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Introduction: Physical measurements of expiratory flow volume and speed can 
be  obtained using spirometry. These measurements have been used for the 
diagnosis and risk assessment of chronic obstructive pulmonary disease and 
play a crucial role in delivering early care. However, spirometry is not performed 
frequently in routine clinical practice, thereby hindering the early detection of 
pulmonary function impairment. Chest radiographs (CXRs), though acquired 
frequently, are not used to measure pulmonary functional information. This 
study aimed to evaluate whether spirometry parameters can be  estimated 
accurately from single frontal CXR without image findings using deep learning.

Methods: Forced vital capacity (FVC), forced expiratory volume in 1  s (FEV1), 
and FEV1/FVC as spirometry measurements as well as the corresponding 
chest radiographs of 11,837 participants were used in this study. The data were 
randomly allocated to the training, validation, and evaluation datasets at an 8:1:1 
ratio. A deep learning network was pretrained using ImageNet. The input and 
output information were CXRs and spirometry test values, respectively. The 
training and evaluation of the deep learning network were performed separately 
for each parameter. The mean absolute error rate (MAPE) and Pearson’s 
correlation coefficient (r) were used as the evaluation indices.

Results: The MAPEs between the spirometry measurements and AI estimates 
for FVC, FEV1 and FEV1/FVC were 7.59% (r  =  0.910), 9.06% (r  =  0.879) and 5.21% 
(r  =  0.522), respectively. A strong positive correlation was observed between the 
measured and predicted indices of FVC and FEV1. The average accuracy of >90% 
was obtained in each estimation of spirometry indices. Bland–Altman analysis 
revealed good agreement between the estimated and measured values for FVC 
and FEV1.

Discussion: Frontal CXRs contain information related to pulmonary function, 
and AI estimation performed using frontal CXRs without image findings could 
accurately estimate spirometry values. The network proposed for estimating 
pulmonary function in this study could serve as a recommendation for 
performing spirometry or as an alternative method, suggesting its utility.
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1 Introduction

Imaging tests and pulmonary function tests (PFTs) are two 
important examination modalities that are fundamental to respiratory 
medicine. Imaging tests are used to diagnose abnormalities based on the 
anatomy and morphology of the respiratory tract, whereas PFTs are 
used to evaluate the physiological functions of the respiratory tract as 
quantitative values. Spirometry is a relatively simple method for 
measuring the ventilatory performance and is performed in routine 
practice and as part of medical examinations. Spirometry quantitatively 
measures the pulmonary capacity and velocity by determining the 
pressure and flow rate. The results are interpreted based on the 
symptoms and other clinical findings. Forced vital capacity (FVC) and 
forced expiratory volume in 1 s (FEV1) can be  measured using 
spirometry. These indices can be evaluated relative to the decline in 
pulmonary function by calculating the ratio of the measured values (% 
FVC and % FEV1) to the representative values corresponding to the 
individual’s age, height, and sex. Post-bronchodilator FEV1/FVC <0.7 
indicates obstructive ventilatory defects and is used as a strong 
diagnostic criterion (1–4). Thus, FVC, FEV1 and FEV1/FVC are 
important clinical assessment indices (5, 6). They allow for earlier 
detection of diseases that affect pulmonary function, such as chronic 
obstructive pulmonary disease (COPD) and asthma, than imaging tests. 
Spirometry remains the gold standard for diagnosing ventilatory defects 
(2). It can detect asymptomatic cases with obstructive ventilatory defects 
as well as cases of impaired pulmonary function, even in the absence of 
obstructive ventilatory defects (7–11). Conversely, spirometry is usually 
performed in symptomatic patients (12), low uptake compared to that 
in chest radiography is the major problem of spirometry in preventive 
medicine. Moreover, participants must cooperate during the test and 
breathe with effort to obtain accurate results. Low throughput is an 
additional issue. Throughput is further limited in cases that require 
infection control measures. Thus, spirometry must be encouraged, and 
alternative tests with good throughput must be developed to overcome 
the challenges in performing PFTs during clinical examinations.

