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Bone defects resulting from severe trauma, tumors, inflammation, and other 
factors are increasingly prevalent. Stem cell-based therapies have emerged as 
a promising alternative. Dental pulp stem cells (DPSCs), sourced from dental 
pulp, have garnered significant attention owing to their ready accessibility and 
minimal collection-associated risks. Ongoing investigations into DPSCs have 
revealed their potential to undergo osteogenic differentiation and their capacity 
to secrete a diverse array of ontogenetic components, such as extracellular 
vesicles and cell lysates. This comprehensive review article aims to provide 
an in-depth analysis of DPSCs and their secretory components, emphasizing 
extraction techniques and utilization while elucidating the intricate mechanisms 
governing bone regeneration. Furthermore, we explore the merits and demerits 
of cell and cell-free therapeutic modalities, as well as discuss the potential 
prospects, opportunities, and inherent challenges associated with DPSC therapy 
and cell-free therapies in the context of bone regeneration.
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1 Introduction

Bone defects resulting from severe trauma, tumors, inflammation, and other factors have 
become increasingly prevalent (1). Bone undergoes remodeling, growth, and development and 
have remarkable regenerative capabilities following injury (2). Bone defect of critical size 
exceeds the regenerative ability of ones’ leading to impaired healing and nonunion.

Ideal bone grafts should be osteoconductive, osteoinductive, biocompatible, mechanically 
compatible, and potentially degradable. To treat critical size bone defect, autologous bone 
grafting remains the gold standard in current practice (3), but is subject to several limitations, 
such as low availability and collection risk.

Stem cell-based therapies have garnered increasing attention in bone regeneration. 
Mesenchymal stem cells (MSCs), initially isolated by Friedenstein from bone marrow in 1976 
(4), have been found to differentiate into various lineages, including adipocytes, chondrocytes, 
and osteoblasts. MSC possess immunomodulatory, anti-inflammatory, anti-apoptotic, and 
paracrine abilities (5). Dental pulp stem cells (DPSCs) are a type of MSC derived from dental 
pulp that exhibit MSC-like properties and have exceptional capabilities in nerve and bone 
regeneration (6), secreting various active components, including extracellular vesicles, growth 
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factors, cytokines, and extracellular matrix (7). These cell-free 
components derived from diverse procedures and amenable to various 
formulations, such as cell lysates, extracellular vesicles, conditioned 
media. Several studies have shown that cell-free components of MSCs’ 
could offer superior therapeutic effect over MSCs treating diseases. In 
contrast to the substantial body of research on MSCs, DPSC-based 
regenerative medicine and tissue engineering applications is limited 
but fast growing, especially in the context of their cell-free therapeutic 
modalities designed for bone regeneration.

In this review, we provide a detailed overview of the latest progress 
about the research update on DPSCs in bone regeneration. We believe 
this review will serve as a guidance for researchers and practitioners 
to establish a clear understanding on the research update of DPSCs in 
bone regeneration.

2 Characteristics of bone regeneration

2.1 General properties of bone

Bone matrix mainly consists of the inorganic component, 
hydroxyapatite, and the organic component, type I collagen, which is 
a calcified intercellular matrix (8). These components constitute the 
infrastructure of the mechanical properties of bone, e.g., tensile and 
compressive strength. Four primary cell populations present in bone 
tissue are osteoprogenitor cells, osteoblasts, osteoclasts, and osteocytes 
(9). Osteocytes are predominantly located within the bone matrix, 
while the other three cell types are found at the edge of bone tissue. 
The maintenance of bone homeostasis hinges on the dynamic balance 
between the osteoclast and osteoblast.

Osteoblasts are mainly involved in the development of new bone 
and undergo three differentiation stages: osteoprogenitor cells, 
preosteoblasts, and osteoblasts. Osteoblasts are derived from MSCs 
through multiple differentiation pathways. Initially, in osteoblast cell 
lines, MSCs differentiate into osteoprogenitor cells (10). The 
expression of Sox family transcription factors marks the primary 
differentiation of osteoblasts. Sox4 and Sox11 (SOXC group) promote 
the survival of osteoprogenitor cells (11), while Sox9 indicates 
differentiation toward chondrocytes (12). Osteoblasts could transform 
into osteocytes, which interact with nerves, blood vessels, and tissue 
fluid to form osteons that provide structural support for the skeleton.

In addition, bone morphogenetic proteins (BMPs) also play a 
critical role in bone generation and repair (13), attracting the 
aggregation of preosteoblasts at the injured site and differentiating 
them into osteoblasts (14). Recombinant human bone morphogenetic 
protein-2 (rhBMP-2) was approved by the FDA in 2002 for use in 
anterior lumbar interbody fusion. However, complications have been 
identified, such as excessive osteogenesis, osteolysis, inflammation, 
edema, and carcinogenicity.

Osteoclasts originate from hematopoietic stem cells, and their 
function is mainly to absorb and resorb bone. Hematopoietic stem 
cells can differentiate into osteoblasts, macrophages, dendritic cells, 
and other cell types (15). Macrophage colony-stimulating factor 
(M-CSF) and receptor activator of NF-κB ligand (RANKL), which can 
be produced by stromal cells, osteoblasts, and immune system cells, 
are essential in the differentiation and survival of osteoclasts (16). 
Interestingly, they are highly expressed in osteoblasts (17). M-CSF 
binds to the CSF-1 receptor to activate downstream signaling and 

further upregulate RANK expression, thereby promoting the 
differentiation of hematopoietic stem cells into osteoblast precursor 
cells (18). When activated by RANKL-RANK signaling, osteoclast 
precursor cells differentiate, fuse, and interact with osteoblasts to 
become mature osteoclasts (19). Osteoprotegerin (OPG) is also 
involved in this process. OPG, produced mainly by osteoblasts, is a 
soluble RANKL decoy receptor that inhibits osteoclast formation and 
bone resorption by preventing RANKL-RANK receptor interactions 
(20). M-CSF can stimulate cell survival signaling through activation 
of thymoma virus proto-oncogene 1 (commonly known as AKT) via 
phosphatidylinositol 3 kinase (PI3K), but it most notably activates 
extracellular signal-regulated kinase (ERK) via growth factor receptor 
binding protein 2 [Grb-2; (21)]. All these factors can indirectly induce 
osteoblast precursor cells to differentiate into mature osteoblasts 
(Figure 1).

