40x, with specific tile sizes of 450×450 and 400×400 and a 20-pixel 
overlap to mimic the effect of a pathologist zooming in and out on the 
H&E slide to come up with a diagnosis.

A multi-step process was applied to filter and refine the dataset. 
Background tiles, with little to no tissue, were identified and outliers 
removed through a standard deviation-based filter applied to the RGB 
values of each tile. We detected and removed tiles with pen markings 
(21) made by pathologists by first converting RGB tiles into the HSV 
color space, where distinct color ranges for pen markings such as 
green, gray, and blue were established. Masks were created to isolate 
these specific colors, and a threshold was applied to filter out regions 
containing a significant amount of detected color, thus ensuring the 
automated removal of unwanted annotations.

Two common stains used are Hematoxylin, which dyes nuclei 
purple, and Eosin, which dyes cytoplasm and extracellular matrix 
pink. The regions with lower ratio of purple (Hematoxylin) to pink 

(Eosin) usually have scanty cellular material, extra cellular material 
(fibrosis) or artifacts such as folding or tearing. These areas might not 
provide reliable information for cancer diagnosis. Hence tiles with 
suboptimal Purple to Pink ratios were also filtered out using a scoring 
factor based on deviations in HSV hue values. Additionally, tiles with 
insufficient tissue presence were filtered using the Otsu thresholding 
method. While the previously mentioned standard deviation-based 
filtering focused on removing blank or near-blank tiles, the Otsu 
filtering focuses on separating foreground (tissue) from the 
background where the intensity distribution of the tissues is distinct 
from the background. Each tile was converted to grayscale, 
complemented, and then subjected to Otsu thresholding, with tiles not 
meeting the threshold being excluded.

Finally, we  applied a normalization step (22, 23) to each tile, 
ensuring consistent color and intensity properties across all tiles and 
mitigating staining inconsistencies. These preprocessing steps ensured 
that the dataset was well-suited for our subsequent multi-instance 
learning (MIL) model analysis and make it robust to lab-lab 
stain variations.

Computational setup

During our initial stages of pre-processing tasks and model 
training, we harnessed the capabilities of Google Colab Pro+, a cloud-
based platform that provided convenient access to high-performance 
GPUs. Additionally, we relied on dedicated hardware equipped with 
a 13th Gen Intel Core i7-13700KF processor, boasting 16 cores and 24 
logical processors, alongside an NVIDIA GeForce RTX 4080 GPU 
featuring 32GB of memory.

To harness the full potential of deep learning, we relied on the 
PyTorch framework for its flexibility and extensive libraries tailored 
for neural network development. Furthermore, Python served as our 
primary scripting language, indispensable for data preprocessing, 
model training, and the subsequent analysis of results. For processing 
Whole Slide Imaging (WSI), we utilized OpenSlide library, a valuable 
tool for reading WSI files and efficiently extracting patches or tiles.

Model architecture

In the context of classifying WSI slides, the problem is often 
considered weakly supervised because obtaining precise annotations 
at the tile level is labor-intensive and often infeasible at scale. 
Generally, in classical weakly supervised (15, 24–26) analysis pipelines, 
all tiles within a slide inherit the same label, which can lead to 
suboptimal results when some tiles contain cancerous regions while 
others do not. In contrast, our approach leveraged the principles of 
Multiple-Instance Learning (MIL). In MIL, the training set consists of 
a bag of instances that are assigned a label even when the instances in 
that bag do not have a label associated with them. A bag is labeled 
positive if at least one instance in the bag is positive and is labeled 
negative otherwise. This enables a more nuanced classification, as 
some tiles within a slide may contain cancerous regions while others 
do not. MIL allows the model to learn from these heterogeneous 
instances within each slide.

To achieve an effective Multi-Instance Learning (MIL) framework 
(16, 17, 27, 28) for Whole Slide Image (WSI) classification, 
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we  thoroughly assessed various pretrained deep learning models. 
ResNet50, EfficientNet, and GoogLeNet (Inception-v1) emerged as 
the top models chosen for our MIL approach, considering 
performance and computational efficiency. To enhance their 
capabilities, we  integrated attention layers (29) into these models, 
enabling them to focus on pertinent image regions, ultimately 
improving interpretability and classification performance.

