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Objectives: To investigate the value of interpretable machine learning model and 
nomogram based on clinical factors, MRI imaging features, and radiomic features 
to predict Ki-67 expression in primary central nervous system lymphomas (PCNSL).

Materials and methods: MRI images and clinical information of 92 PCNSL patients 
were retrospectively collected, which were divided into 53 cases in the training set 
and 39 cases in the external validation set according to different medical centers. 
A 3D brain tumor segmentation model was trained based on nnU-NetV2, and two 
prediction models, interpretable Random Forest (RF) incorporating the SHapley 
Additive exPlanations (SHAP) method and nomogram based on multivariate logistic 
regression, were proposed for the task of Ki-67 expression status prediction.

Results: The mean dice Similarity Coefficient (DSC) score of the 3D 
segmentation model on the validation set was 0.85. On the Ki-67 expression 
prediction task, the AUC of the interpretable RF model on the validation set was 
0.84 (95% CI:0.81, 0.86; p  <  0.001), which was a 3% improvement compared to 
the AUC of the nomogram. The Delong test showed that the z statistic for the 
difference between the two models was 1.901, corresponding to a p value of 
0.057. In addition, SHAP analysis showed that the Rad-Score made a significant 
contribution to the model decision.

Conclusion: In this study, we  developed a 3D brain tumor segmentation 
model and used an interpretable machine learning model and nomogram for 
preoperative prediction of Ki-67 expression status in PCNSL patients, which 
improved the prediction of this medical task.

Clinical relevance statement: Ki-67 represents the degree of active cell 
proliferation and is an important prognostic parameter associated with clinical 
outcomes. Non-invasive and accurate prediction of Ki-67 expression level 
preoperatively plays an important role in targeting treatment selection and 
patient stratification management for PCNSL thereby improving prognosis.
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Introduction

PCNSL is a rare malignant tumor that involves only the Central 
nervous system (CNS) without lymphomas occurring elsewhere. 
PCNSL accounts for 3% of CNS tumors and more than 90% are 
diffuse large B cell lymphomas (1). The incidence of this disease has 
increased exponentially over the past few decades (2).

The Ki-67 proliferation index has been used as a surrogate marker 
for rapid growth and increased invasiveness in tumors, and an 
increasing number of researchers have attempted to predict its 
expression status in a variety of tumors by different methods，Ki-67 
has emerged as one of the major predictive factors for tumor prognosis 
(3–13). Multiple studies have revealed the prognostic significance of 
Ki-67  in PCNSL, demonstrating significant independent predictive 
value (14–21). Liu et al.’s research indicates that high Ki-67 expression 
(i.e., Ki-67 index ≥90%) is associated with poorer overall survival and 
progression-free survival in PCNSL (18, 22, 23). Currently, the 
conventional methods for detecting Ki-67 expression status are utilizing 
biopsy or surgery, but the risk of intracranial complications is high. 
Therefore, accurate preoperative noninvasive prediction of Ki-67 
expression levels plays an important role in targeting therapeutic choices 
and patient management for PCNSL thereby improving prognosis.

Accurate semantic segmentation of medical images can help 
doctors pinpoint pathological areas and help in disease research (24, 
25). nnU-NetV2 is a deep learning-based semantic segmentation 
method, which, as the most competitive medical image segmentation 
model, achieves optimal results in most public semantic segmentation 
tasks (26). Radiomics allows high-throughput extraction of key 
features of an image and utilizes these features in combination with 
machine learning algorithms to make predictions. Studies have shown 
that most complex and efficient machine learning models lack 
interpretability (27, 28). SHAP (29) is a method that provides an 
explanation for the model by calculating SHAP values to quantify the 
impact of each feature on the predicted results. In addition, 
multimodal information also adds to model predictions (30).

Therefore, this paper proposes an interpretable machine learning 
model that incorporates multimodal information such as clinical 
factors, image features, and radiomics features to compensate for the 
shortcomings of existing models in terms of performance or 

interpretability. In addition, the Nomogram method, which is 
commonly used in clinical research, is constructed for model 
comparison experiments. To achieve the goal of effectively predicting 
the Ki-67 expression status in PCNSL before surgery.

Materials and methods

Patients

This study was approved by the ethics committees of Medical 
Center 1 and Medical Center 2. The informed consent of the patient 
is waived, and the entire study follows the principles outlined in the 
Declaration of Helsinki.

