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Purpose: Sepsis-induced cardiomyopathy (SIC) is a major life-threatening 
condition in critically infected patients. Early diagnosis and intervention are 
important to improve patient prognosis. Recognizing the pivotal involvement 
of the glycolytic pathway in SIC, this study aims to establish a glycolysis-related 
ceRNA network and explore novel diagnostic avenues.

Materials and methods: SIC-related datasets were carefully filtered from the GEO 
database. CytoHubba was used to identify differentially expressed genes (DEGs) 
associated with glycolysis. A predictive method was then used to construct 
an lncRNA-miRNA-mRNA network. Dual-luciferase reporter assays validated 
gene interactions, and the specificity of this ceRNA network was confirmed in 
peripheral blood mononuclear cells (PBMCs) from SIC patients. Logistic analysis 
was used to examine the correlation between the ceRNA network and SIC. 
Diagnostic potential was assessed using receiver operating characteristic (ROC) 
curves, and correlation analysis investigated any associations between gene 
expression and clinical indicators.

Results: IER3 was identified as glycolysis-related DEG in SIC, and a ceRNA 
network (SNHG17/miR-214-3p/IER3) was established by prediction. Dual 
luciferase reporter gene assay confirmed the presence of mutual binding 
between IER3, miR-214-3p and SNHG17. RT-qPCR verified the specific 
expression of this ceRNA network in SIC patients. Multivariate logistic analysis 
established the correlation between the ceRNA network and SIC. ROC analysis 
demonstrated its high diagnostic specificity (AUC  >  0.8). Correlation analysis 
revealed a negative association between IER3 expression and oxygenation 
index in SIC patients (p  <  0.05). Furthermore, miR-214-3p expression showed a 
negative correlation with NT-proBNP (p  <  0.05).

Conclusion: In this study, we identified and validated a ceRNA network associated 
with glycolysis in SIC: SNHG17/miR-214-3p/IER3. This ceRNA network may play 
a critical role in the onset and development of SIC. This finding is important 
to further our understanding of the pathophysiological mechanisms underlying 
SIC and to explore potential diagnostic and therapeutic targets for SIC.
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1 Introduction

Sepsis is a common and complex medical condition, currently 
defined as an unbalanced response by the body to the invasion of 
harmful microorganisms, like bacteria, resulting in systemic 
inflammation and acute organ dysfunction (1). Among the myriad 
clinical consequences of sepsis, sepsis-induced cardiomyopathy (SIC) 
stands out prominently. It is characterized by ventricular dilatation, 
poor contractility, and decreased ejection fraction (2, 3). 
Unfortunately, this cardiac complication significantly contributes to 
the already high mortality rate associated with sepsis, leading to a 
considerably worse prognosis. Septic patients without SIC face a 
mortality rate of approximately 20%, while those with SIC experience 
a strikingly higher mortality rate ranging from 70 to 90% (4).

Recognizing the critical implications of SIC, early diagnosis 
becomes paramount for effective patient management. However, the 
existing clinical diagnostic methods for SIC, primarily relying on 
conventional indicators like transthoracic echocardiography, atrial 
natriuretic peptide, and cardiac troponin (5), lack the specificity 
required for prompt identification and treatment of SIC (6). Therefore, 
elucidating the molecular mechanisms underlying the occurrence and 
development of SIC is of utmost importance, offering promising 
targets for its prevention, diagnosis, and treatment.

The development of SIC is intricately associated with aberrations 
in myocardial cell metabolism. Glucose serves as the primary 
metabolic substrate for myocardial cells, primarily undergoing 
glycolysis and oxidative phosphorylation (OXPHOS) to produce ATP, 
thereby providing energy support for myocardial cells (7). In the 
normal heart, the majority of ATP is derived from mitochondrial 
OXPHOS, whereas glycolysis and lactate oxidation account for only 
10–40% of ATP production (8, 9). However, in the context of sepsis, 
there is an imbalance in myocardial energy metabolism (10). 
Myocardial mitochondrial fatty acid oxidation is disrupted, leading to 
an accelerated rate of aerobic glycolysis, excessive glucose 
consumption, and accumulation of pyruvate in the myocardium (11). 
This worsens the heart’s function in sepsis (12). In a word, glycolysis 
plays a significant role and may offer new avenues for early diagnosis 
and treatment of SIC.

The theory of Competing Endogenous RNAs (ceRNA) was 
initially proposed by Salmena et al. (13). This theory suggests that 
different RNA molecules can competitively bind to microRNAs 
(miRNA), thereby disrupting their inhibition of target genes and 
regulating gene expression (13). Long non-coding RNAs (lncRNAs) 
have been shown to act as ceRNAs by competitively sequestering 
miRNAs to modulate the expression of target genes (14). They play 
regulatory roles in various diseases, including sepsis (15) and SIC (16). 
Using bioinformatics techniques, we can identify hub DEGs in SIC 
and build specific ceRNA regulatory networks using high-throughput 
sequencing tools. This approach contributes to a deeper understanding 
of the pathogenic mechanisms of SIC and aids in the discovery of new 
methods for early prediction and diagnosis of SIC.

