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Background: Knee cartilage is the most crucial structure in the knee, and the 
reduction of cartilage thickness is a significant factor in the occurrence and 
development of osteoarthritis. Measuring cartilage thickness allows for a more 
accurate assessment of cartilage wear, but this process is relatively time-
consuming. Our objectives encompass using various DL methods to segment 
knee cartilage from MRIs taken with different equipment and parameters, 
building a DL-based model for measuring and grading knee cartilage, and 
establishing a standardized database of knee cartilage thickness.

Methods: In this retrospective study, we  selected a mixed knee MRI dataset 
consisting of 700 cases from four datasets with varying cartilage thickness. 
We  employed four convolutional neural networks—UNet, UNet++, ResUNet, 
and TransUNet—to train and segment the mixed dataset, leveraging an 
extensive array of labeled data for effective supervised learning. Subsequently, 
we measured and graded the thickness of knee cartilage in 12 regions. Finally, a 
standard knee cartilage thickness dataset was established using 291 cases with 
ages ranging from 20 to 45  years and a Kellgren–Lawrence grading of 0.

Results: The validation results of network segmentation showed that TransUNet 
performed the best in the mixed dataset, with an overall dice similarity coefficient 
of 0.813 and an Intersection over Union of 0.692. The model’s mean absolute 
percentage error for automatic measurement and grading after segmentation 
was 0.831. The experiment also yielded standard knee cartilage thickness, with 
an average thickness of 1.98  mm for the femoral cartilage and 2.14  mm for the 
tibial cartilage.

Conclusion: By selecting the best knee cartilage segmentation network, 
we built a model with a stronger generalization ability to automatically segment, 
measure, and grade cartilage thickness. This model can assist surgeons in more 
accurately and efficiently diagnosing changes in patients’ cartilage thickness.
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TABLE 1 Detailed information about the basic characteristics of the data.

OAI fastMRI SKI10 Hospital

MRI scanner Siemens Trio Siemens Magnetom Skyra, Prisma, Biogra GE, Siemens, Philips, Toshiba, Hitachi Philips Achieva, NMR NeuMR

MRI sequence 3.0Tesla-IW-TSE 3.0Tesla-T2-FS Mostly 1.5 T, some 3 T, a few 1 T, 1.5Tesla-T2-TSE

Acquisition plane Sagittal Sagittal Sagittal Sagittal

TR/TE 3200/30 4100/55; 4600/50 N/A 2900/80; 2700/70; 2600/75

Number of layers 37–39 29–36 92–120 17–19

Slice thickness (mm) 3 3;3.5 N/A 3.5;4

Columns and Row 448*444 256`1024*256`1,024 248`352*327`385
512*512; 560*560; 480*480; 528*528; 

256*256

Number of subjects 200 175 100 225

“N/A” signifies that the parameter has not been provided.

1 Introduction

Knee osteoarthritis (KOA) is a common disease ranked 11th 
among 291 diseases in terms of causing disability across 187 
countries worldwide (1). Despite 130 years of global research, the 
causes and pathogenesis of KOA are still not fully understood (2). 
KOA is a chronic disease characterized by gradual loss of cartilage, 
and knee cartilage declines at a faster rate with age (3). In the 
advanced stages of KOA, there is damage to the knee subchondral 
bone, degeneration of the femoral condyles and tibial plateau, and 
the development of osteophytes (4). For this stage, the only medical 
treatment available is pain management or total knee 
arthroplasty (5).

In general, changes in the shape of the bones around the joints 
usually appear 5–10 years before X-rays can capture the disease, and 
magnetic resonance imaging (MRI) can show abnormalities much 
earlier (6). Therefore, using the MRI to detect the problem and 
intervene in the early stages of KOA when cartilage shows 
insignificant wear and tear can slow down the progression of KOA 
(7). Measurement of knee cartilage thickness can be  used to 
determine cartilage wear more accurately, but this is time-consuming 
and requires accurate measurement by an experienced imaging 
physician or orthopedic surgeon, which is difficult to achieve 
at present.

With the rapid development of artificial intelligence, deep learning 
(DL) has been widely used in the medical field (8), including 
computer-aided diagnosis, patient prognosis evaluation, and patient 
treatment decision-making. Convolutional neural network (CNN) 
(9), a key technology in DL and a sub-field of artificial intelligence, is 
highly effective in image recognition (10). Automatic recognition and 
segmentation of images through CNN have been applied to medicine, 
including the use of MRI images to recognize the knee meniscus and 
anterior cruciate ligament (11, 12). Many scholars have also studied 
the segmentation of knee joint cartilage in CNN (13–15), which is also 
the direction of our study.