Patients with primary central nervous system lymphoma attending 
Medical Center 1 from January 2017 to September 2023 and Medical 
Center 2 from February 2010 to June 2023 were retrospectively collected. 
Inclusion criteria: (1) The lesion was definitively confirmed by puncture 
or post-surgical pathology; (2) No other sites of lymphoma occurred; (3) 
No history of blood or immune system disease. Exclusion criteria: (1) 
Lack of clinical information and imaging; (2) Poor image quality, VOI 
difficult to outline; (3) Prior to undergoing MRI, the patient underwent 
interventions such as puncture, surgery, radiotherapy, and chemotherapy. 
A total of 92 patients were finally enrolled in the study and the 
pathological types are all diffuse large B-cell lymphoma, including 53 in 
the training set (Medical Center 1) and 39 in the external validation set 
(Medical Center 2). The enrollment flow chart is shown in Figure 1.

Imaging protocol

The following MRI scanners were used: GE Signa HDXT 1.5 T 
、Siemens Verio 3.0 T and Philips Ingenia CX 3.0 T. More detailed 
scanning parameters can be found in the Supplementary Appendix.

Image pre-processing

Patient information was first anonymized for all image sequences 
and then the original DICOM images of three different sequences 
(T1WI, T1CE, and T2WI) were converted to Neuroimaging 
Informatics Technology Initiative (NIFTI) format. The spatial 
resolution of all image sequences is resampled to [1 mm, 1 mm, 3 mm] 
by the nearest-neighbor interpolation algorithm, which ensures the 
consistency of the physical space in different images and removes part 
of the bias caused by different instruments. The MRI images were 
corrected for artifacts using the N4 bias field correction algorithm. 
Finally, the Min-max method was used to normalize the intensity of 

Abbreviations: PCNSL, Primary central nervous system lymphoma; SHAP, SHapley 

Additive exPlanations; RF, Random Forest; DSC, Dice Similarity Coefficient; CNS, 

Central nervous system; NIFTI, Neuroimaging Informatics Technology Initiative; 

VOI, Volume of interest; IBSI, Image Biomarker Standardization Initiative; ICC, The 

intraclass correlation coefficient; mRMR, Minimal-redundancy-maximal-relevance 

criterion; SMOTE, Synthetic Minority Oversampling Technique; ROC, Receiver 

operating characteristic curve; DCA, Decision curve analysis.

Highlights

 • This is the first study to utilize radiomics to preoperatively predict Ki-67 expression status 
in primary central nervous system lymphoma;

 • An interpretable machine learning algorithm framework is proposed to bridge the 
performance and interpretability gap of traditional classification algorithms;

 • A 3D automated brain tumor segmentation model was developed to provide a convenient 
automated segmentation tool for subsequent brain tumor-related studies.
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all images into the 0–255 interval. Preprocessing of all images was 
done using the Simple ITK algorithm library (https://simpleitk.org/).

Imaging features analysis

Analysis of the patient’s clinical information, MRI imaging 
features, and histopathology data. Includes analysis of patients’ 
clinical information, MRI image characteristics, and histopathologic 
data (31, 32). Included: (1) Age and Sex; (2) Tumor length: the 
maximum diameter of the tumor was measured on the image of the 
largest cross-section of the tumor; (3) Edema volume: the edema VOI 
volume parameter was calculated by the 3D Slicer’s calculation 
function; (4) Involvement of deep regions: whether the tumor invades 
periventricular regions, basal ganglia, brainstem, or cerebellum; (5) 
Cystic and necrosis: yes, no; (6) Tumor margins: regular, irregular; 
(7) Enhancement features: mass and patchy, indicates obvious solid 
enhancement without large areas of non-enhancing necrosis within. 

Ring enhancement refers to a circular ring of peripheral enhancement 
due to cystic degeneration and necrosis within the tumor, leading to 
no enhancement in the interior. (8) Enhanced signal: homogeneous, 
nonhomogeneous; (9) Midline shift: yes, no; (10) Morphological 
characteristics: Angular sign, the irregular enhancement lesions 
protrude to a certain direction, showing a sharp angle appearance; 
Incision sign, based on the T1CE images, there are umbilical concave 
or striated defects on the edge of the enhanced lesion; Butterfly sign, 
lesion involving the corpus callosum can infiltrate transcallosally, 
appearing as a symmetric “butterfly” appearance n T1CE imaging; 
(11) Ki-67index: the Ki-67 proliferation index was calculated using 
the percentage of cells staining positive for Ki-67.