ResNet50, renowned for its depth and residual blocks, gained the 
ability to dynamically emphasize relevant image regions with the 
addition of an attention layer. EfficientNet, known for its 
computational efficiency, leveraged attention to refine its fine-grained 
image analysis capabilities. GoogLeNet, celebrated for its inception 
modules, was augmented with an attention mechanism to enhance its 
interpretability and performance in capturing multi-scale features. 
These models, each equipped with attention layers, formed the core of 
our MIL framework to tackle the challenging task of WSI classification 
(Figure 1B).

Our MIL-based approach represents a novel and effective solution 
for WSI classification. Our approach does not rely on individual 
model predictions alone. Instead, we employ an ensemble strategy that 
combines the outputs of all six pretrained models, i.e., ResNet 50, 
EfficientNet and GoogLeNet, with and without attention as 
described above.

Data splitting

To ensure balanced distribution and robust model training, 
we divided the dataset into training, testing, and validation subsets in 
a 6:2:2 ratio, employing a random selection process. Each bag in this 
context represented a single WSI, consisting of approximately 1,000 to 
4,000 patches or tiles. These tiles, extracted during the preprocessing 
phase, encompassed various magnification levels, including 5x, 10x, 
20x, and 40x, providing a comprehensive view of each WSI. For our 
overall training dataset, we compiled 63,323 tiles from the BL class 
and 117,375 tiles from the Control class, enabling our model to 
effectively learn the distinguishing features between BL and 
non-cancerous cases at different magnification levels.

Training procedure

We conducted an extensive exploration of various training 
configurations to optimize the performance of each model. For every 
model, we conducted training runs with different batch sizes, ranging 
from 4 to 16, as well as varying sample sizes, encompassing 20 to 80 
random samples selected from each bag during training. 
We  maintained a consistent learning rate of 0.001 across all 
experiments. Prior to feeding the data into the training model, 
we applied preprocessing steps that included resizing each tile to a 
standardized dimension of 224×224 pixels and normalizing the 
images using mean values of [0.485, 0.456, 0.406] and standard 
deviations of [0.229, 0.224, 0.225].

We implemented an early stopping mechanism, wherein training 
was halted if the validation loss failed to decrease for five consecutive 
epochs (the number of times the model learns over the train data set). 
This strategy prevented overfitting and saved computational resources. 
Throughout the training phase, we continuously monitored model 

performance, saving the best-performing model for subsequent 
testing using CrossEntropyLoss as our loss function (30). The Adam 
optimizer was employed to efficiently update model parameters 
during training (30).

In our training loop for each of the six Multi-Instance Learning 
(MIL) models, we recorded both training and validation loss to gage 
the model’s progress. After experimenting with various training 
durations, we determined that training for 20 epochs struck a balance 
between model convergence and computational efficiency. This 
duration allowed our models to learn the intricate patterns within the 
data without overfitting or excessive training time, ultimately 
optimizing the trade-off between model performance and 
computational resources.

Inference

The inference pipeline for our project is a multi-step process 
designed to classify Whole Slide Images (WSIs) efficiently and 
accurately into BL or non-cancerous categories. When a new WSI is 
uploaded for inference, the initial step involves the extraction of tiles 
at varying magnifications, including 5x, 10x, 20x, and 40x, which 
provides a comprehensive view of the slide.

Following tile extraction, a series of preprocessing steps, mirroring 
the training pipeline, are applied to enhance the quality of the 
extracted tiles and ensure consistent standardized color properties 
across the tiles. These steps involve filtering out blank tiles, tiles with 
pen markings, those with a lower purple to pink ratio and tiles with 
low tissue presence followed by normalization.

The heart of our inference pipeline involves the utilization of an 
ensemble model consisting of the six best machine learning models 
previously trained. Each of these models is employed to classify the 
image as either BL or non-cancerous based on the features extracted 
from the preprocessed tiles. To arrive at a final inference decision, the 
outputs of these individual models are considered collectively. This 
ensemble approach allows us to leverage the strengths of each model 
while mitigating potential biases or errors associated with a single 
model’s predictions. Ultimately, the final decision is determined based 
on a consensus among the ensemble of models, enhancing the 
robustness and reliability of our classification results (Figure 1).