Imaging tests are associated with high throughput and a relatively 
high screening uptake rate. Chest radiographs (CXRs) remain the first 
choice of imaging test for cardiopulmonary screening and are 
commonly acquired during routine primary care, including health 
checkups. The CXR can visually identify morphological abnormalities 
in the lungs and other thoracic regions and can detect various diseases, 
for example, pneumonia and lung cancer. If the CXR shows abnormal 
findings related to pulmonary function, such as emphysema in COPD, 
this can be detected without spirometry. However, it is difficult to 
detect lesions that cause abnormal pulmonary function at an early 
stage with CXR, and, therefore, it is generally not used to assess 
pulmonary function. Thus, spirometry and CXR are complementary 
and have advantages and disadvantages. If cases with functional 
abnormalities can be  detected in CXR without detectable image 
findings, it may lead to the creation of health-promoting opportunities 
for patients. Hence, it would be clinically useful if pulmonary function 
could be accurately obtained from the CXR.

Previous studies have estimated pulmonary function using the 
shape of the rib cage on CXRs acquired during static imaging (13–
16). Similarly, studies have investigated the relationship between 
image characteristics and pulmonary function on dynamic chest 
X-ray radiographs (DCRs) acquired during dynamic imaging (17, 
18). Pulmonary function has been estimated using image 

characteristics measured from landmarks in the images and 
regression models or equations; however, the accuracy of the 
estimated values was limited as the correlation between image 
features and lung function was not high. Furthermore, it requires 
manual measurement of image characteristics, a labor-intensive 
task, and may lead to errors. Machine learning has resulted in 
breakthroughs in medical image analysis in recent years, and 
several studies have used general image recognition models in 
medical image analysis and the estimation of functional parameters 
and other information from images (19). Sogancioglu et al. (20) 
reported the use of artificial intelligence (AI) for the estimation of 
the lung volume from pseudo-CXRs calculated from CT images. 
However, the estimated lung volumes were calculated from CT 
image data and not pulmonary function values. Schroeder et al. 
(21) reported the estimation of the % predFEV1 and FEV1/FVC as 
PFT values from bidirectional CXR pairs using deep learning. The 
study used two-view CXRs including imaging findings for 
estimation, not frontal CXRs alone. It was not clear whether 
pulmonary function impairment could be estimated from CXRs 
without imaging findings. Health checkups are performed 
routinely under the national system in Japan, and almost all adults 
undergo CXR screening. However, CXR screening is not always 
performed bidirectionally. It is important to determine whether 
accurate pulmonary function values can be obtained from frontal 
CXR images to develop an AI system for estimating pulmonary 
function from CXRs that can be used during medical examinations 
worldwide, including in developing countries.

Therefore, this study aimed to estimate the spirometry 
measurements from single frontal CXR without image findings using 
a general image recognition model and evaluate the precision of 
the estimation.

2 Materials and methods

This study was conducted after receiving approval for the use of 
medical data obtained during medical examinations from the 
Institutional Review Board of the Niigata University of Health and 
Welfare and the data-providing institutions (Approval number: 
18952-221124).

2.1 Materials

2.1.1 Data
Frontal CXRs acquired at a single institution in Japan for 2019 

were used in this study. The CXR images in 8-bit PNG format were 
used. Figure 1 shows a representative CXR. The FVC, FEV1 and 
FEV1/FVC values obtained via forced vital capacity testing were used 
as the pre-bronchodilator spirometry data, as described in multiple 
COPD studies (22–24). Figure 2 presents the inclusion and exclusion 
criteria for the CXR and PFT data. The dataset used in this study are 
cases with no image findings noted in the radiology reports of the 
screening CXR. Cases with any abnormal findings such as lung 
opacities, lung cancer or other pulmonary disease, pleural lesions, 
cardiovascular lesions, musculoskeletal lesions, tracheal 
abnormalities, postoperative and supported devices were excluded. 
The CXRs in the dataset does not include any image findings noted, 
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including inactive findings. The CXR data and corresponding PFT 
data were extracted from only one sample per participant. A total of 
11,837 data samples, including the corresponding heights, sexes, and 
ages, were included in the PFT data; there were no missing data 
values. Table  1 presents the demographic characteristics of the 
datasets. A total of 9,469, 1,184, and 1,184 samples were used for the 
training, validation, and test of the deep learning network to ensure 
that the data ratio was maintained at 8:1:1.