Imaging features were evaluated by 2 radiologists with 3 years of 
experience in diagnostic CNS imaging. When disagreements in 
assessment arose, they were resolved by another radiologist with 
15 years of experience in diagnostic CNS imaging. All radiologists 
were blinded to the patient’s histopathologic information when 
evaluating imaging features.

FIGURE 1

Patient enrollment flowchart.
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Immunohistochemical

Surgical specimens were fixed in 10% buffered formalin solution 
and then wax block embedded, sectioned, and stained with anti-
Ki67 antibody. The antibody binds to the Ki67 protein and the 
positive cells show a brown complex. One thousand cells were 
randomly selected in the hot spot field for Ki-67-positive cell 
counting, and the percentage of all counted cells was the Ki-67 
index. According to previous studies (18, 22, 23)，90% was used as 
the cutoff value for the Ki-67 index. Ki-67 index ≥90% was defined 
as high expression and less than 90% indicated low expression. There 
were 37 cases in the high-expression group and 55 cases in the 
low-expression group.

Research analysis workflow

The research pipeline of this paper is mainly divided into the 
following four modules: A. Raw Data Acquisition and Preprocessing; 
B. VOI Segmentation and Features Acquisition; C. Model 
Establishment; D. Evaluation of the model and interpretability 
analysis. The specific information is shown in Figure 2.

The volume of interest segmentation and 
image registration

The preprocessed T2WI sequences were imported into 3Dslicer 
(version 5.0.2) software, and VOI segmentation of the tumor 
parenchyma and its peritumoral edema region was performed by a 
radiologist with 3 years of experience. The final obtained VOI is used 
as Ground Truth for training the 3D automatic segmentation model. 
From all images, twenty T2WI sequences were randomly taken and 
segmented by another radiologist with 3 years of experience to prepare 
the data for ICC calculation. The results of the segmentation are 
shown schematically in Figure 3. The first case depicts a tumor located 
in the left basal ganglia region, affecting deep brain tissue, with 
angular protrusions visible at the front edge and an overall nodular 
enhancement. The second case shows a tumor in the cerebellum, also 
within deep brain tissue, with a smooth tumor edge and a ring-shaped 
enhancement on the contrast-enhanced scan.

The 3D automatic segmentation model developed in this study is 
trained based on nnU-NetV2. nnU-NetV2 is an improved version of 
the U-Net model. U-Net is a classic convolutional neural network 
architecture for image segmentation, and nnU-Net builds upon it with 
enhancements, particularly excelling in medical image segmentation 

FIGURE 2

Flowchart for analyzing radiomics modeling studies. Raw data acquisition and preprocessing (A); VOI segmentation and features acquisition (B); Model 
establishment (C); Evaluation of the model and interpretability analysis (D).
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tasks. For detailed technical details about the nnU-NetV2 model, 
please refer to the Supplementary Appendix. The experiments were 
configured with Python 3.9.0, Pytorch 2.0.0, and cuda11.8 deep 
learning platforms, Windows 10 operating system, and NVIDIA 
GeForce RTX 4090 GPU. An efficient 3D segmentation model for 
brain tumors was obtained by using the 3d_fullres mode for the 
training setup of the network, and the pre-processed 3D MRI images 
and Ground Truth were inputted into the network for training. The 
model is based on a large number of public dataset training 
experiences to summarize some of the fixed hyperparameters and 
configuration experience, and can automatically configure the 
hyperparameters of the model for any new dataset’s characteristics 
(including Learning rate, Loss function, Architecture template, 
Optimizer, Data augmentation, etc.), to learn from the a priori 
experience of other medical datasets while avoiding the problem of 
model performance degradation due to the lack of experience (5). The 
final training and validation results of the model are evaluated using 
the DSC metric.

For image alignment, the Simple ITK algorithm library and 
ITK-Snap software (version: 4.0.1, www.itksnap.org) were used to 
align the images of T1WI and T1CE to T2WI. Mutual information 
was used as the Image similarity metric, Rigid was used as the 
Transformation model, and Nearest Neighbor Interpolation was used 
as the image interpolation method.