The growth and development of human bone involve a continuous 
process of bone remodeling. In this process, osteoclasts absorb old bone 
matrix, and osteoblasts deposit sedimentary new bone matrix (8). 
However, bone regeneration after damage caused by trauma, tumors, or 
inflammation is a distinct regenerative process. This process commences 
with the onset of inflammation and the upregulation of proinflammatory 
factors at the site of damage, including tumor necrosis factor-α (TNF-α), 
interleukin-1 (IL-1), interleukin-6 (IL-6), and interleukin-11 (IL-11) 
among others (22). Subsequently, neutrophils and macrophages 
accumulate at injury site. The bone remodeling process occurs in four 
stages (19): recruitment and activation of osteoclasts at the site of injury; 
resorption of broken bone matrix by mature osteoclasts; differentiation 
of osteoprogenitor cells into mature osteoblasts; and aggregation of 
osteoblasts to form new bone matrix and mineralization. These stages 
are distinct and overlap with each other.

2.2 Pathways associated with bone 
regeneration

The mechanisms underlying bone regeneration have been 
extensively investigated, leading to the identification of various 
signaling pathways involved in this process (23). These pathways, 
such as the Hedgehog signaling (Hh) pathway, Notch signaling 
pathway, WNT signaling pathway, BMP/TGF-β and MAPK signaling 
pathway, IGF signaling pathway, and other signaling pathways (FGF 
signaling pathway, PI3K/Akt/mTOR signaling pathway, et  al.), 
interact with each other to co-regulate bone regeneration (24) 
(Figures 2–5).

2.2.1 Hedgehog signaling pathway
The differentiation of osteoblast lineages is regulated by 

multiple signaling pathways, with the Hh pathway being of critical 
importance in bone formation. Shh is a major morphogenetic 
factor in limb formation, regulating patterns and growth during 
early limb development. Takebe et al. found that Runx2 and Osx 
co-localized Shh and Gli1 on the surface of bone matrix and 
chondrocytes 7 days after fracture in SD rats, suggesting that Shh 
is involved in intramembranous ossification and endochondral 
ossification during fracture healing (25). On the other hand, Ihh is 
involved in several aspects of cartilage endosteal bone development. 
It is upregulated during the early stages of bone regeneration, 
expressed in prehypertrophic and hypertrophic chondrocytes, and 
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FIGURE 1

The development of osteoblasts and osteoclasts. The formation of mature osteoblasts has three differentiation stages: osteoprogenitor cells, 
preosteoblasts, and osteoblasts. Originally, the expression of Sox9 transcription factors marked the differentiation of osteoprogenitor cells. Runx2 
signals the formation of preosteoblasts. The high expression of Osx reflects the differentiation of preosteoblasts into osteoblasts. Eventually, a portion 
of osteoblasts transformed into osteocytes that interact and combine with nerves, blood vessels, and tissue fluid to form osteons that provide 
structural support for the skeleton. Osteoclasts originate from hematopoietic stem cells. M-CSF promotes the proliferation of osteoclast precursors, 
and RANKL promotes the differentiation of mature osteoclasts.

FIGURE 2

Introduction of pathways related to bone regeneration, like WNT signaling pathway. (A) IHH binds to Smoothened homolog (SMO) to activate GLI2 
activator (GLI2A) and to prevent the cleavage of GLI3-to-GLI3 repressor (GLI3R), thus leading to the formation of osteocytes. (B) Hydrolysis of Notch 
proteins is achieved by Notch binding to JAG or DLL, followed by Notch intracellular structural domain (NCID) binding to EGF repeats present in the 
ligand to affect the expression of downstream target genes, including the split hairy enhancer (Hes) and Hes associated with the YRPW motif (Hey). 
Hes1 and Hey1 prevent osteoblast differentiation and maturation and promote bone resorption by inhibiting Runx2 activity, where the expression of 
Hes1 appears to be a key determinant of bone mass. (C) The FGF pathway activation begins with FGF binding to FGFR, with subsequent 
phosphorylation of tyrosine residues in the intracellular domain of FGFR, recruitment of various substrates, and activation of downstream pathways. 
This ultimately leads to cell proliferation, differentiation, and apoptosis.
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FIGURE 3

Introduction of pathways related to bone regeneration, like Hedgehog signaling pathway, Notch signaling pathway and FGF signaling pathway. (A) The 
WNT signaling pathway, divided into the WNT/β-catenin pathway, the WNT/Ca2+-dependent pathway, and the WNT/planar cell polarity (PCP) pathway. 
Upon binding ligands such as Wnt1 to the FZD receptor and LRP5/6 complex, Axin down-regulates and inactivates GSK-3β, inducing the accumulation 
of β-catenin in the cytoplasm and translocation to the nucleus to induce the expression of target genes. (B) In the Wnt/Ca2+ pathway, the increase in 
intracellular Ca2+ concentration activates CaMK II and protein kinase C (PKC) and facilitates the translocation of β-catenin to the nucleus. (C) Wnt 
activates WNT/PCP signaling through tyrosine kinase-like orphan receptor (Ror) proteins, promoting the formation of osteocytes and activation of 
downstream signaling pathways.

FIGURE 4

Introduction of pathways related to bone regeneration, like BMP/TGF-βsignaling pathway. (A) Binding of BMP leads to the phosphorylation of Smad1, 
Smad5, or Smad8. The binding of TGF-β leads to the phosphorylation of Smad2 or Smad3. They form a complex with Smad4, which then moves the 
nucleus to control gene expression and enable the transformation of mature osteoblasts. They can also activate non-smad-dependent pathways, 
including PI3K/AKT, TAK1, and MAPK signaling pathways, which are cascades of signaling events.
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indirectly regulates osteoblast differentiation by controlling 
cartilage development.

The Gli family is an important transcription factor involved in the 
Hh pathway, which includes Gli1, Gli2, and Gli3 (25). As a 
transcriptional repressor, Gli3 appears to play a dominant role in the 
control of chondrocyte proliferation and hypertrophy, while Gli2 
activation may have a more prominent role in angiogenesis (26). The 
absence of these transcription factors can lead to abnormal skeletal 
development or postnatal death in mice (27). Gli1 acts synergistically 
with Gli2 and Gli3, and there is an inhibitory effect of Gli3 inhibitors 
on osteoblast differentiation, which is partially mediated through 
inhibition of Gli1 (28).

2.2.2 Notch signaling pathway
The Notch signaling pathway plays a crucial role in regulating cell 

proliferation and differentiation in various tissues and organs, 
including skeletal development, bone metabolism, and regeneration 
(29). Four Notch receptors have been identified so far; they are 
Notch1-4 and have been identified in humans and mice. Studies have 
demonstrated that Notch1 overexpression leads to decreased 
expression of alkaline phosphatase transcripts, type I  collagen, 
osteocalcin, and other proteins associated with bone regeneration 
during the differentiation of ST-2 stromal cells into osteoblasts. 

