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Biliary stricture can be induced by intrinsic narrowing and extrinsic compression, 
with the majority of cases being malignant. Clinically, distinguishing between benign 
and malignant biliary strictures remains a considerable challenge, and the ongoing 
disagreement over the optimal choice of biliary stents significantly influences 
treatment strategies and impacts patients’ survival and prognosis. The utilization 
and advancement of endoscopic techniques have heightened the diagnostic 
sensitivity for biliary strictures. Concurrently, innovative technologies such as 
endoscopic ultrasound and magnetic compression anastomosis emerge as viable 
alternatives when endoscopic retrograde cholangiopancreatography (ERCP) is not 
an option, providing fresh insights for the clinical management of these patients. 
Traditional plastic and metal stents, characterized by their complex application and 
limited scope, have been unable to fully satisfy clinical needs. The introduction of 
novel stent varieties has notably improved this scenario, marking a considerable 
progression towards precision medicine. However, the clinical validation of the 
diverse stent materials available is incomplete. Hence, a thorough discussion on 
the present state and evolving trends of biliary stents is warranted.
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1 Introduction

The biliary system functions as the main channel for hepatocytes to convey bile, crucial 
for the digestion of fats and fat-soluble vitamins. Pathological factors, including trauma, 
surgical interventions, inflammation, or tumors, can lead to biliary strictures or complete 
obstruction (Figure 1). This results in bile accumulation and subsequent clinical manifestations 
such as jaundice, pruritus, and urine discoloration (Figure 2) (1). Persistent biliary blockage 
can bring complications such as ascending cholangitis, Gram-negative sepsis, and liver 
abscesses, presenting substantial health and mortality risks (2). Research has indicated that 
74–87% of patients with biliary strictures suspected to be malignant diagnosed by endoscopic 
retrograde cholangiopancreatography (ERCP) or endoscopic ultrasound (EUS) are found to 
have malignancies, and indeterminate biliary strictures are more likely to be malignant (3). 
However, differentiating between benign biliary strictures (BBS) and malignant biliary 
strictures (MBS) continues to be a significant clinical hurdle, markedly affecting therapeutic 
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strategies and patient outcomes. The intricate structure of the bile 
duct, coupled with its narrow lumen-whether in the intrahepatic bile 
duct or the common bile duct-makes it challenging to obtain direct 
histological evidence of an intrinsic stricture, even when its location 
is pinpointed (4). Additionally, lesions in adjacent organs like the liver 
and pancreas can influence the bile duct’s patency, adding layers of 
complexity to the diagnostic process. Furthermore, conditions such as 
primary sclerosing cholangitis and autoimmune pancreatitis 
inherently obscure the distinction between benign and malignant 
manifestations (5, 6). Therefore, discerning the cause of biliary 
stricture, whether BBS or MBS, continues to be a significant medical 
challenge. In the past, percutaneous surgery was commonly used to 
manage biliary stricture. However, as an invasive procedure, it is 
evident that it causes more discomfort to the patients. Additionally, 
studies have shown that it has a higher mortality rate compared to 
endoscopic treatment in the management of malignant hilar biliary 
strictures (7). Medical technology advancements have established 
endoscopic diagnosis and treatment as the foremost clinical approach 
for biliary strictures, owing to its minimal invasiveness and procedural 
simplicity (3, 8). Effective management of BBS and MBS centers on 
alleviating the constriction to facilitate bile drainage. The emergence 
of biliary stents has enabled extended drainage, but the selection 
between plastic stents (PS) and self-expanding metal stents (SEMS) 
continues to be debated. Currently, the American Gastroenterological 
Association (AGA) and the European Society of Gastrointestinal 
Endoscopy (ESGE) providing relevant recommendations in its 
updated guidelines (3, 9). The emergence of novel biliary stents has 
expanded therapeutic options for biliary strictures. This review 
presents recent advancements in their diagnosis and treatment, 

emphasizes the features and latest trends of various innovative biliary 
stents, and provides a fresh perspective on the clinical management of 
biliary strictures.