Feature extraction and screening

Based on Ground Truth and 3 MRI sequences (aligned T1WI 
sequence, aligned T1WI-enhanced sequence, T2WI sequence), using 

the Pyradiomics (https://pyradiomics.readthedocs.io/en/latest/) 
algorithm library (33) to extract 1762 radiomics features, all of which 
were compliant with the Image Biomarker Standardization Initiative 
(IBSI) standard (34). Radiomics features obtained from the three sets 
of sequences were combined to obtain a total of 5,286 features, and the 
intraclass correlation coefficient (ICC) was calculated based on 
duplicate outlined image sequences of 20 cases to remove unstable 
features (ICC < 0.85). Then Z-Score normalization was performed and 
redundant features were removed using Pearson or Spearman 
methods. Finally, the radiomics features were screened using the 
minimal-redundancy-maximal-relevance criterion (mRMR) feature 
screening algorithm. To further improve the prediction performance 
of the model, the fusion feature Rad-Score is computed using 
ElasticNet and added to the training process of the model. For detailed 
information on the mRMR method, the extracted radiomics feature 
categories and Rad Score, please refer to the Supplementary Appendix.

Univariate logistic regression analysis was performed on the 
clinical information and MRI image features, and the variables with 
p < 0.05 were selected for the multivariable logistic regression 
analysis, and finally the variables with p < 0.05 were selected as 
independent predictors of Ki-67 expression status and were used to 
construct the interpretable machine-learning model 
and nomogram.

Radiomics model construction

The construction steps of interpretable machine learning 
predictive models can be divided into three main parts: extraction 
and screening of structured features, training of complex machine 

FIGURE 3

Schematic diagram of VOI segmentation and partial image features. The case in the first line depicts a tumor in the left basal ganglia region, which 
exhibits three imaging features (Involvement of deep regions, Angular sign, Enhancement features: Mass); The case in the second row shows tumors in 
the cerebellum, including Involvement of deep regions, Enhancement features (Ring), and no Angular sign. Involvement of deep regions: whether the 
tumor invades periventricular regions, basal ganglia, brainstem, or cerebellum. Angular sign:the irregular enhancement lesions protrude to a certain 
direction, showing a sharp angle appearance. Enhancement features (Mass): the tumor shows obvious massive. Enhancement features (Ring): there is 
no obvious enhancement inside the tumor, but obvious circular enhancement can be seen at the edges.
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learning models, and application of model interpretation methods. 
The screened multimodal factors such as multisequence radiomics 
features and coded clinically independent predictors were first 
combined and screened using the mRMR algorithm to obtain the 10 
predictors with the most predictive value. The Synthetic Minority 
Oversampling Technique (SMOTE) (35) technique is used to 
balance the number of samples across labels in the training set to 
improve the upper bound of model performance. The Random 
Forest algorithm was chosen as the classifier for model training, and 
5-fold cross-validation was used in the training process. The optimal 

parameter search was performed using GridSearchCV to obtain the 
best model. The SHAP method was used to provide an explanation 
for the prediction results of the final random forest model. The 
principles and advantages of SHAP model interpretable methods 
and SMOTE data augmentation methods can be  found in the 
Supplementary Appendix.

In addition, independent predictors and the Rad-Score fusion 
feature screened by univariate and multivariable analyses were 
combined, and the multivariable logistic regression model was used 
for model training and the construction of a nomogram.

TABLE 1 Results of the variability analysis of clinical factors and imaging features between the training set and the external test set.

Clinical information and MRI 
features

Total (n  =  92) Training cohort 
(n  =  53)

External validation 
cohort (n  =  39)

P

Age, M (P25, P75) 62.00 (57.25–67.75) 63.00 (58.00–68.00) 62.00 (55.00–67.00) 0.420

Tumor length (mm), M (P25, P75) 33.50 (26.00–47.50) 32.00 (22.50–43.00) 36.00 (30.00–48.00) 0.140

Edema volume (cm3), M (P25, P75) 51.67 (21.32–91.37) 42.67 (20.72–94.62) 55.37 (26.36–84.44) 0.890

Sex, n (%) 0.217

Male 47 (51.09) 30 (56.60) 17 (43.59)

Female 45 (48.91) 23 (43.40) 22 (56.41)

Ki-67, n (%) 0.469

Ki-67 < 90% 55 (59.78) 30 (56.60) 25 (64.10)

Ki-67 ≥ 90% 37 (40.22) 23 (43.40) 14 (35.90)

Involvement of deep regions, n (%) 0.488

Yes 58 (63.04) 35 (66.04) 23 (58.97)