Evaluation metrics

In our evaluation of the models, we  employed a range of 
performance metrics including Area Under the Curve (AUC), F1 
score, Accuracy, and Recall (31). Accuracy score is the ratio of the 
number of correct predictions and the total number of predictions, 
while recall score indicates how many of the actual positive cases were 
predicted correctly with our model. The precision score explains how 
many of the correctly predicted cases turned out to be positive; F1 
score is the harmonic mean of precision and recall and is maximum 
when precision is equal to recall. AUC scores provided us with a 
holistic view of the model’s ability to distinguish between different 
classes, specifically distinguishing between BL and Control 
(non-cancerous) cases. While these metrics offered a well-rounded 
perspective on the models’ performance, our emphasis was placed on 
optimizing recall. This choice was deliberate, by focusing on recall, 
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we aimed to reduce the occurrence of erroneous categorizations where 
actual BL cases were incorrectly classified as Control, ultimately 
enhancing the model’s ability to detect true positive cases of BL, thus 
aligning with the overarching goal of this screening technique, i.e., 
reducing the number of misclassified true cancer instances.

Results

Model training and selection

We fine-tuned 6 pretrained models (EfficientNet, GoogLeNet 
and Resnet50, with and without attention layers) for a maximum of 

20 epochs, validating performance on the validation data. 
We  evaluated the training/validation losses and accuracies, and 
found that a batch size of 4 and sample size of 20 yielded best 
performance in terms of computational efficiency and validation 
loss/accuracy (Figure 2).

Model performance

We evaluated the performance of all 6 models across different 
configurations, specifically focusing on static batch and sample 
sizes of 4 and 20, respectively (Tables 1–4). Our primary objective 
was to identify the configuration that yielded the best recall, while 

FIGURE 2

Validation accuracy of the 6 models with static batch size (4) or static sample size (20) (A,B). The graphs depict the validation accuracies of EficientNet, 
Googl_eNet and ResNet60 for batch size4 (A) and sample size 20 (C,D). Validation accuracies for the models with attention heads 10 and 50 for 
EfficientNet and 16 and 64 for GoogLaNet and RasNat60, with a batch size of 4 (C) and a sample size of (20) (D).

TABLE 1 Performance metrics of the 6 model variants; Accuracy, precision, recall, F1-score and AUC scores of the models with static batch size (4).

Model Batch_Size Sample_Size Accuracy Precision Recall F1-Score AUC

ResNet50 4 20 0.67 0.75 0.68 0.71 0.66

ResNet50 4 40 0.67 0.86 0.55 0.67 0.7

ResNet50 4 60 0.53 0.73 0.36 0.48 0.57

ResNet50 4 80 0.5 0.67 0.36 0.47 0.54

EfficientNet 4 20 0.94 1.00 0.91 0.95 0.95

EfficientNet 4 40 0.72 0.69 1.00 0.81 0.64

EfficientNet 4 60 0.92 1.00 0.86 0.93 0.93

EfficientNet 4 80 1.00 1.00 1.00 1.00 1.00

GoogLeNet 4 20 0.94 0.92 1.00 0.96 0.93

GoogLeNet 4 40 0.81 0.94 0.73 0.82 0.83

GoogLeNet 4 60 0.83 0.81 0.95 0.88 0.80

GoogLeNet 4 80 0.94 0.92 1.00 0.96 0.93

The tables depict the metrics for EfficientNet, GoogLeNet and ResNet50 for batch size 4.
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TABLE 2 Performance metrics of the 6 model variants; Accuracy, precision, recall, F1-score and AUC scores of the models with static sample size (20).

Model Batch_Size Sample_Size Accuracy Precision Recall F1-Score AUC

ResNet50 4 20 0.67 0.75 0.68 0.71 0.66

ResNet50 8 20 0.89 0.95 0.86 0.9 0.9

ResNet50 12 20 0.75 1 0.59 0.74 0.8

ResNet50 16 20 0.78 0.94 0.68 0.79 0.81

EfficientNet 4 20 0.94 1.00 0.91 0.95 0.95

EfficientNet 8 20 0.94 0.92 1.00 0.96 0.93

EfficientNet 12 20 0.81 0.94 0.73 0.82 0.83

EfficientNet 16 20 0.89 0.85 1.00 0.92 0.86

GoogLeNet 4 20 0.94 0.92 1.00 0.96 0.93

GoogLeNet 8 20 0.72 1.00 0.55 0.71 0.77

GoogLeNet 12 20 0.83 0.94 0.77 0.85 0.85

GoogLeNet 16 20 0.72 1.00 0.55 0.71 0.77

The tables depict the metrics for EfficientNet, GoogLeNet and ResNet50 for sample size 20.