In this research, our objectives are: (1) to use various DL methods 
to segment knee cartilage from MRIs taken with different equipment 
and parameters, (2) to build a DL-based model for measuring and 
grading knee cartilage, and (3) to establish a standardized database of 
knee cartilage thickness. Through this model, we  hope to assist 
surgeons in efficiently and accurately measuring the thickness of knee 
cartilage and understanding changes in patients’ cartilage conditions.

2 Materials and methods

2.1 Study population

This research has been reviewed and approved by the Ethics 
Committee of the Second Affiliated Hospital of Harbin Medical 
University (Ethics Review Approval Number: KY2021-178). A total of 
four datasets, comprising 991 cases of MRI data, were utilized in 
the study.

The first dataset was retrospectively selected from a database of 
patients in the Second Affiliated Hospital of Harbin Medical University 
(hereinafter referred to as the hospital) from 2013 to 2023, totaling 516 
cases. This dataset includes 225 cases for model establishment and 291 
cases for building a standardized knee cartilage thickness dataset. The 
second dataset included 200 MRI cases obtained from the publicly 
available Osteoarthritis Initiative Study Protocol (OAI) dataset (16). 
The third dataset included 175 knee MRI cases obtained from the 
publicly available fastMRI dataset, and the data used in this part were 
obtained from the NYU fastMRI Initiative database (17). The fourth 
dataset consisted of 100 MRI cases obtained from SKI10 (18). All 
selected MRI images were in the sagittal plane, encompassing both 
normal-thickness cartilage and knee cartilage with altered thickness. 
These images were collected across multiple devices and sequences. 
Table 1 displays the information about the data in detail.

2.2 Data labeling

For the hospital data, OAI data, and fastMRI data, annotations 
were labeled by two orthopedic graduate students under the 
supervision of experienced orthopedic surgeons (Yong Qin, 10 years 
of orthopedic experience; and Songcen Lv, 30 years of orthopedic 
experience). The annotations were performed manually in 3Dslicer 
(version 5.2.2). Special attention was given to the accuracy of the 
adjacent bones and muscle edges during the annotation process. The 
annotated data consisted of clear and complete cartilage images at the 
anterior one-fourth and posterior one-fourth positions of the sagittal 
plane MRI for each knee, which are crucial for assessing 
cartilage health.

The cartilage thickness annotation was consistently measured as 
the distance from the cartilage surface to the tidemark (19). The SKI10 
database was segmented interactively by experts at Biomet, Inc., who 
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segmented the femur, femoral cartilage, tibia, and tibial cartilage (18). 
We retained only the cartilage portions.

The final results included two labels: femoral cartilage (RGB = 255, 
0, 0) and tibial cartilage (RGB = 0, 0, 255). These labels were generated 
in a 3D slicer, and the output images included the original knee joint 
MRI and the label images (Figure  1), shown in the first and 
second rows.

2.3 Cartilage classification

Based on the classification of cartilage regions in the Whole-
Organ Magnetic Resonance Imaging Score (WORMS) (20), the knee 
joint MRI was artificially divided into 12 regions (Figure 2): the femur 
region (F) and tibia region (T), the medial region (A), and the lateral 
region (L). Each region was further divided into three parts: anterior 
(A), middle (M), and posterior (C). Specifically, it includes: (1) the 
anterior medial femoral area (FMA); central medial femoral area 
(FMC); and posterior medial femoral area (FMP); (2) the anterior 
lateral femoral area (FLA); central lateral femoral area (FLC); and 
posterior lateral femoral area (FLP); (3) the anterior medial tibial area 
(TMA); central medial tibial area (TMC); and posterior medial tibial 
area (TMP); and (4) the anterior medial tibial area (TLA); central 
medial tibial area (TLC); and posterior medial tibial area (TLP).

2.4 Deep learning methods

We conducted a comparison of four deep learning segmentation 
models: UNet (21), UNet++ (22), ResUNet (23), and TransUNet (24). 
This study involved 700 samples, comprising a total of 2,800 images 
for network training, with the training results displayed in Figure 1, 
shown in the third to sixth rows. Before training, all images were 
resized to a uniform size (480×480 pixels) and normalized. The dataset 
was divided into a training set, a test set, and a validation set, in the 
ratio of 6:2:2. The aforementioned algorithms were implemented 
under the PyTorch (CUDA 11.8) framework, and computations were 
performed on a tower server composed of 4 NVIDIA 12GB GPUs.