Additionally, Notch2 selective inhibition has been shown to hinder 
RANKL-induced osteoclast genes during osteoclast differentiation, 
while ectopic expression of Notch2 enhances NFATc1 promoter 
activity and promotes osteoclastogenesis (30). Notch3 activation in 
prostate cancer bone metastases has been shown to induce and secrete 
matrix metalloproteinase-3 (MMP-3), which subsequently inhibits 
osteoclast differentiation and enhances osteoblast proliferation (31). 
Pulsed electromagnetic field (PEMF) treatment has been shown to 
activate Notch pathways, stimulate all osteogenic markers, and 
increase the expression of Hey1, Dll4, and Notch4 in osteogenic media 
(32). This suggests that Notch4 plays a positive regulatory role in 
Notch signaling. It is worth noting that the stimulation or inhibition 
of Notch signaling in osteoblasts and osteoprogenitor cells may 
depend on the cellular environment, the differentiation status of the 
cell, or the developmental stage of bone formation (33).

Delta-like protein-1/3/4 and Jagged1/2 are five membrane-bound 
ligands that have been identified as activators of Notch signaling (34). 
Mechanistically, the binding of Notch to Jagged1/2 or Delta-like 
protein-1/3/4 leads to hydrolytic cleavage of Notch proteins, allowing 
the Notch intracellular structural domain (NCID) to bind to EGF 
repeats present in the ligand and affect the expression of downstream 
target genes. These genes include the hairy enhancer (Hes) and the 
Hes associated with the YRPW motif (Hey). Hes1 and Hey1 inhibit 

FIGURE 5

Mesenchymal stem cell secretome and extract. The MSC secretome, or CM, plays a major role in the use of MSCs to treat diseases. It is a variety of 
molecules and extracellular vehicles (EVs) secreted by MSCs into the extracellular space. These molecules include soluble proteins (such as growth 
factors, chemokines, enzymes, adhesion molecules, hormones, antimicrobial peptides, etc.), free nucleic acids, lipids, etc. EVs can be classified into 
apoptotic bodies (1–5  μm), microvesicles (250–400  nm), and exosomes (30–150  nm), according to their size and origin. Cell lysate is obtained by lysing 
cells through ultrasonolysis or freeze–thaw technology.
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Runx2 activity, thereby preventing osteoblast differentiation and 
maturation and promoting bone resorption (35). Notably, the 
expression of Hes1 appears to be a key determinant of bone mass (36). 
Shen et  al. have reported that in osteoblasts, Hes-1 enhances 
1,25-Dihydroxyvitamin D3 (1, 25-(OH)2-D3)-induced osteopontin 
transcription and that this enhancement is inhibited by inhibitors of 
Runx2 (37).

2.2.3 WNT signaling pathway
The WNT signaling pathway is a complex and versatile pathway 

that is present in all major systems. WNT signaling pathway, divided 
into the WNT/β-catenin pathway and two non-classical pathways, the 
WNT/Ca2+-dependent pathway and the WNT/planar cell polarity 
(PCP) pathway (38). Binding of extracellular WNT ligands to the 
Frizzled family of transmembrane receptors as well as lipoprotein 
receptor-related protein-5 (LRP5) and lipoprotein receptor-related 
protein-6 (LRP6) co-receptors activate the classical pathway (39). Wnt 
ligands are a class of secretive proteins that act through autocrine or 
paracrine mechanisms, and 19 different Wnt ligands are present in the 
human body. Wnt1, Wnt2b, Wnt3, Wnt7a, and Wnt8 are primarily 
involved in the WNT/β-catenin pathway.

Under normal conditions, cytoplasmic β-catenin is 
phosphorylated by a complex of glycogen synthase-3β (GSK-3β), 
adenomatous polyposis coli, and Axin and subsequently rapidly 
degraded by the ubiqui-tin-proteasome system. However, upon Wnt 
stimulation, Axin down-regulates and inactivates GSK-3β, leading to 
the accumulation of β-catenin in the cytoplasm, which translocates to 
the nucleus and induces target gene epistasis via TCF/LEF1 and 
CBP. In vitro studies have indicated that Wnt ligands promote the 
differentiation of MSCs into osteoblasts by activating the WNT/β-
catenin pathway, thereby enhancing osteogenic bone mass, suggesting 
that the WNT/β-catenin pathway is essential in the osteogenic 
differentiation system (40).

The non-classical pathway includes the ligands Wnt4, Wnt5a, 
Wnt5b, Wnt7b, and Wnt11. Ligand binding to the receptor does not 
induce intracellular β-catenin accumulation, but it does participate in 
osteoblast and osteoclast differentiation. Maeda et  al. found that 
Wnt5a activates WNT/PCP signaling through the tyrosine kinase-like 
orphan receptor (Ror) protein, thereby enhancing osteoclastogenesis 
and promoting bone resorption (41). In the Wnt/Ca2+ pathway, an 
increase in intracellular Ca2+ concentration leads to the activation of 
calmodulin-dependent protein kinase II (CaMK II) and protein 
kinase C (PKC), which in turn facilitates β-catenin translocation to 
the nucleus (42). Kuhl et al. showed that CaMK II and PKC activated 
by the Wnt/Ca2+ pathway block the Wnt/β-catenin pathway upstream 
of β-catenin and phosphorylate the intracellular protein (43). 
However, its downstream mechanisms are unclear.

2.2.4 BMP/TGF-β signaling pathway
In most of the studies, it is believed that the BMP/TGF-β signaling 

pathway is crucial to bone biogenesis. The transcriptional growth 
factor beta (TGFβ) is synthesized by osteoblasts and embedded in the 
mineralized matrix. It is one of the most abundant cytokines present 
in the bone matrix, and it is more abundant than BMP in vivo. The 
BMP family constitutes the largest subfamily of the TGFβ superfamily. 
BMP is a cytokine essential for fetal tissue development and fracture 
repair and is considered a key factor in the lineage of MSCs to bone 
progenitor cells (44). The major intracellular mediators of the BMP/

TGF-β signaling pathway are Smad molecules. Nine Smads molecules 
have been identified and defined, classified as receptor-regulated 
Smads (R-Smads), co-mediator Smads (Co-Smads), and inhibitory 
Smads (I-Smads). R-Smads consist of Smad1/2/3/5/8/9, among which 
Smad2/3 is mainly involved in the TGF-β signaling pathway, while 
Smad1/5/8/9 is mainly involved in the BMP signaling pathway. 
Co-Smad, also known as Smad4, is involved in the two pathways (45). 
I-Smad, which is divided into Smad6/7, exerts a negative regulatory 
effect on the TGF-β signaling pathway. In the typical Smad-dependent 
TGF-β or BMP signaling pathway (46), TGF-β binds to type II and 
type I TGF-β receptors, or BMP binds to BMP receptor II to form a 
heterotetrameric receptor complex. This complex activates 
phosphorylated R-Smads, which forms a complex with Smad4 and is 
subsequently recruited to the nucleus (47, 48). In the nucleus, the 
complex promotes the expression of osteogenic-related genes. In the 
presence of I-Smads, R-Smads cannot be phosphorylated to form 
complexes with Co-Smads, leading to the inhibition of this signaling 
pathway (45).

