To investigate the value of interpretable machine learning model and nomogram based on clinical factors, MRI imaging features, and radiomic features to predict Ki-67 expression in primary central nervous system lymphomas (PCNSL).
MRI images and clinical information of 92 PCNSL patients were retrospectively collected, which were divided into 53 cases in the training set and 39 cases in the external validation set according to different medical centers. A 3D brain tumor segmentation model was trained based on nnU-NetV2, and two prediction models, interpretable Random Forest (RF) incorporating the SHapley Additive exPlanations (SHAP) method and nomogram based on multivariate logistic regression, were proposed for the task of Ki-67 expression status prediction.
The mean dice Similarity Coefficient (DSC) score of the 3D segmentation model on the validation set was 0.85. On the Ki-67 expression prediction task, the AUC of the interpretable RF model on the validation set was 0.84 (95% CI:0.81, 0.86;
In this study, we developed a 3D brain tumor segmentation model and used an interpretable machine learning model and nomogram for preoperative prediction of Ki-67 expression status in PCNSL patients, which improved the prediction of this medical task.
Ki-67 represents the degree of active cell proliferation and is an important prognostic parameter associated with clinical outcomes. Non-invasive and accurate prediction of Ki-67 expression level preoperatively plays an important role in targeting treatment selection and patient stratification management for PCNSL thereby improving prognosis.