2.1.2 Experimental environment
MATLAB 2022a (MathWorks, Inc.) was used to implement the 

framework for performing the deep learning operations. Image 
processing and deep learning computations were performed using 
MATLAB in this study.

2.2 Methods

2.2.1 Network training and evaluation
In addition to the pre-training data from the ImageNet 

classification task, ResNet-18, ResNet-50, ResNet-101, DenseNet-201, 
and Inception-ResNet-V2, which are publicly available in the 
MATLAB add-in library, were used as the initial weights (25, 26). The 
fully connected layers closest to the output layer of each network were 
replaced with a new layer with an output class of one. The training 
conditions were as follows: optimization method, Adam; loss function 
root mean square error; batch size, 32–256 (variable); initial learning 
rate, 1 × 10−5; maximum number of epochs, 50; image data 
augmentation, ±5° random rotation/random horizontal flip/±5% 
random scaling. The batch size was varied for each network type and 
then optimized. The network weights were updated using the training 
dataset, and the network performance at each epoch was displayed 
using the validation dataset. The weights in the epoch with the lowest 
loss for the validation dataset were saved to complete the learning. 
Network training and estimation were performed separately for FVC, 
FEV1 and FEV1/FVC.

2.2.2 Evaluation
CXRs from the test dataset and the FVC or FEV1 estimations were 

the input and output of the network, respectively. The mean average 
percentage error (MAPE) and Pearson’s correlation coefficient (r) 
between the reference measured values and network-estimated values 
were used as the evaluation indices. Bland–Altman analysis (27) was 

FIGURE 1

Sample chest radiographs used in this study. The original images 
were down-sampled and zero-padded to a 512  ×  512 matrix with the 
aspect ratio preserved. Additionally, they were resampled to 
224  ×  224 and used as input.

FIGURE 2

The inclusion and exclusion criteria for data acquisition. Only frontal chest radiographs and spirometry data obtained at a single institution with no 
abnormal findings on diagnostic reports and no history of undergoing radiography and spirometry on the same day were used.
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performed using the reference measured value and the error between 
the estimated value and the measured value. The estimated value and 
the measured value were considered to be  variables that could 
be treated equally if >95% of the evaluation data were included in the 
limits of agreement (LOA) at mean ± 1.96 SD.

3 Results

Table  2 presents the results of FVC, FEV1 and FEV1/FVC 
estimations for each network. FVC and FEV1 estimates showed strong 
positive correlations with both networks. Inception-ResNet-V2, which 
had the largest number of parameters, achieved the best MAPE and 
correlation coefficients for FVC and FEV1. The MAPE and correlation 
coefficients for FVC estimation were 7.585–8.246 and 0.903–0.910, 
respectively. The MAPE and correlation coefficients for FEV1 estimation 
were 9.055–9.442 and 0.865–0.879, respectively. The MAPE and 
correlation coefficients for FVC estimation were superior to those of 
FEV1 estimation, regardless of the network type used. Figure 3 presents 

the results of the comparison between the FVC estimation results of the 
Inception-ResNet-V2 network, which yielded the lowest MAPE and the 
highest correlation coefficient, and the reference. Figure 4 presents the 
results of the comparison between the FEV1 estimation results and the 
reference. The 95% confidence interval for the mean error rate of FVC 
estimation (Figure 3B) ranged between −1.741% and −0.615% in the 
Bland–Altman plot. The slope of the coefficient for the determination 
of the % error-reference of an approximately straight line, R2 = 0.106, was 
not significant. The agreement between the estimated and measured 
FVC values was confirmed, as 96.1% of the data were included within 
the LOA. The 95% confidence interval for the mean percentage error of 
FEV1 estimation ranged between 0.606% and 2.164% in the Bland–
Altman plot (Figure  4B). The slope of the coefficient for the 
determination for the % error-reference of an approximately straight 
line, R2 = 0.157, was not significant. The agreement between the FEV1 
estimates and measured values was confirmed, as 97.6% of the data were 
included within the LOA. Figure 5 presents the results of the deep 
learning network with the best correlation coefficient and MAPE for 
estimating FEV1/FVC. The MAPE was acceptable at 5.20%, whereas the 

TABLE 1 Demographic characteristics and pulmonary function indices of datasets.