In order to explore specific genes related to glycolysis in SIC, 
we first screened for common DEGs in SIC datasets from the GEO 
database. Subsequently, we identified pivotal genes associated with 
glycolysis among these DEGs. Utilizing multiple databases, 
we predicted the miRNAs and lncRNAs targeted and constructed a 
ceRNA network related to glycolysis. To validate specific binding 
within the ceRNA network, dual-luciferase reporter gene assays were 

performed. In addition, we verified the specific expression of ceRNAs 
in SIC patients by RT-qPCR experiments using peripheral blood 
mononuclear cell (PBMC) samples. The accuracy of these ceRNAs in 
diagnosing SIC was evaluated using ROC curves. The flowchart 
representing the methodology of this study is shown in Figure 1.

DEGs: Differentially expressed genes; GO: Gene Ontology; 
KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: protein–
protein interaction; RT-qPCR: Reverse transcription-quantitative real-
time PCR.

2 Materials and methods

2.1 Bioinformatics analysis

2.1.1 Selection of microarray dataset
We selected 5 microarray datasets related to SIC from the 

GEO database (17),1 as shown in Table  1. Among these, the 
GSE79962 series (including 20 human SIC samples and 11 
non-SIC samples) and GSE44363 (including 4 mouse SIC samples 
and 4 non-SIC samples) were used as the training set. The 
GSE142615 series (comprising 4 mouse SIC samples and 4 
non-SIC samples) contains both mRNA and lncRNA data and 
was used as the validation set.

2.1.2 Extraction of DEGs
To identify and analyze the DEGs between the SIC and control 

groups within the GEO datasets, we utilized the GEO2R online tool.2 
GEO2R is an online tool supplied by the GEO database that analyzes 
and visualizes GEO data using R programming, presenting results in 
a gene table sorted by importance (17). We set the criteria for DEGs 
selection as follows: p < 0.05 and |logFC| > 1 to identify DEGs with 
significant expression differences. Subsequently, we used the online 
Venn tool (18)3 to identify DEGs that were common to both datasets.

2.1.3 Functional enrichment analysis of DEGs and 
PPI analysis

We assessed the biological functions of the identified DEGs 
using the DAVID Bioinformatics Resources (19).4 We generated 
the PPI network using the STRING database (20)5 with a minimum 
required interaction score set to 0.4. The obtained PPI information 
was then imported into Cytoscape 3.7.1 software (21).6 We used the 
cytoHubba plugin within Cytoscape to identify important DEGs 
as hub genes in the PPI network. The cytoHubba plugin employs 
various topological algorithms to predict and explore key nodes 
and subnetworks within a given network (22). Therefore, 
we applied the MCC algorithm and selected the top 50% ranked 
genes as hub genes for further analysis.

1 https://www.ncbi.nlm.nih.gov/geo/

2 http://www.ncbi.nlm.nih.gov/geo/geo2r/

3 https://jvenn.toulouse.inrae.fr/app/example.html

4 https://david.ncifcrf.gov/tools.jsp

5 https://string-db.org

6 https://cytoscape.org/
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2.1.4 Selection of glycolysis-related hub genes
We first identified five gene sets related to glycolysis from MSigDB7 

(23): BIOCARTA_GLYCOLYSIS_PATHWAY,GO_GLYCOLYTIC_
PROCESS, HALLMARK_GLYCOLYSIS, KEGG_GLYCOLYSIS_
GLUCONEOGENESIS, and REACTOME_GLYCOLYSIS. After merging 
and removing duplicates from these five gene sets, we obtained a total of 
330 glycolysis-related genes (Supplementary Table 1: S1). We then used 
Venn diagrams to identify the intersection between the glycolysis-related 

7 https://www.gsea-msigdb.org/gsea/msigdb/

gene sets and the hub genes, leading to the selection of glycolysis-related 
hub genes. Finally, we conducted validation of the selected GRHGs using 
the dataset GSE142615.

2.1.5 Construction of the ceRNA network
We predicted miRNAs related to GRHGs using three online 

miRNA databases: TarBase (24),8 starBase (25),9 and miRWalk (26).10 

8 https://dianalab.e-ce.uth.gr/html/diana/web/index.php?r=tarbasev8

9 http://starbase.sysu.edu.cn/

10 http://mirwalk.umm.uni-heidelberg.de/

FIGURE 1

Flowchart of the study.

TABLE 1 Information on the datasets utilized in this study.