UNet: The most widely used CNN in medical image processing. 
Its structure is U-shaped and includes symmetrical encoders and 
decoders. After inputting MRI images, the encoder extracts 
cartilage features through convolution layers and pooling 
operations, reducing the image size from 480*480 to 30*30. 
Subsequently, using Concat to connect multiple tensors, the model 
generates predictive results through layer-by-layer upsampling and 
per-pixel classification.

UNET++: Builds upon UNet by introducing dense skip 
connections and multi-scale feature fusion. It captures features from 
different levels, integrating them through feature stacking, thereby 
enhancing the extraction of knee joint cartilage features.

FIGURE 1

The first set represents hospital data; the second set represents OAI data; the third set represents fastMRI data; and the fourth set represents SKI10 data, 
which was pre-labeled. For each set, the first row displays the original MRI images of the knee joint’s medial and lateral sides. The second row shows 
the labeled cartilage images. The third to sixth rows depict the post-prediction images.
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ResUNet: Based on UNet, it introduces residual connections 
(similar to ResNet), allowing the image to be passed not only to the 
next layer but also directly to deeper layers through skip connections, 
effectively reducing the problem of gradient vanishing during training.

TransUNet: This is a segmentation network based on the transformer 
model, using a hybrid architecture of CNN-Transformer-UNet. Initially, 
it employs the feature encoding part of CNN to extract features while 
reducing the image size from 480*480 to 30*30, followed by extracting 
global contextual information using the self-attention mechanism of the 
transformer. Finally, the UNet decoder upsamples the encoded features, 
which are combined with different resolution CNN features extracted 
from the encoder path, achieving precise localization (Figure 3, Part A).

To train the network, the gradient descent method was used (25), 
with a batch size of 16, a weight decay of 1e-4, and a learning rate drop 
factor of 0.1. The initial learning rate was 2e-4. After every 100 training 
sessions, the learning rate = initial learning rate * drop factor until 
convergence. We used cross-validation method to explore the optimal 
epochs, with epochs selected from 50, 75, 100, 125, 150, 175, 200, 
specific epochs for each type of network are shown in Figure 4.

2.5 Cartilage thickness measurement

Thickness measurement is implemented in MATLAB (R2022a). 
First, the post-segmentation data are processed to remove small 
independent pixels. Then, the cartilage range was determined by 
identifying the pixel points corresponding to different colors of 
femoral and tibial cartilage. The thickness calculation was an 
improvement on traditional methods (26), expanding the detection 
area for increased accuracy. For the femoral side, the midpoint of the 
line connecting the endpoints on both sides was taken as the origin; 
from this point, 36 vertical lines intersecting the cartilage were drawn 
at 5° intervals. Similarly, the tibial cartilage was divided into 36 vertical 
lines by taking the sides as endpoints (Figure 3, Part B).

The number of pixel points obtained from the intersections was 
calculated based on the Digital Imaging and Communications in 
Medicine (DICOM) tag information of the original MRI, including 

row and column, as well as the actual distance represented by each 
pixel (pixel spacing). This calculation provided the cartilage thickness 
at each point. The average thickness for each region was computed 
separately for lines 1–12, 13–24, and 25–36.

The thickness measurement results were classified into four levels 
according to Recht grading (27) and ICRS grading (28): Grade 1 – 
normal thickness or superficial, blunt injuries; Grade 2 – cartilage 
damage, but less than half of normal thickness; Grade 3 – cartilage 
damage, more than half of normal thickness but not reaching 
subchondral bone; Grade 4 – full-thickness cartilage damage, exposing 
subchondral bone. By extracting gender and body part information 
(left or right knee) from the DICOM tags and using the corresponding 
standard cartilage thickness, the model determines the grading. 
Ultimately, this model provides surgeons with displays of the cartilage 
thickness and grading for each region of the knee joint (Figure 3).

2.6 Selection of normal knee cartilage

From a pool of 7,094 cases spanning 2013–2022, we screened 291 
knee joint MRI cases defined as having normal cartilage thickness. 
These cases were considered the standard for knee cartilage thickness 
in the northeastern region of China. Standard knee cartilage 
thickness was defined as individuals aged 20–45 with X-ray Kellgren–
Lawrence gradings of 0 or 1. All these MRI images were sourced from 
the hospital dataset. Some individuals may be entirely normal, while 
others may have accompanying conditions such as meniscal injuries 
or bone abnormalities; however, their cartilage remains intact. 
We defined standard cartilage thickness as aged 20–45, as cartilage 
below 20 years of age is in constant growth and change, and cartilage 
thickness tends to wear to varying degrees with increasing age 
beyond 45 (29). The specific screening results are presented in 
Figure 5.