Training Validation Test Overall

Participant n 9,469 1,184 1,184 11,837

Sex
Female, n (%) 3,325 (35.1%) 425 (35.9%) 422 (35.6%) 4,172 (35.2%)

Male, n (%) 6,144 (64.9%) 759 (64.1%) 762 (64.4%) 7,665 (64.8%)

Age (year) 50 [43–58] 50 [43–58] 50 [43–58] 50 [43–58]

Height (cm) 167.3 [160.5–172.8] 166.8 [160.2–172.6] 167.3 [160.1–173.0] 167.3 [160.4–172.8]

FVC (mL) 3,600 [2,980–4,210] 3,680 [3,038–4,320] 3,610 [2,960–4,180] 3,600 [2,980–4,210]

FEV1 (mL) 2,880 [2,410–3,400] 3,585 [2,978–4,240] 2,900 [2,398–3,413] 2,880 [2,410–3,400]

FEV1/FVC (%) 81.1 [77.0–84.8] 81 [76.8–84.8] 81.1 [77.0–84.7] 81.1 [77.0–84.8]

predFVC (mL) 3,890 [3,010–4,310] 3,880 [2,980–4,320] 3,885 [3,000–4,330] 3,890 [3,010–4,310]

predFEV1 (mL) 3,260 [2,530–3,700] 3,250 [2,498–3,710] 3,245 [2,520–3,710] 3,260 [2,520–3,700]

% FVC 97.8 [89.9–105.6] 97.8 [89.3–106.2] 97.3 [89.8–105.4] 97.6 [89.5–105.8]

% FEV1 97.7 [89.5–105.8] 93.8 [85.0–101.9] 93.4 [85.9–101.3] 93.6 [85.4–101.9]

% FEV1 category, n (%)

>80% 10,281 (86.9%) 1,020 (86.1%) 1,027 (86.7%) 10,281 (86.9%)

50%–79% 1,528 (12.9%) 161 (13.6%) 154 (13%) 1,528 (12.9%)

30%–49% 24 (0.2%) 1 (0.1%) 3 (0.3%) 24 (0.2%)

<30% 4 (0%) 2 (0.2%) 0 (0%) 4 (0%)

Age, height, FVC, FEV1, FEV1/FVC, predFVC, predFEV1, % FVC, % FEV1 are shown as median [25–75th percentile values]. FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s; 
predFVC, predicted FVC; pred FEV1, predicted FEV1; % FVC, percent-predicted FVC; % FEV1, percent-predicted FEV1.

TABLE 2 Comparison of estimation performance of the network for each pulmonary function indices.

Network FVC FEV1 FEV1/FVC

MAPE r MAPE r MAPE r

ResNet-18 7.995 0.903 9.442 0.865 5.344 0.492

ResNet-50 8.083 0.907 9.063 0.871 5.885 0.465

ResNet-101 8.206 0.909 9.328 0.866 5.210 0.522

DenseNet-201 8.101 0.909 9.249 0.876 5.565 0.466

Inception-ResNet-V2 7.585 0.910 9.055 0.879 5.674 0.512

FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s.

https://doi.org/10.3389/fmed.2024.1335958
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yoshida et al. 10.3389/fmed.2024.1335958

Frontiers in Medicine 05 frontiersin.org

correlation was moderate at r = 0.522. The correlation between FEV1/
FVC estimates and measured values was weaker than those observed 
for the estimation of FVC and FEV1. The 95% confidence interval for 
the mean error rate of FVC estimation (Figure 5B) ranged between 
−221213.6% and 15.7% in the Bland–Altman plot. The slope of the 
coefficient for the determination for the % error-reference of an 
approximately straight line, R2 = 0.759, was significant. The agreement 
between the FEV1/FVC estimates and measured values was confirmed, 
as 96.8% of the data were included within the LOA.