GEO number Platform Species Source tissue Sample (SIC/control) Data Attribute

GSE79962 GPL6244 Human Heart 20/11 mRNA Test set

GSE44363 GPL1261 Mice Heart 4/4 mRNA Test set

GSE142615 GPL27951 Mice Heart 4/4 mRNA and lncRNA Validation set
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The intersection of miRNA predictions from these three databases was 
obtained using the Venn tool. Subsequently, we used RNA22 (27)11 to 
predict lncRNAs that interact with the target miRNAs. We validated 
the predictions using dataset GSE142615 and selected a subset of 
lncRNAs with |logFC| > 1 from the validation results.

2.2 The dual-luciferase reporter gene assay

Through the TargetScan website12 (28), the binding sites of IER3/
miR-214-3p and miR-214-3p/SNHG17 were predicted. Wild-type and 
mutant PCR primers were designed accordingly. HEK293-T cells 
DNA was extracted as the template, and PCR was performed to 
amplify the 3’UTR sequences of IER3 and SNHG17. After 
amplification, the PCR products were subjected to enzymatic 
digestion, and the digested products were purified following the 
instructions of the Gel Extraction Kit (DONGSHENG BIOTECH, 
China). The purified digested products underwent ligation reactions 
and were separately introduced into Escherichia coli DH5α competent 
cells. Single colonies were picked for amplification, and plasmid 
extraction was carried out using the Plasmid Isolation Kit 
(DONGSHENG BIOTECH, China) following the instructions. The 
resulting plasmids were identified by enzymatic digestion and 
separated on a 1% agarose gel with ethidium bromide. Positive clones 
were confirmed and subsequent sequencing of the plasmids 
was performed.

HEK293-T cells are widely used as a functional cell for producing 
adenovirus vectors, adeno-associated virus vectors and cellular 
biology research. The day before transfection, HEK293-T cells were 
seeded at a density of 2 × 104 cells per well in a 24-well plate using 
DMEM high-glucose medium (Gibico, United States) containing 10% 
FBS. On the day of transfection, when the cell confluence reached 
approximately 50–60%, each well was treated with 1 μL of cellfectin II 
Reagent (Invitrogen) diluted in OPTI-MEM medium (Gibico, 
United States). Subsequently, a mixture containing 20 μM miR-214-3p 
mimic or miR-214-3p inhibitor (Guangzhou RiboBio, China) and 
0.5 μg of wild-type or mutant plasmid was added to each well. Negative 
control (NC) groups with empty plasmid and NC inhibitor were also 
set up with three replicates for each group. The medium was changed 
for new growth medium after 6 h of transfection, and the cells were 
then cultured for a further 48 h. After that, the cells were extracted, 
and a GloMax bioluminescence detector was used to quantify the 
activity of firefly luciferase and Renilla luciferase. The measurements 
were performed following the instructions provided in the Promega 
Dual-Luciferase System Kit (Promega, United States), and the values 
for firefly luciferase and Renilla luciferase activities were recorded.

2.3 Clinical sample collection and RT-qPCR

PBMC samples from SIC patients were collected from the Panyu 
Central Hospital in Guangzhou, China. This study strictly adhered to 
the Helsinki Declaration and relevant legal and regulatory 

11 https://cm.jefferson.edu/rna22/Precomputed/

12 http://www.Targetscan.org

requirements, and it was approved by the Ethics Committee of Panyu 
Central Hospital (Approval No: PYRC-2023-086). Informed consent 
was obtained from all participants before the study commenced. 
Inclusion criteria were as follows: (1) Patients diagnosed with sepsis 
according to the Sepsis-3 criteria upon admission (1); (2) Patients with 
sepsis exhibiting the following conditions: left ventricular ejection 
fraction (LVEF) ≤ 50% and elevated myocardial injury markers; (3) 
Inclusion within a time frame of no more than 7 days from the initial 
diagnosis of SIC. Exclusion criteria were as follows: (1) Age < 18 years; 
(2) Concomitant acute myocardial infarction or severe arrhythmias; 
(3) History of chronic heart failure or chronic renal insufficiency; (4) 
End-stage tumor or hematological malignancies.

Each participant collected a 5 mL venous blood sample, which was 
stored at 4°C for a short period of time. PBMC was extracted on the 
day of blood collection and RNA was extracted using the TRIzol 
method. Subsequently, RNA was reverse transcribed into cDNA. RNA 
samples for IER3 and SNHG17 determination were reverse 
transcribed using the Hifair® first-strand cDNA synthesis kit (Yeasen, 
China), while miR-214-3p RNA samples were processed using the 
miRNA 1st strand cDNA synthesis kit (Accurate Biotechnology, 
China). The miR-214-3p stem-loop primer sequence was: 
GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATAC 
GACACTGCC. After reverse transcription, qPCR experiments were 
performed using ChamQ Universal SYBR qPCR Master Mix (Vazyme, 
China). GAPDH was used as the internal reference gene for IER3 and 
SNHG17, and U6 served as the internal reference gene for miR-214-3p. 
The relative expression of target genes was analyzed using the 2-ΔΔCt 
method. Primer sequences are shown in Table 2, and all experiments 
were performed in triplicate.