TABLE 3 Performance metrics for the models with attention heads 10 and 50 for EfficientNet and 16 and 64 for GoogLeNet and ResNet50, with a batch 
size of 4.

Model
Batch_

Size
Sample_

Size
Attention_
Head_Size

Accuracy Precision Recall F1-Score AUC

ResNet50 4 20 16 0.69 0.82 0.64 0.72 0.71

ResNet51 4 40 16 0.56 0.71 0.45 0.56 0.58

ResNet52 4 60 16 0.56 0.80 0.36 0.50 0.61

ResNet53 4 80 16 0.56 0.71 0.45 0.56 0.58

ResNet54 4 20 64 0.58 0.63 0.77 0.69 0.53

ResNet55 4 40 64 0.72 0.73 0.86 0.79 0.68

ResNet56 4 60 64 0.61 0.90 0.41 0.56 0.67

ResNet57 4 80 64 0.81 1.00 0.68 0.81 0.84

EfficientNet 4 20 10 0.83 0.83 0.91 0.87 0.81

EfficientNet 4 40 10 0.92 0.88 1.00 0.94 0.89

EfficientNet 4 60 10 0.97 1.00 0.95 0.98 0.98

EfficientNet 4 80 10 0.58 0.89 0.36 0.52 0.65

EfficientNet 4 20 50 0.69 0.72 0.82 0.77 0.66

EfficientNet 4 40 50 0.69 1.00 0.50 0.67 0.75

EfficientNet 4 60 50 0.61 1.00 0.36 0.53 0.68

EfficientNet 4 80 50 0.97 1.00 0.95 0.98 0.98

GoogLeNet 4 20 16 0.56 0.65 0.59 0.62 0.55

GoogLeNet 4 40 16 0.61 0.83 0.45 0.59 0.66

GoogLeNet 4 60 16 0.81 0.86 0.82 0.84 0.80

GoogLeNet 4 80 16 0.94 0.95 0.95 0.95 0.94

GoogLeNet 4 20 64 0.81 0.94 0.73 0.82 0.83

GoogLeNet 4 40 64 0.81 0.89 0.77 0.83 0.81

GoogLeNet 4 60 64 0.75 0.74 0.91 0.82 0.70

GoogLeNet 4 80 64 0.78 1.00 0.64 0.78 0.82

also considering a balanced trade-off between F1-Score and AUC, 
as our emphasis was on reducing the occurrence of erroneous 
categorizations, particularly false negatives. The performance of all 

models with and without attention across different configurations 
of batch, sample size, and attention head size is shown in 
Tables 1–4.
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Models without the attention layers on the test 
data

ResNet50
The model demonstrated the best recall of 0.86 when using a 

batch size of 8 and a sample size of 20. This configuration also 
exhibited high precision (0.95), indicating a strong ability to classify 
true positives while minimizing false positives. The F1-Score and 
AUC of 0.90 reaffirmed the model’s capability to effectively 
differentiate between cancerous and non-cancerous cases. 
Therefore, this was chosen as the optimal model for the 
final classification.

EfficientNet
Again, the model demonstrated exceptional performance with a 

batch size of 8 and a sample size of 20, achieving a recall of 1.00. This 
configuration maintained strong precision (0.92), further 
underscoring its ability to accurately classify true positives. The 
resulting F1-Score of 0.96 and an AUC of 0.93 emphasized the well-
rounded performance, combining precision and recall seamlessly. 
Thus, after evaluating the model’s performance across various 
configurations, the batch size of 8 and a sample size of 20 emerged as 
the most effective choice.

GoogLeNet
Among the configurations with static batch sizes, the model 

achieved the highest recall of 1.00 when employing a batch size of 4 
and a sample size of 20. This configuration also maintained strong 
precision (0.92), with a resulting F1-Score of 0.96 and an AUC value 
of 0.93. In summary, the batch size of 4 and a sample size of 20 
performed optimally on metrics and was chosen as the GoogLeNet 
version for inference (Tables 1, 2).