4 Discussion

A typical deep learning network was used to estimate the FVC, 
FEV1 and FEV1/FVC values from a frontal CXR via spirometry in this 
study. Strong positive correlations were observed between the 
estimated FVC and FEV1 values and the corresponding measured 
values. The MAPE was low (<10%) for FVC, FEV1 and FEV1/FVC 
estimations. The Bland–Altman analysis revealed good agreement 
between the estimated and measured values for FVC and FEV1. Thus, 

FIGURE 3

FVC estimation results using Inception-ResNet-V2. (A) Comparison of measured and estimated values. (B) Bland–Altman-like plot presenting the 
measured value-estimated error rate relationship. The correlation coefficient and error rate were the best among the networks used, with 96.1% of the 
data within the limits of agreement (mean  ±  1.96 SD), confirming agreement between spirometry measurements and AI estimation using chest 
radiography. FVC, forced vital capacity.

FIGURE 4

FEV1 estimation results using Inception-ResNet-V2. (A) Comparison of measured and estimated values. (B) Bland–Altman-like plot representing the 
measured value-estimated error rate relationship. The correlation coefficient and error rate were the best among the networks used, with 97.6% of the 
data within the limits of agreement (mean  ±  1.96 SD), confirming agreement between spirometry measurements and AI estimation using chest 
radiography. FEV1, forced expiratory volume in 1  s.
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the findings of this study indicate that frontal CXRs contain 
information related to pulmonary function and that AI estimation 
performed using frontal CXRs can estimate spirometry-measured 
values FVC and FEV1 with high accuracy.

The pulmonary function parameters to be estimated in this study 
were FVC and FEV1, which are expiratory volumes exhaled during 
forced breathing with no time limit. FVC is the total expiratory 
volume exhaled during forced breathing without any time limit, 
whereas FEV1 is the expiratory volume exhaled during the first second 
of forced breathing. Thus, FEV1 can be considered a part of FVC, 
where FEV1 is the flow velocity. FEV1, a highly sensitive indicator of 
decreased ventilatory capacity, is decreased in patients with 
obstructive ventilatory defects owing to air trapping caused by 
damaged alveoli, which increases the peripheral airway resistance and 
limits the expiratory volume that can be exhaled in a short period of 
time (28–30). This decrease in FEV1 is particularly significant in 
patients with progressive COPD; however, it can also be observed in 
the pre-COPD stage and early stages of COPD, wherein the decrease 
in ventilation capacity is less evident (31). Specific findings are 
observed on the CXRs of patients with severe COPD; however, such 
findings are not observed in patients with early-stage COPD. Therefore, 
it is reasonable to assume that the accuracy of FEV1 estimation is 
relatively inferior to that of FVC estimation, an index that varies more 
frequently among patients. The correlation of the estimated FEV1/FVC 
and those of measurements was weaker than those observed for the 
case of estimation of FVC and FEV1. This may be attributed to the 
individual variability of FVC and FEV1, which makes the FEV1/FVC 
value a more complex predictor.

Subgroups were created based on the age, height, sex, % FVC, and 
% FEV1 related to the estimation error to increase the robustness of the 
performance of the AI estimation method used in this study. Age, 
height, and sex are the information used to determine the % FVC and 
% FEV1 in spirometry. The % FVC and % FEV1 are relative to the 
predicted FVC and FEV1 values, respectively, which are standard values 
for the same age, height, and sex expressed as percentages. Thus, % 