2 Etiology and classification of biliary 
stricture

Based on causative factors, they can be categorized into BBS and 
MBS. Various non-neoplastic factors, including iatrogenic injuries and 
inflammatory lesions, can lead to these strictures. Notably, iatrogenic 
strictures represent the predominant cause, with post-cholecystectomy 
patients (whether laparoscopic or open) being the most commonly 
affected (3, 9). Biliary strictures following cholecystectomy frequently 
affect the common hepatic duct and the proximal common bile duct. 
The etiology of these strictures include undue traction on the 
gallbladder neck during surgery, injury from electrocautery, and 
fibrosis resulting from local inflammation of the cystic duct (9, 10). 
Biliary strictures following liver transplantation also rank among the 
prevalent causes of biliary stricture (11, 12). It occurs more frequently 
in living donor liver transplantation compared to deceased donor liver 
transplantation (13, 14). Secondly, inflammatory lesions rank as the 
second leading cause of benign biliary strictures (2). Examples include 
pancreatitis and cholangitis stemming from various origins: acute 
pancreatitis, chronic pancreatitis (inclusive of autoimmune 
pancreatitis), and primary sclerosing cholangitis (15, 16). Additionally, 
other benign causes of biliary strictures, such as autoimmune 
inflammatory strictures and benign tumors, are listed in Table 1. MBS 
are caused by primary or secondary tumors. Primary 

FIGURE 1

Hepatobiliary system and partly causes of biliary strictures.

https://doi.org/10.3389/fmed.2024.1334154
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ni et al. 10.3389/fmed.2024.1334154

Frontiers in Medicine 03 frontiersin.org

cholangiocarcinoma is a common cause of malignant biliary strictures, 
as it grows or spreads directly within the bile ducts, leading to 
narrowing or complete obstruction (17). Moreover, malignant tumors 
of neighboring organs, such as pancreatic cancer and gallbladder 
cancer, can infiltrate or compress the bile ducts, causing strictures 
(18). Secondary MBS may be caused by metastasis from cancers in 
other parts of the body. Detailed causes of MBS are provided in 
Table 1.

3 Diagnosis and treatment of 
endoscopic biliary strictures

3.1 Diagnosis

Endoscopic diagnosis stands as the paramount method for 
discerning the property of biliary strictures. However biopsy/brush 
cytology conducted by ERCP exhibits constrained sensitivity. A meta-
analysis of 9 studies indicated that the combined sensitivity of cytology 
brushings and intraductal biopsies under ERCP for diagnosing 
malignant biliary strictures was 45 and 48.1%, respectively (19). 

Endoscopic ultrasound-guided fine needle aspiration/biopsy 
(EUS-FNA/FNB) has an 80% sensitivity for malignant biliary strictures. 
However, it has challenges in accessing proximal biliary strictures and 
the risk of tumor dissemination along the FNA channel, which could 
potentially lead to cancer spread (20). This technique should be used 
with caution when addressing intrahepatic biliary strictures or post-
liver transplantation biliary strictures. Consequently, diagnosing 
malignant biliary strictures remains a focal point of research. Leveraging 
varied endoscopic techniques, several innovative detection methods 
have emerged to enhance sensitivity. Peroral cholangioscopy (POC) and 
probe-based confocal laser endomicroscopy (pCLE) are among the 
most sensitive approaches. POC is a technique for direct imaging of the 
biliary tract. It allows the endoscopist to insert a scope into the bile 
ducts for visualization. This method enhances specimen collection, with 
studies showing that adequate pathological specimens can be obtained 
in 94.4% of patients (21). One limitation of EUS is the difficulty in 
accessing proximal bile duct stenosis, as well as concerns that malignant 
tumors may disseminate along the FNA channel. However, A research 
study has reviewed the effectiveness of peroral cholangioscopy (POC) 
in diagnosing biliary strictures, emphasizing its advantages in detecting 
proximal lesions (22). Probe-based confocal laser endomicroscopy 

FIGURE 2

Symptoms of patients with biliary strictures and stents treatment.
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(pCLE) combines the functionalities of optical microscopy and 
endoscopy. By inserting an optical probe through the cholangioscope, 
it enables the acquisition of real-time, high-resolution histological 
images, which significantly aids in differentiating proximal lesions (23). 
Han’s et al. (24) research included 59 patients with primary sclerosing 
cholangitis and reported a diagnostic sensitivity of 85.7% for pCLE, 
with the highest sensitivity observed at the bifurcation and right hepatic 
duct. However, limitations in pCLE probe technology may reduce 
diagnostic sensitivity for the common bile duct and left hepatic duct.