2.7 Statistical analysis

In this study, the collected data were statistically analyzed using 
MATLAB. The accuracy of cartilage segmentation was evaluated using 
the dice similarity coefficient (DSC) and Intersection over Union 
(IoU). Both DSC and IoU values ranged from 0 to 1, with higher 
values indicating better segmentation performance. The accuracy of 
cartilage thickness measurement was assessed using the mean absolute 
percentage error (MAPE). A MAPE of 0% indicates a perfect model, 
while a MAPE greater than 100% suggests a poor-quality model. The 
grading accuracy of the model was validated using the metric 
‘Accuracy’. The standard cartilage thickness results inferred were 
presented as mean ± standard deviation (¯x ± s) for measurements 
following a normal or near-normal distribution.

3 Results

3.1 Segmentation results in different CNNs

We employed four CNN models for segmentation training on the 
mixed dataset. The results indicate that the TransUNet model achieved 
the best segmentation performance, with a DSC of 0.823 for 
segmenting femoral cartilage, 0.803 for segmenting tibial cartilage, 

FIGURE 2

(A) represents the medial cartilage region, while (B) represents the 
lateral cartilage region.

https://doi.org/10.3389/fmed.2024.1337993
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Guo et al. 10.3389/fmed.2024.1337993

Frontiers in Medicine 05 frontiersin.org

FIGURE 3

Overall flowchart of the research model. After the images are selected, a network is used to segment the regions of cartilage. Subsequently, the 
segmentation results are automatically measured for thickness and graded. Simultaneously, DICOM tag information is extracted for obtaining standard 
knee joint cartilage thickness. Part A: The structure of TransUNet, which achieved the best results of all network models; Part B: measurement method 
of cartilage thickness; vertical lines 1–12 intersecting with cartilage represent FMA and FLA; lines 13–24 represent FMC and FLC; and lines 25–36 
represent FMP and FLP.
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0.813 for overall DSC, and 0.692 for overall IoU. Other network 
models’ performances were less impressive than TransUNet’s, 
particularly in tibial cartilage segmentation, with DSCs ranging from 
0.776 to 0.788. The specific segmentation results for each network are 
shown in Table 2 and Figure 6, Part A.

3.2 Validation of automatic cartilage 
thickness measurement accuracy

Two orthopedic graduate students manually measured and 
graded the cartilage thickness in 12 regions of 135 knee MRI samples 
from the test set under the supervision of experienced orthopedic 
surgeons and compared the results with the results from the 

automatic thickness measurement and grading model, showing the 
overall MAPE of the thickness measurement was 10.10% and the 
grading accuracy was 89.99%. Compared with the results of 
automatic measurement after different networks’ segmentation, the 
overall MAPE of thickness measurement ranged from 17.47 to 
20.34%, and the grading accuracy ranged from 75.79 to 83.08%, with 
TransUNet showing the best performance. The specific segmentation 
results are shown in Table 3 and Figure 6, Part B–F.

3.3 Normal knee cartilage thickness

The results of the cartilage thickness analysis of 291 normal knee 
cartilage thicknesses are shown in Table 4. The results showed that the 
cartilage thickness of normal knee joints ranged from 1.79 ± 0.26 mm 
to 3.13 ± 0.54 mm. In general, the average thickness of femoral 
cartilage is 1.98 mm, and the average thickness of tibial soft tissue is 
2.14 mm. The distribution of the cartilage thickness was uneven, with 
the medial femur being thicker than the lateral femur, the tibia 
cartilage thickness being greater than that of the femur, and the 
thickness being greatest in the central medial aspect of the tibia. 
Judging by gender and considering both right and left knees, the 
cartilage thickness was generally greater in men than in women,” and 
the cartilage thickness of the right knee was generally greater than the 
left knee.

4 Discussion

In this study, we utilized various CNNs to train, segment, measure, 
and grade the knee cartilage thickness in 12 regions of a mixed knee 
cartilage dataset. We developed a measurement and grading model 
under DL that is applicable to different sequences. Currently, assessing 
changes in knee cartilage thickness requires a significant amount of 
effort and time through a manual MRI examination. With limited 
time for diagnosis and treatment, surgeons may struggle to focus on 
each patient’s cartilage thickness, making early detection of mild knee 
joint cartilage wear challenging. This study primarily focuses on the 

FIGURE 4

Horizontal axis is epoch, and the vertical axis is DSC. DSC changes as the epoch increases. As the epochs increase, the optimal DSC occurs at different 
epochs for different networks. We saved the network weights corresponding to the best DSC.