The non-Smad-dependent pathways include TAK1, MAPKs, and 
PI3K/AKT signaling pathways (49), which constitute cascades of 
signaling events. For example, phosphorylated TAK1 initiates the 
MKK-p38 MAPK or MKK-ERK1/2 signaling cascade by recruiting 
TAB1 (50, 51). Subsequently, Runx2, Dlx5, and Osx are phosphorylated 
to promote their transcriptional activity (52). However, some studies 
have demonstrated that these pathways may inhibit the osteogenic 
effect, indicating a dual role (53).

2.2.5 Other signaling pathways
In recent years, there has been growing evidence indicating that 

the fibroblast growth factor (FGF) signaling pathway holds promise 
as a key regulator of bone regeneration. Studies have shown that FGF 
stimulates the proliferation and differentiation of MSCs and 
osteoblasts, contributing to bone formation (54). For instance, 
Nakajima et al. demonstrated that the injection of basic fibroblast 
growth factor (bFGF) into a rat model of fracture healing accelerates 
the rate of fracture healing and promotes bone regeneration (55).

The regulation of the PI3K/Akt/mTOR pathway in pathways that 
promote bone repair has not been extensively studied. Inhibiting the 
PI3K/Akt/mTOR pathway can lead to osteoclast formation; activating 
the pathway promotes cell differentiation toward osteoblasts (56). In 
a study by Peng et al., Akt1 and Akt2 gene-deficient mice showed 
severe skeletal muscle atrophy and impaired skeletal development (57).

2.3 Cross-talk between these pathways

Bone development and regeneration involve a complex interplay 
of various signaling pathways that coordinate and crosstalk with each 
other (49). Despite the distinct roles of these pathways, they function 
cooperatively to ensure proper bone formation and repair. The 
interaction between the TGF-β/BMP pathway and the Wnt pathway 
is critical for early development and tissue stabilization (58). TGF-β 
can prevent hyperphosphate-induced osteogenesis by inhibiting the 
Wnt/β-catenin pathway and reducing nuclear translocation of Smad 
1/5/8  in the Smad-dependent BMP signaling pathway (59). 
Furthermore, Wnt3a inhibits Smad1 phosphorylation via GSK3 and 
stabilizes Smad1 (60). At Ser-204 and Ser-208 (61), GSK3 mediates 
Smad3 phosphorylation and inhibits its activity. Axin promotes 
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GSK3β-mediated Smad3 phosphorylation at Thr66, leading to Smad3 
ubiquitination and degradation (62). TGF-β regulates Hes-1 
transcription in a Notch-dependent manner. The intracellular domain 
of Notch1 (NICD) can interact with Smad3, enhancing cascade 
signaling (63).

Although numerous pathways not listed here are also involved in 
bone regeneration and development, the mechanisms underlying 
skeletal development and repair are primarily a result of cross-talk 
between these pathways.

3 DPSCs therapeutic potential in bone 
regeneration

Stem cell-based therapies have been a major area of focus in the 
fields of tissue engineering and regenerative medicine. MSCs have 
been isolated from a variety of human tissues, including bone marrow, 
peripheral blood, umbilical cord synovial fluid, dental pulp, adipose 
tissue, and endometrial tissue (64). MSCs are characterized by their 
immunomodulatory properties, multi-directional differentiation 
potential, and high self-renewal capacity. These cells have been 
demonstrated to participate in diverse processes such as immune 
regulation (65), neuroprotection, anti-inflammatory, anti-fibrotic, 
anti-oxidant, and angiogenic processes (66). They also demonstrate 
advantages in the treatment of bone regeneration, degenerative 
diseases, diabetes, wound healing, and other areas (67). While 
theoretically, MSCs can be isolated from any human tissue, there are 
limitations due to the availability of the source tissue, the invasive 
nature of the isolation procedure, and the different characteristics of 
the donor. Obtaining bone marrow mesenchymal stem cells 
(BMMSCs), for example, may present risks of pain, bleeding, or 
infection, making it challenging and ethically controversial (68). 
Therefore, it is crucial to select a suitable cell source, assess the 
difficulty of obtaining samples, and consider the rejection of allogeneic 
cell transplantation.

3.1 The unique characteristics of DPSCs

DPSCs have emerged as a prospective cell source for stem cell-
based therapies that can be  readily available from third molars, 
deciduous teeth, or permanent teeth (69). Third molars are usually 
discarded as medical waste, and two sets of teeth germinate during a 
person’s lifetime, indicating that DPSCs are abundant and easily 
accessible. DPSCs have MSC-like properties, such as multidirectional 
differentiation and the ability to self-renew. Compared with other 
sources of MSCs or progenitor cells, DPSCs are not only easy to obtain 
but also have low immunogenicity and avoid ethical concerns. More 
importantly, DPSCs can be collected without injury to the donor or 
invasive surgical procedures (70).

Because of their origin in the cranial neural crest lineage, DPSCs 
have significant neural differentiation potential, making them suitable 
in treatment of neurological problems (71). However, their advantages 
in bone regeneration are also unquestionable. DPSCs exhibit higher 
fibroblast colony-forming units and proliferation rates, similar gene 
expression profiles of mineralization-related genes, and differential 
osteogenic, paracrine, and immunomodulatory capacity as compared 
to BMMSCs (72). The osteoblasts in the craniofacial region are also 

derived from neural crest cells, which are derived from neural 
ectoderm. During the embryonic period, the neural ectoderm 
develops into the tissues of the craniofacial region, including the facial 
bones, the skull, and the dentin of the teeth (23). Therefore, DPSCs 
have great osteogenic potential (73).