2.4 Statistical analyses

Statistical analyses were conducted using SPSS 25 and GraphPad 
Prism 9.5.1 software, and all data are presented as mean ± standard 
deviation. When comparing data between two groups, paired t-tests 
were used for data that followed a normal distribution, and 
non-parametric tests were used for data that did not follow a normal 
distribution. ANOVA was used for comparisons of relative luciferase 
activity among different groups. Univariate and multifactorial logistic 
regression analyses were performed to determine the correlation 
between the identified ceRNAs and SIC. The receiver operating 
characteristic (ROC) curve and area under the curve (AUC) values 
are used to compare diagnostic accuracy. The correlation between the 
relative expression levels of each gene and clinical parameters was 
assessed using either Pearson’s or Spearman’s correlation coefficient. 
p < 0.05 was considered statistically significant.

3 Results

3.1 Selection of SIC-related DEGs

Differential genes in datasets GSE79962 and GSE44363 were 
analyzed using GEO2R tool. All differential genes were visualized in 
volcano plots (Figures  2A,B), and the top  20 upregulated and 
downregulated genes were selected for generating a heatmap of 
differential genes (Figures 2C,D). A filter criterion with p < 0.05 and 
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|logFC| > 1 was applied, resulting in the selection of 222 significantly 
DEGs in the GSE79962 dataset, which included 141 upregulated and 81 
downregulated genes. In the GSE44363 dataset, a total of 930 significant 

DEGs were identified using the same criteria, with 539 genes 
upregulated and 391 genes downregulated. The intersection of 2 datasets 
was used to obtain 57 common DEGs (Supplementary Table 1: S2).

TABLE 2 Primer sequence.

Genes Forward primer (5′ to 3′) Reverse primer (5′ to 3′)

IER3 GCAGCCGCAGGGTTCTCTACC CTCTTCAGCCATCAGGATCTGG

miR-214-3p GGCACAGCAGGCACAGACA AGTGCAGGGTCCGAGGTATT

SNHG17 TGGGATCTGGGTTTGCTGATATTTCT GGTAGCCTCACTCTCCATTCTCTG

U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT

GAPDH AGAAGGCTGGGGCTCATTTG GCAGGAGGCATTGCTGATGAT

FIGURE 2

DEGs identified in GSE79962 and GSE44363. (A) Volcano plot of all DEGs in GSE79962. (B) Volcano plot of all DEGs in GSE44363. (C) Heatmap of the 
top 20 upregulated and downregulated DEGs in GSE79962. (D) Heatmap of the top 20 upregulated and downregulated DEGs in GSE44363.
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3.2 Functional enrichment analysis and PPI 
network construction

DAVID database was used to perform KEGG and GO analyses on 
the 57 common DEGs. GO analysis revealed that DEGs were involved 
in several biological processes (BP), including autocrine signaling, 
JAK–STAT cascade, skeletal muscle cell differentiation, negative 
regulation of inflammatory response, and cellular iron ion 
homeostasis. The major molecular functions (MF) of DEGs included 
protein binding, receptor binding, Toll-like receptor 4 binding, 
arachidonic acid binding, and RAGE receptor binding. The cellular 
components (CC) mainly associated with DEGs were the extracellular 
region, extracellular space, and RNA polymerase II transcription 
factor complex (Figure 3A). KEGG enrichment analysis showed that 
DEGs were significantly enriched in pathways related to HIF-1, TNF, 
IL-17 signaling, AGE-RAGE signaling pathway in diabetic 
complications, and Fluid shear stress and atherosclerosis (Figure 3B). 
These pathways are closely associated with inflammatory responses. 
Detailed data are presented in Supplementary Table 1: S3, S4.

To gain a deeper understanding of the interactions among DEGs, 
we constructed a PPI network using STRING, resulting in a network 
with 57 nodes and 106 edges. Subsequently, this PPI network was 
imported into Cytoscape software, and isolated nodes were removed, 
resulting in a DEGs network with 43 nodes and 106 edges. o further 
identify the most specific DEGs within this network, we used the 
CytoHubba plugin for analysis and ranking. This plugin evaluates the 
importance of nodes in the PPI using 11 different node ranking 
methods (20). We  selected the MCC method, which offers high 

sensitivity and specificity, and identified the top 50% of DEGs as hub 
genes (Figure 3C). The specific gene names are listed in Table 3.