No 34 (36.96) 18 (33.96) 16 (41.03)

Cystic and necrosis, n (%) 0.650

Yes 21 (22.83) 13 (24.53) 8 (20.51)

No 71 (77.17) 40 (75.47) 31 (79.49)

Tumor margin, n (%) 0.219

Regular 29 (31.52) 14 (26.42) 15 (38.46)

Irregular 63 (68.48) 39 (73.58) 24 (61.54)

Enhancement feature, n (%) 1.000

Mass and Patchy 85 (92.39) 49 (92.45) 36 (92.31)

Ring 7 (7.61) 4 (7.55) 3 (7.69)

Enhanced signal, n (%) 0.236

Homogeneous 56 (60.87) 35 (66.04) 21 (53.85)

Nonhomogeneous 36 (39.13) 18 (33.96) 18 (46.15)

Midline shift, n (%) 0.235

Yes 50 (54.35) 26 (49.06) 24 (61.54)

No 42 (45.65) 27 (50.94) 15 (38.46)

Angular sign, n (%) 0.503

Yes 27 (29.35) 17 (32.08) 10 (25.64)

No 65 (70.65) 36 (67.92) 29 (74.36)

Incision sign, n (%) 0.172

Yes 49 (53.26) 25 (47.17) 24 (61.54)

No 43 (46.74) 28 (52.83) 15 (38.46)

Butterfly sign, n (%) 0.132

Yes 5 (5.43) 5 (9.43) 0 (0.00)

No 87 (94.57) 48 (90.57) 39 (100.00)
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Statistics

SPSS 26.0 (https://www.ibm.com/spss) and Python 3.7 (https://
www.python.org/) were used for statistical analysis. Measurements 
were tested for normality, and data that did not fit the normal 
distribution were expressed as median (interquartile spacing) M (P25, 
P75). Comparisons between groups were made by the Mann–Whitney 
U rank sum test. The chi-square test or Fisher’s exact probability 
method was used for counting data. Results of logistic regression 
analyses were expressed as odd ratio (OR) and 95% CI. p < 0.05 
represents a statistical difference. Use “sklearn. Metrics,” “sklearn. 
Calibration,” and “matplotlib. Pyplot “to calculate the AUC, Sensitivity, 
and Specificity of the model and plot the calibration curve and 

decision curve of the model, respectively. The Delong test was used to 
compare the AUC of the models.

Results

Patient characteristics

Table  1 provides detailed results of the differential analysis of 
clinical factors and imaging characteristics. It can be found that the 
distribution of patient information was balanced between the training 
cohort and the external test cohort, with no statistically significant 
difference in any of the distributions (p > 0.05). In addition, Table 2 

TABLE 2 Results of the differential analysis of clinical factors and imaging characteristics between the Ki-67 high and low expression groups.

Clinical information And MRI 
features

Total (n  =  92) Ki-67  <  90% (n  =  55) Ki-67  ≥  90% 
(n  =  37)

P

Age, M (P25, P75) 62.00 (57.75–67.75) 63.00 (57.00–68.00) 62.00 (57.00–67.00) 0.786

Tumor length (mm), M (P25, P75) 33.50 (26.00–47.50) 34.00 (25.00–50.00) 33.00 (27.00–45.50) 0.802

Edema volume (cm3), M (P25, P75) 51.67 (21.32–91.37) 42.43 (20.24–89.18) 64.68 (25.32–92.85) 0.438

Sex, n (%) 0.097

Male 47 (51.09) 32 (58.18) 15 (40.54)

Female 45 (48.91) 23 (41.82) 22 (59.46)

Involvement of deep regions, n (%) 0.012

Yes 58 (63.04) 29 (52.73) 29 (78.38)

No 34 (36.96) 26 (47.27) 8 (21.62)

Cystic and necrosis, n (%) 0.196

Yes 21 (22.83) 10 (18.18) 11 (29.73)

No 71 (77.17) 45 (81.82) 26 (70.27)

Tumor margin, n (%) 0.762

Regular 29 (31.52) 18 (32.73) 11 (29.73)

Irregular 63 (68.48) 37 (67.27) 26 (70.27)

Enhancement feature, n (%) 0.031

Mass and Patchy 85 (92.39) 54 (98.18) 31 (83.78)

Ring 7 (7.61) 1 (1.82) 6 (16.22)

Enhanced signal, n (%) 0.272

Homogeneous 56 (60.87) 36 (65.45) 20 (54.05)