3.2 Bone regeneration and 
immunomodulatory properties of DPSCs

In the past few years, the majority of scholars have shifted their 
focus to inducing bone regeneration through the transplantation of 
BMMSCs, adipose-derived mesenchymal stem cells (ADSCs), and 
umbilical cord-derived mesenchymal stem cells (UCMSCs). Firstly, 
bone marrow mesenchymal stem cells are heterogenous cell 
populations located in the medullary stroma of bone marrow, 
originating from the early development of the mesoderm and outer 
layer. They are the earliest-discovered and extracted type of 
mesenchymal stem cells. BMMSCs possess a strong ability to 
differentiate into bone cells and can be  used for repairing bone 
defects (74). By implanting BMMSCs into the defective area, it is 
possible to promote bone tissue growth and reconstruction (75). 
However, due to their low proliferation capacity, high collection 
risks, and the painful collection process, researchers have been 
searching for alternative sources of mesenchymal stem cells (76). 
Subsequently, adipose stem cells and umbilical cord mesenchymal 
stem cells have been applied to treat bone defects. ADSCs, compared 
to other stem cells, exhibit excellent proliferation and differentiation 
potential (77), capable of promoting tissue regeneration and 
functional recovery. UCMSCs possess strong immune regulation 
and anti-inflammatory abilities (78), are able to alleviate 
inflammatory reactions and promote tissue recovery, but have a 
relatively weak osteogenic capability and are associated with ethical 
controversies (79).

Like other types of stem cells, DPSCs exert their therapeutic 
effects primarily through paracrine signaling. Specifically, DPSCs 
secrete a wide range of bioactive molecules, including regulatory 
factors, growth factors, cytokines, and signal peptides (80). DPSCs 
also release secretory proteomes, including exosomes, microvesicles, 
apoptotic vesicles, and other extracellular factors (81), which act in the 
body to provide a suitable environment for immune regulation and 
anti-apoptosis, maintaining overall body homeostasis. Importantly, 
DPSCs exhibit low immunogenicity (82), and the expression of 
histocompatibility complex class II antigen does not exist on DPSCs. 
These unique properties have led to the development of various 
therapeutic applications for DPSCs in treating neurological, 
circulatory, diabetic, liver, eye, immune, and oral diseases (83).

The regenerative potential of dental pulp stem cells (DPSCs) in the 
field of craniofacial bone repair is not to be underestimated. Gaus et al. 
conducted a study using data from the Gene Expression Omnibus 
database, which revealed 16 overlapping differentially expressed 
miRNAs and shared regulators associated with bone differentiation 
between DPSCs and BMMSCs, suggesting a common genetic and 
epigenetic mechanism for bone differentiation in both cell types (84). 
An in vitro study has demonstrated that DPSCs exhibit superior 
osteogenic potential compared to other MSCs, including BMMSCs, 
gingival mesenchymal stem cells (GMSCs), and adipose-derived stem 
cells (ADSCs), as evidenced by various assays such as 
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fluorescence-activated cell sorting, flow cytometry, quantitative 
polymerase chain reaction for osteogenic gene expression, alizarin red 
staining, and micro-computed tomography analysis (85). However, 
other conflicting results have been reported (72, 86–94), which may 
be attributed to differences in MSCs donors and isolation techniques. 
Table  1 summarizes the inconsistent findings on the osteogenic 
potential of DPSCs. Nevertheless, DPSCs show advantages in terms of 
proliferation rates, cell utilization, and cell numbers compared to 
BMMSCs (90, 92). These advantages are reflected in Table 2. DPSCs 
also exhibit remarkable immunomodulatory, paracrine, 

anti-apoptotic, and angiogenic properties, which contribute to bone 
differentiation and reduce inflammation (91, 96, 98, 101). Anderson 
et  al. showed that DPSCs reduce inflammation and induce M2 
polarization in bone marrow cells (102). The same conclusion was 
drawn in vivo. In a rabbit cranial defect model, inoculation of BMSC 
or DPSC in a Bio-Oss stent and implantation into a 6-mm cranial 
defect promoted bone regeneration and improved osteogenesis-
related protein expression at the defect site, and the bone regeneration 
efficacy of the two cells was shown to be  compatible (94). In a 
temporomandibular joint arthritis rat model, local injection of DPSCs 

TABLE 1 Comparison of osteogenic potential between DPSCs and BMMSCs.

Author Cell resource Proliferation capacity Mineralization potential Conclusion

Pierdome-nico et al. (86) Human DPSCs>BMMSCs BMMSCs = DPSCs

Compared with BM-MSCs, 

DP-MSCs exhibited a lower 

differentiation capacity and a 

superior proliferation pattern.

Stanko et al. (87) Human DPSCs>BMMSCs BMMSCs > DPSCs
DPSCs were more proliferative 

than bone marrow BMMSCs.

Davies et al. (88) Rat BMMSCs > DPSCs DPSCs > BMMSCs

The mineralization pattern of 

DPSC cultures differs from that 

of ADSCs and BMMSCs in that 

DPSC cultures lack well-defined 

mineralized nodules.

Isobe et al. (89) Human — BMMSCs > DPSCs

The differentiation potential for 

osteogenesis and chondrogenesis 

was found to be higher in 

BMMSCs than in DPSCs.

Aghajani et al. (90) Human BMMSCs > DPSCs BMMSCs > DPSCs

The osteogenic differentiation 

potential of DPSCs is lower than 

BMMSCs.

Zhang et al. (91) Human DPSCs > BMMSCs BMMSCs > DPSCs
BMMSCs have better osteogenic 

capacity than DPSCs.

Kanemats-u et al. (92) Human DPSCs > BMMSCs BMMSCs > DPSCs
BMMSCs are superior to DPSCs 

in osteogenic differentiation.

Kumar et al. (93) Human DPSCs > BMMSCs DPSCs > BMMSCs

Dental stem cells (especially 

DPSC) have a higher osteogenic 

potential compared to BMSC.

Lee et al. (94) Rabbit BMMSCs = DPSCs BMMSCs > DPSCs

The in vitro results have shown 

that the BMMSCs possess a 

higher osteogenic differentiation 

potential than the DPSCs.

Mohanram et al. (95) Human DPSCs > BMMSCs DPSCs > BMMSCs

In conclusion, the hDPSCs have 

better osteogenic ability and 

higher proliferation rate.

Mohanram et al. (95) Human DPSCs > BMMSCs DPSCs > BMMSCs

In conclusion, the hDPSCs have 

better osteogenic ability and 

higher proliferation rate.

Lyu et al. (72) Rat — BMMSCs = DPSCs

Compared with rBMSC-

CellSaic, rDPSC-CellSaic 

showed better ability to promote 

bone regeneration.

BMMSCs > DPSCs, BMMSCs is superior to DPSCs in one aspect. DPSCs > BMMSCs, DPSCs is superior to BMMSCs in one aspect. BMMSCs = DPSCs, BMMSC and DPSC showed no 
difference in one aspect. —, Not mentioned.
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was found to alleviate inflammation and pain in the joint cavity, 
promote bone regeneration, and inhibit the STAT1 signaling 
pathway (103).