FVC and % FEV1 are indicators of a participant’s pulmonary function 
relative to the standard population. Each subgroup, except for the 
subgroup created on the basis of sex, was divided into categories, and 
the error rates for each category were compared. The categories for 
each subgroup were as follows: age category, <30 years, 30–49 years, 
50–59 years, 60–69 years, and >70 years; height category, <150 cm, 
150–160 cm, 160–170 cm, 170–180 cm, and >180 cm; sex category, 
male and female; % FVC category, <70, 70–80, 80–90, 90–100, 
100–110, 110–120, and >120, % FEV1 category <70, 70–80, 80–90, 
90–100, 100–110, 110–120, and >120. Differences in the distributions 
of error rates among categories were tested using the Kruskal–Wallis 
method (significance level p < 0.05) and multiple comparisons. Figure 6 
presents the distributions of error rates in the FVC estimation 
according to the subgroup and category. The distribution of error rates 
tended to widen with increasing age in the age category (Figure 6A); 
however, multiple comparisons performed using the Kruskal–Wallis 
test revealed no statistically significant differences among the 
categories. There were no trends or significant differences in height, 
sex, or % FVC subgroups (Figure 6B-D). Significant differences were 
observed in the distribution between the categories with low % FEV1 
and the other categories in the % FEV1 subgroup (p < 0.001). Figure 7 
presents the distributions of error rates in the FEV1 estimation 
according to the subgroup and category. No significant differences were 
observed between the categories in terms of age, height, or sex. Thus, 
the findings suggest that robust performance was obtained without 
error bias for age, height, and sex. Significant differences were observed 
in the errors between categories with low % FVC values and several 
other categories in the % FVC subgroup. Multiple comparisons 
revealed the relationship between each % FEV1 category and the FEV1 
estimation error rate (Figure 7E). Significantly different mean ranks 
were observed between all categories except between categories 
100–110 and 110–120 and between 110–120 and >120 in the % FEV1 
subgroup (p < 0.001). Figure 8 presents the distributions of error rates 
in the FEV1/FVC estimation according to the subgroup and category. 
No significant differences were observed between the categories in 

FIGURE 5

FEV1/FVC estimation results using ResNet-101. (A) Comparison of measured and estimated values. (B) Bland–Altman-like plot representing the 
measured value-estimated error rate relationship. The correlation between the estimated and measured values was moderate, while the error rate was 
low at about 5%. FVC, forced vital capacity; FEV1, forced expiratory volume in 1  s.
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terms of height and sex. Thus, the findings suggest that a robust 
performance was obtained without error bias for height and sex. 
Multiple comparisons revealed the relationship between each % FEV1 
category and the FEV1/FVC estimation error rate (Figure  8E). 
Significantly different mean ranks were observed between categories 
between categories 30–39 years and 50–59 years in the age subgroup 
(p < 0.01) and between categories between categories 80–90 and 
>120 in the % FVC subgroup. Additionally, in the % FEV1 subgroup, 
significantly different mean ranks were observed between all categories 
(p < 0.05), except between categories <70 and 70–80; 70–80 and 80–90; 
80–90 and 100–110; 100–110 and 110–120 and >120; 110–120 and 
>120. Table 3 presents the number of data points and error rates for 

each subgroup and category. The median error tended to be more 
positively biased for categories with a lower % FEV1 in the % FEV1 
subgroup. It is suspected that the low % FVC and low % FEV1 categories 
had small samples and that the characteristics of % FVC and % FEV1 
might not have been learned sufficiently. However, the error rate did 
not increase significantly for the other age and height categories with a 
lesser amount of data. Therefore, the results of this study do not exclude 
the possibility that the relationship between lower % FVC and % FEV1 
and imaging features has not been sufficiently trained by network. 
Future studies should increase the number of samples with low % FVC 
and % FEV1 during training and validate the robustness of the % FVC 
and % FEV1 subgroups.

FIGURE 6

Relationship between the subgroups and FVC estimation error rates in the evaluation data. (A) Percentage error by age category. (B) Percentage error 
by height category. (C) Percentage error by gender. (D) Percentage error per % FVC category. (E) Percentage error by % FEV1 category. The higher the 
age category and the lower the % FEV1 category, the larger the variance of the percentage error tended to be. FVC, forced vital capacity; FEV1, forced 
expiratory volume in 1  s.