3.3 Identification of glycolysis-related hub 
gene

A total of 330 glycolysis-related genes were obtained from the 
MSigDB database. Crossing these genes with the 57 DEGs and 21 hub 
genes led to the identification of two glycolysis-related DEGs, namely 
IER3 and STAT3 (Figure 4A). STAT3, as a well-known transcription 
factor, has been previously studied for its relevance to sepsis. IER3, a 
novel and specific gene discovered in this study, was selected as the 
glycolysis-related hub gene for further investigation. This gene showed 
significant upregulation in the SIC group in both GSE79962 and 
GSE44363 datasets. Validation was performed using the training 
dataset GSE142615, which confirmed that IER3 was also significantly 
upregulated in the SIC group of the GSE142615 dataset (Figure 4B).

3.4 ceRNA network construction

We predicted the miRNAs interacting with IER3 using the TarBase, 
starBase, and miRWalk databases (Supplementary Table 1: S5–S7). After 
intersecting the results from these three databases, we  identified 
miR-214-3p (Figure 4C). Subsequently, we employed the RNA22 database 
to predict 3,748 lncRNAs that interact with miR-214-3p 
(Supplementary Table 1: S8). To validate the relevance of these lncRNAs 

FIGURE 3

Functional enrichment analysis and PPI network of DEGs. (A) Results of GO analysis. (B) Results of KEGG analysis. (C) PPI network diagram of DEGs and 
hub genes. After removing isolated nodes, the orange and yellow nodes represent the top 50% of nodes ranked by the MCC algorithm. Nodes with 
larger diameters and darker colors indicate higher degrees in the PPI network.
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to SIC, we  utilized the GSE142615 dataset, which includes 670 
differentially expressed lncRNAs. By taking the intersection, we identified 
2 lncRNAs for validation: SNHG17 and KCNQ1OT1. Among them, 
SNHG17 was upregulated in the SIC group (logFC = 1.22764595) 
(Figure 4D), while KCNQ1OT1 was downregulated in the SIC group 
(logFC = −1.72168747) (Figure 4E). According to the theory of ceRNA, 
when the expression of lncRNAs is upregulated in SIC, they can better 
serve as “sponges” that competitively bind with miRNAs. Therefore, 
we  chose SNHG17 and constructed a ceRNA network related to 
glycolysis: SNHG17/miR-214-3p/IER3.

3.5 Validation of gene-specific binding 
through dual-luciferase activity

Potential binding sites between IER3 and miR-214-3p and 
miR-214-3p and SNHG17 were predicted using the TargetScan 
website. PCR primers were designed based on the 3’UTR sequences 
of IER3 and SNHG17, and both wild-type and mutant gene sequences 
were synthesized (Figure 5A). Successful amplification of the PCR 
products for IER3 and SNHG17 was confirmed by agarose gel 
electrophoresis (Figure 5B). After PCR product recovery, enzymatic 
digestion, ligation, and transformation, plasmids were extracted and 
identified as positive clones by enzymatic digestion (Figure  5C). 
Subsequent plasmid sequencing results revealed that the wild-type 
plasmids (IER3-3′UTR-wt, SNHG17-3′UTR-wt) had sequences 
identical to the reference sequence. In contrast, mutant plasmids 
(IER3-3′UTR-mut and SNHG17-3′UTR-mut) exhibited a mutation 
from CCTGCTG to TTGATGA in both cases (Figure 5D).

In the wild-type IER3 group, relative luciferase activity 
significantly decreased in the IER3-3′UTR-wt + miR-214-3p group 
compared to the empty plasmid NC group. Conversely, the IER3-
3′UTR-wt + miR-214-3p inhibitor group showed a significant increase 
in relative luciferase activity compared to the NC inhibitor group. No 
significant change in relative luciferase activity was observed in the 
IER3-3′UTR-mut group, indicating that miR-214-3p can specifically 
bind to the 3′UTR target site of the IER3 gene, and there is only one 
binding site (Figure 5E). In the wild-type SNHG17 group, relative 
luciferase activity significantly decreased in the SNHG17-
3′UTR-wt + miR-214-3p group compared to the empty plasmid NC 
group. Conversely, the SNHG17-3′UTR-wt + miR-214-3p inhibitor 
group showed a significant increase in relative luciferase activity 
compared to the NC inhibitor group. No significant change in relative 
luciferase activity was observed in the SNHG17-3′UTR-mut group, 
indicating that miR-214-3p can specifically bind to the 3′UTR target 
site of the SNHG17 gene, and there is only one binding site (Figure 5F). 
All the raw data is presented in Supplementary Table S2.