The ability of DPSCs to promote bone regeneration is mediated 
by various mechanisms. Ferutinin, a phytoestrogen, promotes 
osteogenic differentiation of the Wnt/β-catenin signaling pathway by 
activating H3K9 acetylation and H3K4 trimethylation in the promoter 
regions of Wnt3a and DVL3 (104). Similarly, adenosine A1 receptors 
have been shown to promote DPSCs osteogenesis through the Wnt/
Dvl pathway, as evidenced by increased expression of the osteogenic 
markers RUNX-2 and ALP (105). AR-A014418, a glycogen synthase 
kinase 3β (GSK3β) inhibitor, promotes not only the proliferation and 
migration of DPSCs but also their osteogenic differentiation, which is 
achieved through the activation of the β-catenin/PI3K/Akt signaling 
pathway (106). DPSCs also inhibit osteoclasts by inactivating the AKT 
pathway through the secretion of OPG, as demonstrated by Kanji et al. 
(107). Melatonin affected the osteogenic differentiation ability of 
DPSCs through COX-2/NF-κB and p38/ERK MAPK signaling 
pathways, which was also verified in the rabbit calvarial defect model 
(108). In addition, some drugs, enzymes, hormones, or trace elements 
can induce DPSCs to express osteogenic-related genes through the 
BMP4/Smad pathway, the Erk1/2 pathway, the p38 MAPK pathway, 
and other pathways to promote bone regeneration and repair (109, 
110). Notably, the formation and connectivity of blood vessels are 
crucial for osteogenesis (111), and DPSCs have been shown to possess 
a higher angiogenic potential than other MSCs (112).

4 Cell-free therapies based on DPSCs 
for bone regeneration

Cell-free therapy has emerged as a promising approach in 
regenerative medicine due to its potential to address some of the 
drawbacks and limitations linked to the use of MSCs. While the ability 
of DPSCs in osteogenesis is well established, there is growing evidence 
to suggest that the therapeutic effect of MSCs may be derived from 
their paracrine bioactive factors, which have a critical role in the 
regulation of cellular processes (67). Adverse reactions have been 
reported with the use of MSCs, either intravenously or topically, such 
as mild fever, headache, dizziness, venous obstruction, and adverse 
reflux (113). The survival time of MSCs after entering the body is short 

and is affected by the microenvironment. Furthermore, the long-term 
culture of MSCs may lead to a loss of phenotypic stability (80, 114). 
Consequently, attention has shifted toward safer and more practical 
cell-free therapies.

The MSC secretome, also known as conditioned medium, is a 
secretory molecule of MSCs that has a variety of biological activities, 
is actively involved in regulating cellular processes, and can be used 
for various therapeutic applications (115). These molecules include 
soluble proteins (such as growth factors, chemokines, enzymes, 
adhesion molecules, hormones, antimicrobial peptides, etc.), free 
nucleic acids, lipids, some vesicles, etc. (116). Many of these have 
immunomodulatory, anti-apoptotic, anti-fibrotic, and tissue-
regenerative functions. Among them, extracellular vehicles (EVs) are 
considered important mediators of intracellular communication and 
are involved in the regulation of multiple signaling pathways (117). 
EVs can be classified into apoptotic bodies (1–5 μm), microvesicles 
(250–400 nm), and exosomes (30–150 nm), according to their size and 
origin (118). Apoptotic bodies, containing histone and DNA 
fragments, are the largest extracellular vesicles that split from cells 
during apoptosis. Microvesicles are produced by the plasma 
membrane budding and are rich in sphingomyelin and ceramides. 
Exosomes are budded from the interior of the multivesicular body, 
which fuses with the plasma membrane and releases exosomes 
outward, containing a series of evolutionarily conserved proteins like 
tetrameric proteins and heat shock proteins (119).

In summary, cell-free therapies in the form of the MSC secretome, 
or CM, could offer a safer and more practical alternative to cell 
therapy, with the potential for greater efficacy in the treatment of bone 
defects (73). The EVs within the secretome are particularly important 
in regulating cellular processes and communication and hold promise 
as therapeutic agents in their own right (67, 120).

4.1 Conditioned medium

MSCs are known to secrete a variety of substances, including 
numerous proteins, peptides, RNA, and lipid mediators, as well as an 
abundance of extracellular vesicles (EVs). Mesenchymal Stem Cell 
Conditioned Medium (MSC-CM) (121) is derived from the 
supernatant of cultured MSCs and is a mixture of hundreds to 
thousands of different enzymes, growth factors, cytokines, and 

TABLE 2 Comparison of the immunomodulatory and other abilities of BMMSCs and DPSCs.

Cell resource Immunomodulatory 
capacity

Paracrine 
capacity

Angiogenic 
ability

Anti-apoptotic 
ability

Author

Human DPSCs > BMMSCs — — —
Pierdome-nico 

et al. (86)

Porcine DPSCs > BMMSCs — DPSCs > BMMSCs — Ishizaka et al. (96)

Human DPSCs > BMMSCs DPSCs > BMMSCs DPSCs > BMMSCs — Mead et al. (97)

Porcine — DPSCs > BMMSCs DPSCs > BMMSCs DPSCs> BMMSCs Hayashi et al. (98)

Human — — — DPSCs> BMMSCs Zhang et al. (91)

Human DPSCs > BMMSCs DPSCs > BMMSCs — DPSCs> BMMSCs Ji et al. (99)

Rat DPSCs > BMMSCs — — DPSCs> BMMSCs Abbas et al. (100)

Human DPSCs = BMMSCs — — — De et al. (101)

BMMSCs > DPSCs, BMMSCs is superior to DPSCs in one aspect. DPSCs > BMMSCs, DPSCs is superior to BMMSCs in one aspect. BMMSCs = DPSCs, BMMSC and DPSC showed no 
difference in one aspect. —, Not mentioned.
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proteins that can be concentrated, frozen, or even lyophilized without 
loss of activity. MSC-CM can be collected in a simple and efficient 
manner. Cells are inoculated in a culture dish and cultured with 
serum-containing medium until the density is approximately 70%, 
after which serum-free medium is added, and the culture continues 
for 48 h. The supernatant is then collected and filtered with a sterile 
0.22 μm filter to remove cell debris and bacterial microorganisms. The 
final supernatant is referred to as conditioned medium for MSCs and 
can be stored at −80°C until use or further concentrated and stored at 
ultra-low temperatures (122).