FIGURE 7

Relationship between the subgroups and FEV1 estimation error rates in the evaluation data. (A) Percentage error by age category. (B) Percentage error 
by height category. (C) Percentage error by gender. (D) Percentage error per % FVC category. (E) Percentage error by % FEV1 category. The variance of 
the percent error tended to be larger for the higher age categories and for the lower % FVC and % FEV1 categories. FVC, forced vital capacity; FEV1, 
forced expiratory volume in 1  s.
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Previous studies investigating the relationship between CXRs 
and pulmonary function manually extracted image characteristics 
from dynamic CXRs to investigated their correlations with 
pulmonary function. Hino et  al. (17) and Hida et  al. (18) 
investigated the correlation between image characteristics and 
pulmonary function values on dynamic CXR. In the study by Hino 
et al. (17), the highest correlation coefficient was between lung field 
area and FEV1 at the maximal inspiratory position with effort 
breathing in DCR was the highest (right r = 0.59, left r = 0.62). The 
study by Hida et  al. (18) also showed the highest correlation 
between whole excursion of the diaphragm and FEV1 in DCR, 
although the correlation was weak (right r = 0.27, left r = 0.38). 
While previous studies have reported a moderate correlation 
between FEV1 and lung field area based on DCR image 
measurements, this study used deep learning networks to 
automatically extract and select image characteristics from static 
CXRs and revealed a strong positive correlation (r = 0.879) between 
CXRs and FEV1. The findings of this study suggest that pulmonary 
function can be estimated accurately from static images using deep 
learning networks, resulting in a significant improvement in 
accuracy. In a previous study in which pulmonary function was 
estimated from CXR using machine learning, Schroeder et al. (21) 
estimated FEV1/FVC using bidirectional CXR pair and obtained 
R2 = 0.415 (conversion r = 0.644), which is a moderately positive 
correlation. In this study, only frontal CXR was used to estimate 
FEV1/FVC. An R2 = 0.272 (r = 0.522) was obtained, indicating a 
moderate positive correlation. The absence of lateral CXR in this 
study is expected to have resulted in the deep learning network 
extracting less information compared to if bidirectional CXR pairs 
were utilized, leading to lower estimation performance.

Among pathologies with obstructive ventilation defects, COPD 
is the most common chronic respiratory disease worldwide, with 
approximately 174 million affected individuals (32). COPD is an 
irreversible pathology; thus, it is important to detect and initiate 
treatment prior to its progression. However, the symptoms of 

COPD only become apparent as the disease reaches advanced 
stages. Moreover, it is difficult to detect COPD early using CXRs. 
Therefore, detecting and initiating treatment at the earliest possible 
stage for patients with COPD who are asymptomatic has become 
an important public health issue worldwide. In this study, the FVC 
and FEV1 values measured using spirometry could be estimated 
with an average accuracy of >90% using only frontal CXRs, which 
are the most commonly acquired images in imaging tests, in this 
study. The method used in this study provides spirometry estimates 
without any additional burden to the CXR examinee. In the future, 
if the robustness of the estimation performance to the 
characteristics of the data is sufficiently verified, estimation of 
pulmonary function using CXR could be used as an adjunct to 
spirometry in individuals with low estimated pulmonary function 
or as an alternative to pulmonary function measurement. Chest 
radiography (screening CXR) is a low-cost and relatively 
widespread cancer screening method that can be  used as an 
alternative for the COPD risk assessment. The findings of this study 
suggest that FVC and FEV1 could be estimated with an average 
accuracy of >90% and >87% for participants with % FEV1 of >80% 
and >70%, respectively. Thus, the network developed in this study 
could be  used as an alternative for COPD risk assessment in 
patients with mildly impaired pulmonary function and for the 
control of the pre-COPD group.