3.6 Validation of the ceRNA network by 
PBMC samples

In this study, a total of 20 patients meeting the criteria for SIC 
were included, and an additional 18 healthy individuals were recruited 
as the control group. Detailed clinical data for SIC patients can 
be found in Supplementary Table 3: S2. The expression of SNHG17/
miR-214-3p/IER3  in PBMCs of SIC patients was detected using 
RT-qPCR (Supplementary Table 3: S1). The results showed that the 
expression of IER3 and SNHG17 was significantly upregulated in 
PBMC samples from SIC patients (p < 0.05) (Figures 6A,C), while 
miR-214-3p was downregulated (p < 0.05) (Figure  6B). Logistic 
regression analysis showed a significant correlation between IER3, 
miR-214-3p, SNHG17 expression and SIC (Table  4). ROC curve 
analysis showed that IER3 (AUC: 0.833), miR-214-3p (AUC: 0.778), 
and SNHG17 (AUC: 0.792) had good diagnostic capabilities 
(Figure  6D). Subsequently, we  combined various indicators and 
predictive ability of the model again，the multivariate ROC analysis 
revealed that the combined model of IER3 + miR-214-3p + SNHG17 
had the best diagnostic performance (AUC: 0.942), followed by the 
models combining two genes: IER3 + miR-214 (AUC: 0.914), 
IER3 + SNHG17 (AUC: 0.881), and miR-214-3p + SNHG17 (AUC: 
0.892), all of which exhibited higher diagnostic capabilities than the 
single-gene models (Figure 6E). We used the Spearman correlation 
coefficient to examine the correlation between the relative expression 
levels of each gene and clinical indicators in patients. It was found that 
the relative expression level of IER3 was negatively correlated with the 
oxygenation index (p < 0.05), and the relative expression level of 
miR-214-3p was negatively correlated with NT-proBNP (N-terminal 
pro-brain natriuretic peptide) (p < 0.05) (Table 5).

4 Discussion

Sepsis is a disease characterized by a dysregulated host response 
to infection, resulting in multi-organ dysfunction (1), and it claims the 
lives of millions of people worldwide each year (29). SIC is a severe 
complication resulting from sepsis, often indicating a poorer prognosis 

TABLE 3 Hub genes ranked in the top 50% by CytoHubba.

Gene name Description

STAT3 Signal transducer and activator of transcription 3

CCL2 C-C motif chemokine ligand 2

SERPINE1 Serpin family E member 1

TIMP1 TIMP metallopeptidase inhibitor 1

ADIPOQ Adiponectin, C1Q and collagen domain containing

HMOX1 Heme oxygenase 1

SELE Selectin E

MYC V-myc avian myelocytomatosis viral oncogene homolog

SOCS3 Suppressor of cytokine signaling 3

NAMPT Nicotinamide phosphoribosyltransferase

MRC1 Mannose receptor, C type 1

JUNB JunB proto-oncogene, AP-1 transcription factor subunit

CEBPD CCAAT/enhancer binding protein delta

ZFP36 ZFP36 ring finger protein

CISH Cytokine inducible SH2 containing protein

GADD45B Growth arrest and DNA damage inducible beta

BTG2 BTG anti-proliferation factor 2

IL1R2 Interleukin 1 receptor type 2

S100A9 S100 calcium binding protein A9

PTX3 Pentraxin 3

IER3 Immediate early response 3
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and a higher mortality rate. Due to the urgency of diagnosing and 
treating SIC, there is a clinical need for highly specific diagnostic tools 
to promptly recognize the condition.

Currently, echocardiography and biomarkers of myocardial injury 
are the preferred modalities for clinical assessment, but they are not 
specific enough to diagnose SIC. A significant issue is that reduced 
afterload resulting from the distributive shock may pseudo-normalize 
a depressed EF (coupling between contractility and afterload) (30, 31). 
While echocardiographic parameters like diastolic function and right 
ventricular (RV) systolic function lack the same specificity as LVEF in 
diagnosing SIC, they often require exclusion in conjunction with other 
diagnostic methods (6). Novel parameters such as global longitudinal 
strain (GLS), myocardial performance index (MPI) currently lack 
reliability data in clinical applications (32). Therefore, exploring the 
pathophysiological mechanisms of SIC and identifying indicators that 
are more sensitive and specific will provide robust assistance in the 
diagnosis and treatment of SIC.