Models with attention layer on inference data

ResNet50 with attention layer
Overall, when evaluating the trade-off between Attention_Head_

Size and model performance for static sample sizes, the configuration 
with an Attention_Head_Size of 64, a batch size of 4, and a sample size 
of 20 demonstrated the highest recall and a good balance between 
precision and F1-Score (Tables 3, 4).

EfficientNet with attention layer
In summary, when evaluating the trade-off between Attention_

Head_Size and model performance for static sample sizes, the 
configuration with an Attention_Head_Size of 50, a batch size of 12, 
and a sample size of 20 emerged as the optimal choice (Tables 3, 4).

TABLE 4 Performance metrics for the models with attention heads 10 and 50 for EfficientNet and 16 and 64 for GoogLeNet and ResNet50, with a 
sample size of 20.

Model
Batch_

Size
Sample_

Size
Attention_
Head_Size

Accuracy Precision Recall F1-Score AUC

ResNet50 4 20 16 0.69 0.82 0.64 0.72 0.71

ResNet51 8 20 16 0.56 0.64 0.64 0.64 0.53

ResNet52 12 20 16 0.42 1.00 0.05 0.09 0.52

ResNet53 16 20 16 0.64 0.76 0.59 0.67 0.65

ResNet54 4 20 64 0.58 0.63 0.77 0.69 0.53

ResNet55 8 20 64 0.47 0.58 0.50 0.54 0.46

ResNet56 12 20 64 0.53 0.67 0.45 0.54 0.55

ResNet57 16 20 64 0.64 0.85 0.50 0.63 0.68

EfficientNet 4 20 10 0.83 0.83 0.91 0.87 0.81

EfficientNet 8 20 10 0.56 0.62 0.73 0.67 0.51

EfficientNet 12 20 10 0.94 1.00 0.91 0.95 0.95

EfficientNet 16 20 10 0.83 1.00 0.73 0.84 0.86

EfficientNet 4 20 50 0.69 0.72 0.82 0.77 0.66

EfficientNet 8 20 50 0.69 0.67 1.00 0.80 0.61

EfficientNet 12 20 50 0.97 0.96 1.00 0.98 0.96

EfficientNet 16 20 50 0.67 0.78 0.64 0.70 0.68

GoogLeNet 4 20 16 0.56 0.65 0.59 0.62 0.55

GoogLeNet 8 20 16 0.61 0.72 0.59 0.65 0.62

GoogLeNet 12 20 16 0.78 0.85 0.77 0.81 0.78

GoogLeNet 16 20 16 0.67 0.75 0.68 0.71 0.66

GoogLeNet 4 20 64 0.81 0.94 0.73 0.82 0.83

GoogLeNet 8 20 64 0.75 0.88 0.68 0.77 0.77

GoogLeNet 12 20 64 0.89 0.95 0.86 0.90 0.90

GoogLeNet 16 20 64 0.72 0.88 0.64 0.74 0.75
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FIGURE 3

The ensemble model. (A) Best AUC scores for the variants of the 6 models, with those for static sample sizes shown in the first column and batch sizes 
in the second column. (B) Classification metrics for the ensemble model consisting of the 6 best performing variants.

GoogLeNet with attention layer
The configuration with a Attention_Head_Size of 16, a batch size 

of 4, and a sample size of 80 was chosen to be the optimal performant 
model (Tables 3, 4).

Composite model performance on 
inference data

After choosing the best configurations for all our six models, 
we formulated an ensemble model based on the best performers from 
the six pretrained model variants (with and without attention layers, 
Figure 3A). When the confidence score for the prediction was above 
50% from the ensemble (i.e., when at least 4 models converged), the 
classification was counted as correct, and when it was below the 
threshold, it was counted as incorrect. When the confidence score was 

50%, the classification was deemed not definite and termed ‘Indecision’. 
The performance was tested on this composite model for 35 samples, 
which classified 29 samples correctly (83%) and provided an indecision 
judgment for the other 6 samples (17%) due to low confidence 
(Figure 3B). The fact that none of the samples were classified incorrectly 
corroborates the high fidelity of our composite model.