Nonhomogeneous 36 (39.13) 19 (34.55) 17 (45.95)

Midline shift, n (%) 0.217

Yes 50 (54.35) 27 (49.09) 23 (62.16)

No 42 (45.65) 28 (50.91) 14 (37.84)

Angular sign, n (%) 0.016

Yes 27 (29.35) 11 (20.00) 16 (43.24)

No 65 (70.65) 44 (80.00) 21 (56.76)

Incision sign, n (%) 0.467

Yes 49 (53.26) 31 (56.36) 18 (48.65)

No 43 (46.74) 24 (43.64) 19 (51.35)

Butterfly sign, n (%) 0.632

Yes 5 (5.43) 4 (7.27) 1 (2.70)

No 87 (94.57) 51 (92.73) 36 (97.30)

Statistically significant results are in bold (p < 0.05).
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FIGURE 4

Training iteration plot for 3D brain tumor segmentation model.

shows that the involvement of deep regions, enhancement feature, and 
angular sign were statistically significant (p < 0.05) in the Ki-67 high 
and low expression groups.

Evaluation of 3D segmentation model 
based on nnU-NetV2

The configured Batch size for training the segmentation model is 
2 and the Patch size is (48, 224, 192). A total of 1,000 epochs were 
trained to obtain the optimal model, and the average DSC value on 
the validation set was 0.85, which shows that nnU-NetV2 has a good 
segmentation efficacy for brain tumor VOI. The training iterations of 
the segmentation model are given in Figure 4.

Performance of the two Ki-67 expression 
prediction models

A total of 21 unstable radiomics features were removed from all 
radiomics features by calculating the ICC values, and then 826 features 
were obtained after de-redundancy using Pearson and Spearman. The 
fusion feature Rad-Score is computed by the ElasticNet 
regression network.

For the training of the interpretable RF model, 10 features with 
optimal predictive value were obtained after combining clinical 
factors, imaging features, and radiomics features and filtering them 
using the mRMR algorithm (including Rad-Score, 6 radiomics 
features, and 3 imaging features). After training, an efficient 
interpretable RF classification model is obtained with AUC: 0.84 (95% 

CI, [0.81, 0.86]), Sensitivity: 0.929, and Specificity: 0.68 on the external 
test set. The ROC of the interpretable RF model on the external test 
set is shown in Figure 5A. The calibration curve is shown in Figure 5B, 
which shows that the model is well-calibrated with a good linear fit. 
Decision curve analysis (DCA) is shown in Figure 5C, which shows 
that the model has good clinical utility.

For the multivariate logistic regression nomogram model, three 
independent predictors associated with Ki-67 expression levels, 
namely, Deep involvement, Enhanced characteristics, and Sharp angle 
feature, were screened out from the imaging features and clinical 
factors using univariate and multivariate analyses, as shown in Table 3. 
Combining the Rad-Score fusion feature, a nomogram was 
constructed using a multivariate logistic regression model, as shown 
in Figure  6A. This model performed in the external test set with 
AUC:0.81 (95% CI, [0.78, 0.83]), Sensitivity: 0.79, Specificity: 0.72. The 
Receiver operating characteristic curve (ROC) of this model on the 
external test set is shown in Figure 5A, which shows a slight decrease 
in AUC compared to the effect of the interpretable RF model. The 
calibration curve is shown in Figure 5B, and the DCA is shown in 
Figure 5D. It can be seen that the model has a good calibration effect 
and clinical practicability.

Feature contribution evaluation by SHAP 
values

To assess the contribution of each feature to the model, the 
impact of each feature on the predicted results of the model was 
quantified using the SHAP method. Previous studies have shown that 
this method is highly suitable for explaining complex medical 
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artificial intelligence models (36–39). In Figure  6B, each scatter 
represents a sample, the horizontal axis represents the SHAP values, 
the vertical axis represents the features, and the position of each 
feature on the vertical axis indicates its importance, with higher 
positions indicating larger contributions; the position of the scatter 
point on the horizontal axis indicates the SHAP value of the feature, 
the closer the horizontal coordinate is to the centerline (usually zero), 
the less the feature contributes to the prediction result, and the 
further the horizontal coordinate is from the centerline, the more the 
feature contributes to the prediction result; the color of the scatter can 
be  used to indicate the magnitude of the value of the feature. 
Figure 6C exhibits the SHAP values for different features, and it can 
be seen that Rad-Score, Gray level co-occurrence matrix maximal 
correlation coefficient, and Gray level size zone small area high gray 
level emphasis exhibit higher model contributions, with contribution 
values of 0.18, 0.05 and 0.03, respectively. For imaging features, the 
involvement of deep regions showed a relatively high contribution 
value (0.02).