MSC-CM from different sources has been identified to have 
diverse and beneficial effects on the receptor, including anti-
inflammatory, immunomodulatory, and angiogenic effects (123). 
Huang et  al. used periodontal membrane-derived stem cell-
conditioned medium, concentrated 20-fold, to culture chondrocytes, 
synovial cells, and meniscus cells isolated from IL-1β-treated porcine 
knees. The results validated increased expression of anti-inflammatory 
factors as well as decreased expression of inflammatory factors, 
confirming the anti-inflammatory effect of MSC-CM (124). Gharaei 
et al. analyzed multiple pro- and anti-angiogenic factors in DPSC-
conditioned medium (DPSC-CM), cultured with human umbilical 
vein endothelial cells (HUVEC). They reported that these factors 
affected cellular migration and proliferation, stimulated tubulogenesis 
and promoted angiogenesis such as the number of nodes, meshes, and 
total tubular length (125). Proteomic analysis has uncovered a total of 
1,533 proteins in CM derived from ADSCs, BMMSCs, and DPSCs, 
which have regenerative potential in areas such as cell migration, 
angiogenesis, inflammatory response, ossification, and organ survival. 
Moreover, the expression of multiple cytokines associated with 
odontoblast differentiation and anti-inflammatory cytokines was 
significantly higher in DPSC-CM (126). Paschalidis et al. found that 
DPSC-CM enhanced the viability, migration, and mineralization 
potential of DPSCs and even counteracted TEGDMA-induced 
cytotoxicity (127). Through in vivo and in vitro studies, Fujio et al. 
showed that anti-inflammatory, angiogenesis, and osteogenic-related 
factors were more highly expressed in DPSC-CM under hypoxia and 
promoted osteogenesis and accelerated bone healing in mouse tibia 
(128). DPSC-CM also increases mineralization potential through 
TGF-β1 expression, thereby triggering new bone formation and 
improving osteoblast and chondrogenic markers (128). New blood 
vessels are particularly important in the bone regeneration process, 
allowing better reconnection of new bone to its own bone. Ishizaka 
et  al. showed that in vivo DPSC-CM exhibited higher 
immunomodulatory capacity as well as higher angiogenic and anti-
apoptotic capacity in vivo compared to BMMSCs-CM (96).

4.2 Extracellular vesicles

All mammalian cell types studied so far, including neuronal cells, 
endothelial cells, MSCs, and epithelial cells, have been found to 
release EVs. EVs can be found in all kinds of body fluids like saliva, 
synovial fluid, urine, and blood. While EVs were previously 
considered to be cellular waste, recent research has shown that they 
have a major role in regulating cellular signaling pathways in target 
cells, including tumor cell growth, cell migration, cell communication, 
and angiogenesis (129).

EVs are small membranous vesicles that are released into the 
extracellular matrix by cells via the plasma membrane during the 
budding process (117). EVs contain a variety of substances, including 
phosphatidylserine, cytoplasmic proteins, mRNA, miRNA, DNA, and 
other molecules. Exosomes (Exos) are one group of the smallest and 
most extensively studied MSC-derived EVs. The genesis of Exos 
occurs through the endocytic exocytosis pathway, with early 
endosomes maturing, extending to late endosomes, and budding 
inward at the late endosomal membrane of multivesicular bodies. 
After the fusion of these multivesicular bodies with the cell 
membranes, MSC-derived Exos are released into the extracellular 
environment. These Exos carry important signaling molecules and 
exert biological effects in target cells (67, 130).

Various methods are available for the isolation of EVs and 
Exos, including ultracentrifugation, density gradient 
centrifugation, exosome kits, ultrafiltration, immunoprecipitation, 
and acoustic nanofilters (131). Ultracentrifugation is the gold 
standard method for Exos extraction, which involves multiple 
rounds of centrifugation at varying speeds to collect Exos from 
cell culture supernatants (132, 133). Density gradient 
centrifugation, on the other hand, separates Exos with less 
contamination but is more complex and time-consuming (134). 
Recently, commercial kits based on polymer coprecipitation have 
been developed for Exos extraction, such as ExoQuick, which is 
simple to use and has a high yield but may contain impurities 
(135). While each method has its advantages and disadvantages, 
ultracentrifugation is considered to be  the most reliable and 
efficient technique for Exos extraction. However, this method can 
be expensive, time-consuming, and require large sample volumes. 
In contrast, commercial kits are simpler and faster but may have 
a higher level of impurities. Density gradient centrifugation offers 
higher purity, but the preparation is more complicated and time-
consuming, and Exos cannot be  completely separated from 
proteins. Overall, the choice of isolation method should depend 
on the specific research needs and resources available.

Exos have emerged as promising candidates for bone defect 
regeneration (136, 137). Studies have shown that Exos can bind to 
scaffolds or growth factors and modulate both osteoblast and 
osteoclast functions (138). Exos have also been found to induce 
osteogenic differentiation and bone regeneration by increasing 
osteoblast differentiation-related miRNA expression and inhibiting 
Axin1-activated Wnt signaling (139). High-throughput miRNA 
sequencing has revealed that Exos secrete 41 miRNAs that are 
differentially expressed after osteogenesis induction. These miRNAs 
have been implicated in bone differentiation and development, 
including osteoclast differentiation, the PI3K-AKT signaling pathway, 
the MAPK signaling pathway, and the mTOR signaling pathway. 
Among these miRNAs, hsa-mir-328-3p and hsa-mir-2110 have been 
identified as potentially the most important osteogenic regulatory 
miRNAs in Exos (140). In addition, Wei et al. prepared exosome-
treated titanium nanotubes to enhance the osteogenic potential of 
BMP2 via natural nanocarriers (141).

Moreover, exosomes from human exfoliated deciduous teeth 
(SHED-Exos) have been shown to stimulate BMMSCs to express more 
osteogenic-related genes, such as Runx2 and ALP. Surprisingly, they 
also down-regulate lipopolysaccharide (LPS)-induced expression of 
inflammation-related factors in BMMSCs.
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Although less research has been conducted on the use of dental 
pulp stem cell-derived exosomes (DPSC-Exos) in bone regeneration, 
their advantages are evident. DPSC-Exos have been shown to regulate 
target cells by translocating mRNA, miRNA, proteins, and other 
molecules to receptor cells. Hu et al. analyzed the microRNA profile 
of DPSC-Exos and verified that miR-27a-5p of DPSC-Exos promotes 
odontogenic differentiation of DPSCs by downregulating LTBP1 (one 
of the suppressor molecules of TGFβ1 signaling) to regulate the 
TGFβ1/Smads signaling pathway and thus express more osteogenic-
related genes (142). DPSC-Exos have also been proven to enhance the 
proliferation and migration of haplotype homo dental pulp cells and 
mouse osteoblasts, inhibit the formation of mouse osteoclasts, and 
effectively reduce bone loss caused by periodontitis (143). Combining 
DPSC-Exos and DPSCs with β-tricalcium phosphate, hydroxyapatite, 
or collagen in a rat skull defect model has been found to accelerate 
bone regeneration and promote more extensive angiogenesis at the 
defect site. Notably, DPSC-Exos and DPSCs were found to have 
almost identical effects at the site of bone defects (144). Although 
DPSC-Exos has been shown to have bone tissue repair effects, the 
mechanisms behind these effects are not fully understood.