Discussion

The end-to-end flow of our model implementation begins when 
children are suspected of Burkitt lymphoma, prompting medical 
professionals to perform lymph node biopsies. These biopsies are 
formalin-fixed, paraffin-embedded, sectioned on to glass slides, and 
stained to enable the pathologist to distinguish BL from other 
diagnoses. As we envision our approach, Whole Slide Images (WSIs) 
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would be acquired using state-of-the-art Whole Slide Scanners. Once 
acquired, and depending on the application, these images may go 
through a de-identification process to safeguard patient privacy before 
being uploaded to a secure online storage location. Prior to conducting 
any inference, the images would undergo an automated preprocessing 
pipeline to enhance the quality and relevance of the tiles within the 
images, mirroring the preprocessing steps employed during the 
training of our machine learning models. The inference pipeline 
involves the utilization of the six best-performing machine learning 
models that were previously trained for the task to give a composite 
score. Each of these models leverages the features extracted from the 
preprocessed tiles to classify the image as either Burkitt lymphoma 
(BL), non-cancerous or an indecision (Figure 1). The cases classified 
as BL or indecision by the AI model would be flagged for prioritized 
final diagnosis by relevant pathologists.

One of the innovative advances of our model is that by utilizing 
MIL with weak labeling and image augmentation, we were able to use 
a relatively low sample size to achieve an extremely good performance 
on the inference set. This means that the method efficiently captures 
the variance in the data without overfitting. We have used multiple 
magnifications for each sample, allowing the model to learn from 
multiple image magnifications, thus enabling inference and 
classification for a reasonable combination of magnifications (5x, 10x, 
20x and/or 40x) a user is likely to provide.

Another novelty is the use of composite scoring with multiple 
models, essentially aggregating results from the models for this specific 
application. We experimented with adding attention layers to augment 
the original pretrained models, and the best models were chosen based 
on the assessment of performance with different configurations of the 
model hyperparameters (batch sizes) and image selection settings 
(sample sizes). This ensemble-based consensus approach ensures a 
balanced and robust classification, benefiting from the diverse strengths 
of each model. By achieving a consensus among these models, 
we enhance the reliability and accuracy of our final diagnosis. Our 
MIL-based approach, with its pretrained models enriched by attention 
mechanisms and empowered by ensemble learning, represents an 
innovative solution for precise and nuanced WSI classification, 
advancing BL diagnosis through automated WSI analysis.

The final AI based diagnosis outcome is communicated back to the 
medical center where the images were initially acquired (Figure 1). The 
aggregation of results from multiple good models provides more 
confidence in the preliminary diagnosis as depicted by the high fidelity 
of the ensemble for inference testing. The collective decisions of these 
models are integral since the preliminary diagnosis should greatly assist 
in allowing overworked pathologists to prioritize cases according to the 
likelihood of an urgent diagnosis such as BL. By helping ensure timely 
and accurate identification of BL, thereby facilitating prompt medical 
intervention and treatment, this AI approach is likely to be of particular 
benefit. Finally, and very importantly, once pilot studies in field settings 
are completed with further training the model, this AI approach can 
be applied to a variety of other urgent cancer diagnoses in resource-
limited settings, allowing the development of a suite of diagnostic aids 
for patients of all ages.

There are many limitations and challenges to the model that need to 
be addressed before it is ready for deployment in the field. This proof of 
concept model was purposefully limited to a single comparison of 
reactive lymphoid tissue versus BL, to determine whether a relatively 
low-cost screen for the simple case of one type of benign process versus 

one type of malignancy might be feasible. Having convinced ourselves 
that this approach is feasible, we recognize that the next step in this 
process will require scanning additional BL cases and, more importantly, 
the following: (1) A broader range of non-tonsillar and non-malignant 
lymphoid proliferations (i.e., infectious/inflammatory processes); and (2) 
A variety of non-BL malignancies including other non-Hodgkin 
lymphomas, plus non-lymphoid small blue round cell tumors such as 
rhabdomyosarcoma, neuroblastoma, Wilm’s tumor, small cell carcinoma, 
and myeloid sarcoma. The model will need further training to learn 
potential variabilities in slide processing, staining as well as type of 
sample collection in various clinics/pathology labs in the region.

Future studies will involve collaborative projects with pathologists in 
BL endemic regions where the model is trained and tested with samples 
from clinical patients. These studies will also broaden the set of tumors 
to include a range of aggressive small blue round cell tumors of both 
hematopoietic and non-hematopoietic origin, and to broaden the set of 
benign/reactive tissues beyond tonsillar follicular lymphoid hyperplasia.
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