Discussion

Ki-67 is a proliferating cell nuclear protein present in all phases of 
the cell cycle except G0 (40), the higher level indicates more cells in 

the dividing stage and more active cell division. Ki-67 is an important 
prognostic parameter associated with clinical outcomes, and accurate 
preoperative prediction allows for customized patient stratification 
and proper care. Mukai H’s study suggests that Ki-67 expression levels 
in patients with breast malignancies may be  an indicator of a 
significant response to neoadjuvant chemotherapy (41). Therefore, the 
expression level of Ki-67 can also assist in guiding the choice of 
chemotherapy regimen.

The observation in this study that PCNSL patients in the high-
expression group showed more atypical enhancement features, i.e., 
ring enhancement, was due to the fact that the high Ki-67 index 
represents excessive tumor growth and high invasiveness, which may 
lead to cystic degeneration and necrosis due to insufficient blood 
supply within the tumors; and hemorrhage due to destruction of 
vascular endothelial cells (42). The “Angular sign” is an intensification 
of the tumor at a certain level showing a sharp angle of prominence 
(32), it reflects the characteristics of the lymphoma itself, which has 
no envelope, is softer in texture, and is easily permeable. This sign 
appeared more frequently in the Ki-67 high-expression group, which 
may be due to the uneven growth rate of some parts of the tumor 
during its rapid growth. In addition, Involvement of deep regions 
indicates that the tumor growth invades deeper intracranial areas such 
as periventricular regions, basal ganglia, brainstem, and/or cerebellum 
[It is an important risk factor in the International Extranodal 

FIGURE 5

Receiver operating characteristic curve, calibration curves and decision curve analysis curves for the interpretable RF model and the multivariate 
logistic regression nomogram model. The ROC performance of the interpretable RF model and the multivariate logistic regression nomogram 
model on an external test set (A); Performance of calibration curves for two models (B); The DCA performance of the interpretable RF model (C); 
The DCA performance of the multivariate logistic regression nomogram model (D).
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Lymphoma Study Group (IELSG) prognostic score (43), the present 
study similarly found that it was also an independent predictor of high 
Ki-67 expression levels (p < 0.05)].

In a previous study, Ouyang et  al. demonstrated good 
discriminatory ability in preoperative prediction of the Ki-67 
proliferation index in patients with meningiomas using the 
radiomics nomogram (44), but they only extracted imaging features 
of the tumor parenchyma. The tissues surrounding tumors likewise 
contain a vast amount of heterogeneous information (45), especially 
vasogenic edema around intracranial tumors, which are sites of 
altered specific molecular, cellular, biological, and radiological 
information. Studies in other different classification tasks and our 
previous studies have shown that the region of the tumor combined 

with peritumoral edema will effectively improve the diagnostic 
performance of classification models (46, 47). In this study, 
peritumoral edema was included in the region of interest together, 
aiming to maximize the accurate prediction of Ki-67 
expression status.

Both the interpretable RF model and the multivariate logistic 
regression nomogram constructed in this study showed good results 
in the preoperative prediction of Ki-67 expression status in PCNSL 
patients. Comparatively, the interpretable RF model showed better 
predictive performance. Both models use radiomics features and 
imaging features of multi-sequence MRI images as training data, while 
the RF model, as a more complex machine learning model, has a higher 
upper limit of model performance than the logistic regression model, 

TABLE 3 Results of univariate and multivariate analysis of imaging characteristics and clinical factors.