4.3 Cell lysate

Cell lysate, a product of cell lysis, is a promising source of bioactive 
compounds for regenerative medicine and tissue engineering 
applications. Although the specific components of the cell lysate 
remain uncertain, it is known to contain several soluble nutrients, 
including growth factors, EVs, Exos, and other proteins. To obtain the 
cell lysate, cells are first cultured and then lysed using trypsin 
digestion, followed by centrifugation and resuspension in ultra-pure 
water, and finally subjected to ultrasound or freeze–thaw technology. 
At this stage, cell releases various proteins and soluble nutrients, 
including growth factors like EGF and IGF. It can be used in the same 
way as MSCs, CMs, EVs, Exos, etc. to treat diseases.

While there is limited literature on the utilization of cell lysate for 
treating bone defects, several studies have demonstrated its anti-
inflammatory and regenerative properties in other applications. For 
example, Jiao et  al. were surprised to find that MSC-conditioned 
medium (MSC-CM) or MSC lysate (MSC Ly) can substantially enhance 
IL-10 secretion by peripheral blood mononuclear cells (PBMCs) in 
vitro. Simultaneously, it can significantly increase serum IL-10 levels in 
two animal models and reproduce the effects of an MSC graft in vivo 
(145). Ward et al. used the classical hind-paw edema model to simulate 
temporomandibular joint osteoarthritis, after treatment with human 
umbilical perivascular mesenchymal cells and their lysates, there were 
significantly lower concentrations of myeloperoxidase and TNF-α at 
48 h. Treated osteoarthritis demonstrated lower concentrations of 
leukocytes in the synovium compared to controls and histologic 
evidence in the peri-articular tissue of reduced inflammation (146). 
Similarly, lysates of olfactory mucosa tissue-derived mesenchymal stem 
cells (OM-MSCs), when cultured with LPS-stimulated normal human 
liver cells (LO-2), inhibited the inflammatory process and promoted the 
proliferation rate of LO-2. Similarly, in a mouse model of LPS-induced 
acute liver injury, OM-MSCs lysate treatment attenuated inflammation 
and reduced liver enzyme release, thus alleviating liver injury (147). 
Khubutiya et  al. reported that a mixture of BMMSC-conditioned 
medium (BMMSC-CM) and MSCs lysate significantly enhanced liver 

regeneration and reduced injury in a mouse model of acetaminophen-
induced acute liver injury (148). Moreover, the administration of 
filtrated adipose tissue-derived mesenchymal stem cell lysate for three 
consecutive days mitigated inflammation and inhibited cell apoptosis 
in a mouse model of acute colitis, leading to improved survival rates, 
reduced weight loss, and clinical signs (149). Erectile dysfunction (ED) 
remains a major complication after radical prostatectomy. Albersen 
et al. found that penile injection of both ADSC and ADSC-derived 
lysate can improve recovery of erectile function in a rat model of 
neurogenic erectile dysfunction (150). Our research team has found that 
the lysates of DPSCs can be used for anti-photoaging treatment, and 
ZIF-8, as a safe and effective protein delivery system, can improve the 
skin bioavailability of DPSC lysates, demonstrating significantly 
enhanced cell uptake and skin retention ability (151). The cell lysate 
extraction process is rapid, simple, and produces a diverse range of 
precipitated components with excellent efficacy, thus holding great 
potential for future applications in regenerative medicine and 
tissue engineering.

4.4 Advantages and limitations of cell-free 
therapy

Recent experimental and clinical studies have shown that the use of 
the MSC secretome is a highly successful therapeutic strategy. MSC-CM 
and MSC-derived EVs have demonstrated similar therapeutic efficacy to 
MSC transplantation in bone and cartilage defects (152). The replacement 
of cell therapy with cell-free therapy eliminates the undesirable side 
effects associated with live cell transplantation, including immune 
rejection, emboli formation, tumorigenicity, arrhythmias, calcified 
ossification, and disease transmission. The secretome can be stored at 
ultra-low temperatures, such as −80°C, for prolonged periods of time. 
Cryopreservation or freeze-drying does not compromise the effectiveness 
of the cell secretome. Whereas cell cryopreservation necessitates the use 
of potentially toxic cryopreservation agents and harsh cryopreservation 
temperatures. In emergency situations, the secretome can be rapidly 
thawed for immediate use. Lastly, following clinical translation, the cell 
secretome can be standardized in terms of dose and potency, akin to a 
clinical drug (153).

Despite all the benefits of cell-free therapy, there are some 
limitations to its application. For instance, there are currently no 
standardized protocols for producing large quantities of EVs or 
extracellular vesicles. Furthermore, soluble factors secreted by MSC 
have not been fully elucidated. And it is unclear whether the use of CM, 
EVs, or cell lysate is safe for treating various diseases. Most significantly, 
the legal regulations surrounding cell-free therapy have not yet been 
fully established, given the rapid evolution of this field. Cell-free therapy 
remains in its nascent stages, and additional research is required to fully 
understand its potential as a therapeutic strategy (154).

5 Conclusion and future prospects

Critical size bone defect is a difficult problem to solve in modern 
medicine. In recent years, tissue engineering and regenerative 
medicine have shown good results in using DPSCs to treat bone 
defects. Since the first isolation of DPSCs, DPSCs have been identified 
to promote proliferation, differentiation, immune regulation, 
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anti-inflammatory, anti-apoptosis, and paracrine signaling. DPSCs 
demonstrate good therapeutic effects when applied to various systemic 
diseases. It is noteworthy that they also exhibit strong regenerative 
capabilities for bone defects.

Cell-free therapy as a new therapeutic approach was discovered in 
the fields of regenerative medicine and tissue engineering, utilizing. 
The secretome of DPSCs could effectively avoid the risks in using stem 
cells (155). In the future, DPSCs secretome or its combination with 
biomaterials would enhance bone regenerative (156).

In summary, the use of DPSCs as a treatment for bone defects has 
shown promise but is still in the pre-clinical stages. The emergence of 
cell-free therapies has opened up possibilities for rapid access to 
therapeutic solutions for DPSC application.
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