The pathogenesis of septic cardiomyopathy is complex, with 
metabolic changes playing a pivotal role (33). During sepsis, there is 
a shift in cellular metabolism from oxidative phosphorylation to 
glycolysis, a phenomenon known as the Warburg effect (34). Enhanced 
glycolysis can lead to rapid activation of immune cells, resulting in the 
release of numerous pro-inflammatory cytokines. In some cases, this 
process can trigger a “cytokine storm,” further exacerbating organ 
dysfunction (4). Studies have shown that inhibiting glycolysis with 
2-deoxyglucose (2-DG) significantly alleviates cardiac dysfunction 

and improves survival rates in septic mice. Additionally, this 
intervention enhances the expression of Sirt1 and Sirt3, which are 
associated with mitochondrial function protection in cardiac muscle, 
while suppressing the expression of apoptotic genes Bak and Bax, as 
well as JNK phosphorylation (12). These findings underscore the close 
relationship between glycolysis and SIC. However, the specific 
mechanisms by which glycolysis operates in the context of SIC remain 
to be fully elucidated, warranting further in-depth research.

With the development of genomics technology in recent years, sepsis 
diagnosis and treatment have benefited from the use of both gene 
sequencing and gene therapy (35, 36). The discovery of novel biomarkers 
through genomic sequencing techniques has provided new avenues for 
identifying diagnostic targets in diseases. Analyzing differential gene 
expression from datasets such as GEO and constructing ceRNA networks 
has emerged as a crucial approach in current research.

In this study, we used bioinformatics techniques to identify 2 
hub genes related to glycolysis in SIC: IER3 and STAT3. STAT3, as a 
classical transcription factor, plays a crucial role in regulating 
various physiological pathways, including cell growth, 
differentiation, and apoptosis. Previous research has confirmed the 
pivotal role of STAT3 in LPS-induced myocardial dysfunction (37). 
IER3, also known as IEX-1, is a stress-inducible immediate-early 
gene It plays a role in influencing mitochondrial F1Fo ATPase 
activity, regulating mitochondrial reactive oxygen species balance, 
and participating in the modulation of mitochondrial oxidative 
phosphorylation and glycolysis (38). IER3 has a unique role in the 

FIGURE 4

Selection of glycolysis-related DEGs and construction of ceRNA network. (A) Venn diagram results show the presence of 2 glycolysis-related hub 
genes (STAT3 and IER3). (B) Differential expression of IER3 in GSE79962, GSE44363, and GSE142615. (C) The common miRNA target identified in the 3 
databases is miR-214-3p. (D) Expression of KCNQ1OT1 in GSE142615. (E) Expression of SNHG17 in GSE142615. *p  <  0.05; **p  <  0.01; ***p  <  0.001.
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pathogenesis of cardiovascular and inflammatory diseases. Its 
expression is significantly upregulated in the myocardial tissues of 
mice subjected to pressure overload, and IER3 gene knockout may 
lead to hypertension and cardiac hypertrophy in mice (39). It can 
impact inflammatory responses by regulating pathways such as 
NF-κB and Nrf2 (40). In this study, we  revealed a relationship 

between IER3 and SIC for the first time and gained new insights into 
the study of IER3.

Subsequently, We  then predicted miRNAs targeting IER3 from 
multiple databases and identified miR-214-3p as one of the miRNAs 
targeting IER3. Previous research has suggested a potential link between 
miR-214-3p and the pathogenesis of SIC. Overexpression of miR-214-3p 

FIGURE 5

Dual-luciferase reporter gene assay. (A) Binding sites of miR-214-3p with IER3 and SNHG17, along with the sequences after mutation. (B) Amplification 
confirmation of PCR products. (a) IER3-3'UTR-wt PCR identification results (737bp); (b) SNHG17-3'UTR-wt PCR identification results (1086 bp). 
(C) Identification of plasmid enzyme digestion products. (a) IER3 plasmid enzyme digestion products (737bp); (b) Identification results of SNHG17 
plasmid enzyme digestion products (1086bp). (D) Sequencing results of wild-type and mutant plasmids. The wild-type plasmids of IER3 and SNHG17 
are consistent with the reference sequence, while the corresponding positions of mutant plasmids have been successfully mutated. (E,F) Dual-
luciferase reporter gene assay results. ****p  <  0.0001, ns: p  >  0.05.
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in septic mice models has been shown to alleviate myocardial 
dysfunction and damage. Additionally, it inhibits myocardial 
inflammation, and reduce autophagy (41). Upregulation of miR-214-3p 
has an inhibitory effect on myocardial cell apoptosis and injury in rats 
with myocardial ischemia/reperfusion injury (42). Conversely, its 
deficiency may exacerbate cardiac fibrosis (43). We  then predicted 
lncRNAs targeted by miR-214-3p, among which SNHG17 was identified. 
Studies have indicated that SNHG17 is upregulated in ovarian cancer 
and acts as a molecular sponge for miR-214-3p, relieving miR-214-3p’s 
inhibitory effect on the cell cycle regulator CDK6, thereby promoting the 
growth of ovarian cancer cells (44). SNHG17 is upregulated in various 
tumors and is closely associated with adverse prognosis and advanced 
clinical-pathological characteristics in cancer patients (45). However, its 
role in cardiovascular diseases has not been thoroughly investigated.