Clinical information And MRI 
features

Univariate regression analysis Multivariate regression analysis

OR (95%CI) P OR (95%CI) P

Age, M (P25, P75) 1.01 (0.96–1.06) 0.711

Tumor length (mm), M (P25, P75) 0.99 (0.96–1.02) 0.566

Edema volume (cm3), M (P25, P75) 1.00 (0.99–1.01) 0.559

Sex, n (%) 2.04 (0.87–4.76) 0.099

Male

Female

Involvement of deep regions 0.31 (0.12–0.79) 0.014 0.25 (0.09–0.72) 0.010

Yes

No

Cystic and necrosis 0.53 (0.20–1.40) 0.199

Yes

No

Tumor margin 1.15 (0.47–2.83) 0.762

Regular

Irregular

Enhancement feature 10.45 (1.20–90.86) 0.033 14.51 (1.42–147.89) 0.024

Mass and Patchy

Ring

Enhanced signal 1.61 (0.69–3.78) 0.273

Homogeneous

Nonhomogeneous

Midline shift 0.59 (0.25–1.37) 0.219

Yes

No

Angular sign 0.33 (0.13–0.83) 0.018 0.32 (0.12–0.89) 0.028

Yes

No

Incision sign 1.36 (0.59–3.15) 0.468

Yes

No

Butterfly sign 2.82 (0.30–26.32) 0.362

Yes

No

Statistically significant results are in bold (p < 0.05).
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but the RF model’s interpretability is relatively weak, which limits its 
use for medical tasks (27, 28). This study combines the SHAP method 
with the RF model to analyze and quantify the impact of each feature 
on the model’s prediction results, complementing the interpretability 
of the RF model. In addition, Rad-Score, a more comprehensive and 
advanced feature, can help the model understand the data better, as can 
be seen in Figure 6B, where Rad-Score plays an important role in the 
decision-making process of the interpretable RF model. The SHAP 
results indicate that among the selected radiomic features, there are 
three first-order features describing voxel intensity distribution 
(Gaussian Laplacian operator and wavelet features) and three features 
quantifying image grayscale (gray-level co-occurrence matrix and 
gray-level size zone matrix) that are at the forefront. The Gaussian 
Laplacian operator is a two-dimensional isotropic measure of the 
image’s second-order spatial derivative, emphasizing regions in the 

image with rapid intensity changes, thus primarily used in edge 
detection tasks. Wavelet transform provides a localized analysis of 
signals in both time and frequency domains, refining the analysis of 
signals through operations such as dilation and translation at multiple 
scales, effectively extracting information. Gray-level co-occurrence 
matrix and gray-level size zone matrix, as texture features in radiomics, 
primarily describe voxel grayscale distribution and variations, 
contributing to better prediction of tumor heterogeneity. Additionally, 
three macroscopic MRI features exhibiting significant differences 
between enhancement features, involvement of deep regions, and 
angular sign surpass certain radiomic features, resulting in model 
benefit. Compared with the multivariate logistic regression nomogram 
model, this novel interpretable RF model balances the requirements of 
both model performance and interpretability, improving the prediction 
level of this task. In terms of automatic brain tumor segmentation, 

FIGURE 6

The nomogram and SHAP interpretation plots. Multivariate logistic regression nomogram (A), SHAP model decision interpretation results (B,C). Where 
A: ‘Rad-score’, B: ‘Gray level co-occurrence matrix correlation’, C: ‘Average gray level intensity’, D:'Gray level dependence matrix dependence entropy’, 
E: ‘Gray level size zone small area high gray level emphasis’, F: ‘Gray level co-occurrence matrix maximal correlation coefficient’, G: 'Involvement of 
deep regions’, H: 'Enhancement feature’, I: 'Gray level size zone gray level non-uniformity’, J: 'Angular sign’.
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nnU-NetV2 achieves good segmentation performance by 
implementing automatic network architecture and training hyper-
parameter configuration based on the training experience of several 
public medical databases. Compared to previous studies (10, 11, 13, 
48), this study provides a novel interpretable machine learning 
radiomics framework that offers an efficient solution for the study of 
other medical tasks.

This study also has some limitations. Two medical center data 
were included in the study and were validated on an external 
validation set, but the amount of data from both centers was small. 
This is mainly because PCNSL is a low-prevalence disease and large-
scale data sets are difficult to collect, and data from more medical 
centers will be  included later to increase the data size for further 
research. In addition, the Ground Truth segmentation labels required 
for model training at the time of this study still need to be manually 
labeled by radiologists due to the lack of annotated public datasets 
relevant to this task. This segmentation work will be a preliminary 
technology accumulation for later related studies.

Conclusion

In conclusion, this study presents a novel non-invasive automated 
interpretable machine learning research framework. The effectiveness 
of radiomics for preoperative prediction of Ki-67 expression status in 
PCNSL was explored, and conventional imaging features were 
incorporated to improve model performance. In addition, an 
automated 3D brain tumor segmentation model was developed to 
prepare the segmentation tool for subsequent studies.
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