This study has some limitations. Only cases with no abnormal 
findings in the CXR report were used to eliminate the influence of 
abnormal findings on the estimation of pulmonary function by 
image features of abnormal findings. Another reason is that it is 
significant for use in estimating pulmonary function is CXR 
without abnormal findings related to abnormalities in pulmonary 
function. However, the available training data can be expected to 
increase and a higher network performance can be achieved if the 
pulmonary function can be estimated accurately, even in cases with 
abnormal findings. The results of this study did not exclude the 
possibility of inferior estimation performance by deep learning for 

FIGURE 8

Relationship between the subgroups and FEV1/FVC estimation error rates in the evaluation data. (A) Percentage error by age category. (B) Percentage 
error by height category. (C) Percentage error by gender. (D) Percentage error per % FVC category. (E) Percentage error by % FEV1 category. The 
variance of the percent error tended to be larger for the lower % FEV1 categories. FVC, forced vital capacity; FEV1, forced expiratory volume in 1  s.
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cases with lower % FVC and % FEV1. To validate and further 
generalize the findings of this study, it will be necessary to train a 
larger number of samples with low % FVC and % FEV1 and to 
perform external validation using data from another facility. Only 
ImageNet-pretrained networks publicly available in MATLAB and 
general deep-learning networks were used in this study. Depending 
on the samples and networks used, a larger network scale had 
greater correlation coefficient and MAPE. Thus, it is possible that 
larger deep learning networks can be used to develop pulmonary 
function estimation networks with higher performance.

5 Conclusion

Pulmonary function values measured using spirometry were 
estimated from the corresponding frontal CXRs using a general deep 
learning network. FVC, FEV1 and FEV1/FVC were estimated with an 

average accuracy of >90%. The pulmonary function estimation 
network developed in this study may be  a useful method for 
pulmonary function screening or a potential substitute for spirometry.
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TABLE 3 Number of test data and percentage error of AI estimation according to the age, height, sex, % FVC and % FEV1.

Subgroup Category n Absolute percentage error (mean  ±  SD)

FVC FEV1 FEV1/FVC

Age (year)

<30 12 6.43 ± 4.98 7.96 ± 5.30 2.96 ± 3.30

30–39 135 6.86 ± 5.56 7.25 ± 6.18 4.82 ± 3.63

40–49 420 7.11 ± 8.44 7.84 ± 9.76 4.70 ± 6.45

50–59 382 7.50 ± 7.40 9.57 ± 13.12 5.23 ± 4.96

60–69 181 8.43 ± 6.87 11.07 ± 13.03 6.58 ± 8.64

>69 54 11.00 ± 7.38 12.76 ± 12.36 5.74 ± 6.07

Height (cm)

<150 31 7.97 ± 7.00 10.21 ± 9.6 5.37 ± 4.36

150–159 264 7.94 ± 6.48 8.94 ± 8.13 4.67 ± 3.72

160–169 437 7.66 ± 7.23 9.86 ± 13.60 5.83 ± 7.22

170–179 399 7.33 ± 5.45 8.37 ± 7.13 4.94 ± 4.05

>180 53 6.76 ± 5.86 7.33 ± 9.57 4.64 ± 5.53

Sex
Male 762 7.46 ± 6.63 9.10 ± 11.46 5.35 ± 5.83

Female 422 7.79 ± 6.07 8.96 ± 7.93 4.94 ± 4.73

% FVC

<70 16 7.38 ± 5.88 38.24 ± 52.84 9.77 ± 15.57

70–80 59 7.29 ± 9.18 13.12 ± 12.57 5.63 ± 6.98

80–90 227 7.41 ± 9.21 9.36 ± 11.44 5.3 ± 7.18

90–100 386 7.33 ± 10.15 8.9 ± 12.54 5.42 ± 8.76

100–110 316 7.9 ± 9.64 6.96 ± 8.69 4.85 ± 6.03

110–120 143 8.02 ± 10.99 8.63 ± 8.96 4.58 ± 5.98

>120 37 7.3 ± 10.35 9.13 ± 8.22 5.12 ± 5.29

% FEV1
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>120 24 9.73 ± 5.02 11.82 ± 7.1 3.73 ± 4.01

FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s; % FVC, percent-predicted FVC; % FEV1, percent-predicted FEV1.
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