FIGURE 5

Selection criteria and the number of stranded cartilages. Man’s left 
knee (LM), man’s right knee (RM), woman’s left knee (LW), and 
woman’s right knee (RW).
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TABLE 2 Result in different CNNs.

DSC IoU

Femur Tibia Total Femur Tibia Total

UNet 0.834 0.776 0.805 0.720 0.642 0.681

UNet++ 0.822 0.780 0.801 0.704 0.650 0.677

ResUNet 0.800 0.788 0.794 0.674 0.665 0.669

TransUNet 0.823 0.803 0.813 0.704 0.680 0.692

DSC: dice similarity coefficient; IoU: Intersection over Union.

FIGURE 6

(A) Boxplots of total DSC and IoU for four different networks; (B–F) Bland–Altman consistency analysis of cartilage thickness measurement results 
under different methods.

TABLE 3 MAPE between manual measurements and grading and automatic measurements and grading, as well as between manual measurements and 
grading and measurements and grading from different networks segmentation, p  <  0.05.

MAPE of thickness measurement

Automatic UNet UNet++ ResUNet TransUNet

Medial Femur 6.06% 15.18% 18.96% 20.15% 15.46%

Lateral Femur 7.70% 12.18% 15.97% 18.14% 15.02%

Medial Tibia 13.38% 25.53% 24.54% 22.34% 20.68%

Lateral Tibia 13.26% 23.45% 21.89% 18.73% 18.73%

Total 10.10% 19.09% 20.34% 19.84% 17.47%

Accuracy of grading

Automatic UNet UNet++ ResUNet TransUNet

Medial Femur 93.08% 86.17% 76.79% 80.74% 78.02%

Lateral Femur 90.12% 90.86% 76.29% 81.97% 82.96%

Medial Tibia 87.40% 60.49% 66.66% 76.04% 84.19%

Lateral Tibia 89.38% 71.35% 82.22% 89.13% 87.16%

Total 89.99% 77.21% 75.49% 81.97% 83.08%

For a unified statistical analysis, we aggregated the data from the 12 regions into four areas.
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efficient and accurate measurement of cartilage thickness, aiming to 
assist surgeons in understanding changes in patients’ cartilage.

In previous studies, scholars such as Norman (29) utilized the OAI 
dataset for segmentation in UNet, achieving a DSC of 0.770 to 0.878. 
Additionally, another study (30) employed SegNet for segmentation 
in a mixed dataset combining SKI10 and personal data, obtaining a 
volumetric overlap error (VOE, the opposite of DSC) coefficient of 
0.289, higher than the UNet’s 0.351. Currently, many researchers 
(30–32) prefer using individual datasets for segmentation, yielding 
DSC coefficients typically ranging between 0.74 and 0.87. Therefore, 
uncertainties exist regarding the reliability of these models when 
applied to MRI scans from different devices or sequences. 
We attempted to use the independent hospital dataset for training 
under UNet and obtained results of femur DSC of 0.86, tibia DSC of 
0.79, and overall DSC of 0.82. However, when the network trained 
using the hospital dataset was applied to the OAI or fastMRI datasets, 
the DSC was only 0.47 to 0.53, which suggests that models trained on 
individual datasets exhibit subpar performance when inferring on 
MRI scans acquired with other devices and sequences. To enhance the 
effectiveness and robustness of the thickness measurement model, 
we opted for training on a mixed dataset. While a mixed dataset may 
influence the recognition accuracy and decrease precision to some 
extent, the model still demonstrates favorable performance across 
different MRI devices and sequences.

We employed four different network models for knee cartilage 
segmentation. UNet is the most widely used DL model in knee joint 
segmentation currently; however, other networks, traditionally applied 
to the segmentation of organs such as the lungs, heart, stomach, and 
brain (33–36), are now being explored in this area. This study is the first 
to apply these network models to knee cartilage segmentation, with 
results indicating that some networks outperform UNet in terms of 
segmentation accuracy. The results demonstrate that the best-
performing network currently is TransUNet. Compared to other 
networks, TransUNet more effectively captures long-distance 
dependencies and global contextual information within images, 
accurately recognizes and differentiates varying degrees of cartilage 
damage, and shows superior capabilities in processing edge pixel details.