Based on the above research, we predicted and established a novel 
ceRNA network, SNHG17/miR-214-3p/IER3. To validate the 

authenticity of this network, we  conducted a luciferase assay, 
confirming the specific binding relationships between IER3/
miR-214-3p and SNHG17/miR-214-3p. The unique expression of 
IER3, miR-214-3p, and SNHG17 was validated by qPCR utilizing 
PBMC samples from clinical SIC patients. The ROC curves 
demonstrate that this ceRNA network possesses a strong diagnostic 
capability. Interestingly, we also observed correlations between IER3 
and oxygenation index, as well as miR-214-3p and NT-proBNP.

It should be noted that in this study, a direct correlation between 
IER3-miR-214-3p-SNHG17 and LVEF was not observed. This finding 
is similar to previous research by Parker et al. (46), who reported that 
only about 50% of patients with septic shock had a reduced 
LVEF. Additionally, survivors had a lower LVEF on average compared 
to non-survivors (46). While a decreased LVEF is a clinical diagnostic 
criterion for SIC, it is important to note that LVEF values can 
be influenced by cardiac loading conditions and vary with individual 

TABLE 4 Univariate and multivariate logistic analyses in SIC patients.

Variables Univariate analysis Multivariate analysis

OR 95% CI p value OR 95% CI p value

IER3 2.352 1.314–4.208 0.004 2.329 1.042–5.203 0.039

miR-214-3p 0.062 0.08–0.497 0.009 0.02 0.001–0.423 0.012

SNHG17 2.738 1.367–5.483 0.009 2.8 1.055–7.428 0.039

CI, confidence interval; OR, odds ratio.

FIGURE 6

Expression and ROC curve of various genes in SIC patients. (A) Relative expression levels of IER3 in PBMCs of SIC patients. (B) Relative expression levels 
of miR-214-3p in PBMCs of SIC patients. (C) Relative expression levels of SNHG17 in PBMCs of SIC patients. (D) ROC curves assessing the individual 
diagnostic ability of IER3, miR-214-3p, and SNHG17 for SIC. (E) ROC curves assessing the combined diagnostic ability of IER3, miR-214-3p, and 
SNHG17 for SIC.**p  <  0.01,***p  <  0.001.

https://doi.org/10.3389/fmed.2024.1343281
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Cheng et al. 10.3389/fmed.2024.1343281

Frontiers in Medicine 11 frontiersin.org

differences in filling pressures and cardiac afterload. Therefore, the 
specificity of LVEF values in diagnosing and prognosticating SIC is 
suboptimal. Although IER3-miR-214-3p-SNHG17 did not show a 
direct correlation with LVEF, its expression in SIC and the sensitivity 
of this diagnostic model still suggest the potential diagnostic value of 
this network. These findings are significant for understanding SIC’s 
pathophysiology and identifying possible treatment options.

In this study, we have established a novel glycolysis-related ceRNA 
network, SNHG17/miR-214-3p/IER3, which has not been previously 
reported in current studies, and discovered the precise expression of 
IER3 in SIC for the first time. To increase the credibility of our results, 
we experimentally validated the specific binding of this ceRNA network 
through dual-luciferase reporter assays and confirmed the differential 
expression of SNHG17/miR-214-3p/IER3  in PBMCs using external 
datasets and human PBMC samples. Nevertheless, this study has several 
limitations. Firstly, the sample sizes from the selected datasets were 
restricted due to the scarcity of SIC samples in the GEO database. 
Additionally, the number of participants included in our PBMC validation 
was relatively small, requiring further clinical research to validate and 
broaden the applicability of our findings. Furthermore, considering the 
restricted specificity of LVEF in SIC diagnosis and prognosis, 
incorporating additional novel biomarkers like global longitudinal strain 
(GLS) and myocardial performance index (MPI) during the collection of 
clinical cases could be beneficial. Alternatively, applying stricter inclusion 
criteria, such as LVEF < 45% (47–49), for the combined diagnosis of SIC 
might enhance the accuracy and specificity of SIC diagnosis. In future 
studies, we will employ more rigorous diagnostic criteria for the collection 
of clinical cases and further validate the accuracy of this ceRNA network 
in diagnosing and prognosticating SIC.

6 Conclusion

We have identified IER3 as a novel target related to glycolysis in 
SIC and established a new ceRNA network: SNHG17/miR-214-3p/
IER3. This ceRNA network may be  closely associated with the 
development and occurrence of SIC. Despite certain limitations, this 
study opens up new avenues for a more profound understanding of 
the pathophysiological mechanisms of SIC and the development of 

more effective diagnostic tools. Future research will require more 
rigorous and extensive clinical studies to validate its diagnostic 
potential in clinical settings.
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