Measuring cartilage thickness manually is a time-consuming task. 
Shepherd and Seedhom (37) first measured 11 cadavers in 1999, 

revealing an average cartilage thickness of 2.15 mm on the surface of 
the femur, 2.01 mm in the tibial plateau covered by the meniscus, and 
2.59 mm in the uncovered region of the tibia. Cohen et al. (38) proved 
that cartilage thickness measured via MRI is basically the same as 
direct measurements, with an average femoral cartilage thickness of 
2.08 mm and an average tibial cartilage thickness of 2.32 mm. Our 
results also show a similar trend, with an average cartilage thickness 
of 1.99 mm in women and 2.13 mm in men.

In recent years, some researchers have already utilized DL 
methods to measure cartilage. Shah (31) first employed UNet for the 
segmentation and measurement of normal knee cartilage thickness, 
demonstrating that DL can effectively measure thickness on MRI. Si 
(32) also utilized UNet for segmentation, measuring cartilage 
thickness through a dot-product approach. Liu (30) and other 
researchers used the Eulerian PDE (39) approach in V-Net for 
measurement. In contrast, our approach involves pixel-level 
recognition and calculation, building a model capable of measuring 
the thickness of cartilage automatically after segmentation and 
validating its reliability. In order to make the results more applicable 
to clinical practice, we  graded the measurement results to help 
surgeons effectively assess changes in cartilage thickness in patients 
and provide valuable reference for subsequent treatment decisions.

There are some limitations to this study. First, the lack of 
comparison with other scholars’ cartilage thickness measurement 
methods limits our ability to conclusively ascertain the distinct 
advantages or enhancements that our method offers over existing 
methods. Second, as our normal knee cartilage thickness data only 
represents the average thickness level in Northeast China, it may not 
be representative of other regions in China or other countries and 
races. Additionally, our cartilage thickness standards are limited to 
gender and body part; we have not considered other patient factors 
such as height, age, and BMI. It is unknown whether these factors are 
related to standard cartilage thickness; therefore, it is necessary to 
continue to collect data and establish a more complete standard knee 
cartilage thickness dataset. Finally, our scoring system is a 
retrospective study and provides a universally applicable thickness 
measurement score primarily for assessing early cartilage damage. It 
serves as an auxiliary tool for surgeons and may require individual 
judgments in certain special cases.

TABLE 4 Standard thickness of cartilage (x  ±  s), in mm.

Femur

FMA FMC FMP FLA FLC FLP

LM 2.14 ± 0.29 1.97 ± 0.21 2.02 ± 0.32 1.98 ± 0.19 2 ± 0.27 1.89 ± 0.38

LW 1.95 ± 0.35 1.92 ± 0.23 1.95 ± 0.23 1.97 ± 0.18 1.88 ± 0.21 1.92 ± 0.14

RM 1.98 ± 0.24 2 ± 0.23 2.06 ± 0.42 2.3 ± 0.22 2.06 ± 0.27 1.98 ± 0.37

RW 1.91 ± 0.21 1.88 ± 0.2 1.89 ± 0.22 2.01 ± 0.21 1.93 ± 0.18 1.87 ± 0.39

Tibia

TMA TMC TMP TLA TLC TLP

LM 2.13 ± 0.32 2.98 ± 0.58 2.34 ± 0.54 1.86 ± 0.28 2.02 ± 0.39 1.82 ± 0.23

LW 2.07 ± 0.32 2.74 ± 0.6 2.14 ± 0.39 1.72 ± 0.21 1.83 ± 0.36 1.79 ± 0.26

RM 2.18 ± 0.31 3.13 ± 0.54 2.43 ± 0.47 1.88 ± 0.3 2.14 ± 0.5 1.91 ± 0.28

RW 2 ± 0.3 2.71 ± 0.42 2.26 ± 0.38 1.68 ± 0.2 1.88 ± 0.35 1.76 ± 0.21
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5 Conclusion

In conclusion, we selected the best knee cartilage segmentation 
network and built a model of automatic knee cartilage segmentation, 
measurement, and grading. Through this model, the effectiveness and 
robustness of processing images obtained under different MRI devices 
and parameters have been enhanced. It can help surgeons more 
accurately and efficiently diagnose changes in cartilage thickness in 
patients. At the same time, we  have defined the standard cartilage 
thickness in northeast China. We hope that after further research and 
the collection of large amounts of data, we can build a global dataset of 
standard knee cartilage thickness to help more patients and surgeons.
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