Some new technologies can also increase the detection rate of 
MBS. Centrifuge bile samples collected from ERCP or EUS to separate 
potential cancer cells. Subsequently, fix the sediment and embed it in 
paraffin to form a cell block similar to a tissue nted this stent into the 
bile ducts of rabbits, which not only reduced bacterial adhesion but 
also minimized tissue proliferation. With the advancement of machine 
learning, artificial intelligence has demonstrated unique advantages in 
diagnosing MBS. Convolutional neural networks (CNN), a type of 
deep learning model, are particularly suited for processing grid-
structured data such as images and videos. CNN can enhance 
low-quality images and achieve automatic image diagnosis by 
analyzing these images. Additionally, their diagnostic capabilities 
improve as the sample size increases (25). While these novel diagnostic 
methods offer promise, they come with challenges such as elevated 
costs, operational complexities, and restricted accessibility. Future 
advancements in diagnosing malignant biliary strictures may build 
upon current technologies, mitigating technical and operational 
challenges. A feasible approach is to use clinical prediction models or 
various machine learning algorithms to enhance the identification of 
high-risk patients, thereby reducing the additional financial burden 
on them.

3.2 Endoscopic therapy

3.2.1 Biliary drainage under ERCP
Stent insertion via ERCP and endoscopic nasobiliary drainage 

(ENBD) facilitates bile drainage and alleviates biliary obstruction. 
Notably, the combination of ERCP with biliary stent placement 
remains the primary approach for addressing biliary strictures. 
Contemporary stent varieties encompass PS, SEMS and other novel 
stents (9). Traditionally, PS have been suitable for all biliary stricture 
categories, with frequent utilization of multiple stent placements 

(MPS) to alleviate obstructions. While several SEMS types exist, they 
are predominantly employed for extrahepatic biliary strictures. 
However, research offers divergent perspectives on the indications for 
distinct metal stents. For example, in a meta-analysis encompassing 
five multicenter randomized controlled studies with 781 global 
participants, Saleem et  al. (26) showed that fully covered self-
expanding metal stents (FCSEMS) outperformed uncovered self-
expanding metal stents (UCSEMS) in treating distal MBS and had 
longer patency time. Conversely, a multicenter randomized controlled 
trial conducted by Conio et  al. (27) indicated that when treating 
extrahepatic MBS, FCSEMS experienced increased stent migrations 
and earlier stent occlusions compared to UCSEMS.

When comparing SEMS to PS, initially considering cost, no 
notable difference was observed between the two for patients with a 
survival duration exceeding 1 year or falling below 3 months (28). 
Secondly, regarding efficacy, the overall performance of SEMS and PS 
in treating BBS is analogous. However, the choice of stent varies based 
on the cause and location of the stricture. The European Society of 
Gastrointestinal Endoscopy (ESGE) recommends the endoscopic 
placement of self-expanding metal stents (SEMS) primarily for the 
treatment of malignant extrahepatic biliary obstruction (9, 28, 29). 
Both stent varieties present notable limitations. PS is susceptible to 
obstruction, and repeated ERCP stent replacements introduce 
increased surgical risks and challenges (30, 31). The terminal portion 
of the SEMS stent may injure the intestinal or bile duct wall, while 
prolonged stent placement can result in bile sludge accumulation and 
stone development (32). ESGE advises that the therapeutic benchmark 
for BBS involves placing MPS or SEMS. For inoperable MBS patients, 
SEMS is the first choice (9). There remains a lack of unanimous 
agreement regarding the utilization of various SEMS types, 
necessitating further prospective studies. Additionally, other novel 
stents unable to gain widespread clinical adoption, and their 
therapeutic effectiveness warrants further investigation and validation. 
Furthermore, ENBD serves as an alternative for bile drainage. The 
nasobiliary tube, introduced via the nasal cavity into the bile duct, 
facilitates the drainage of accumulated bile, alleviating obstruction. 
Kawashima’s et  al. (33) study indicates that ENBD can effectively 
reduce patients’ total bilirubin levels, improve the prognosis of patients 
(34). Compared to percutaneous transhepatic biliary drainage 
(PTBD), endoscopic nasobiliary drainage (ENBD) has a lower risk of 
tumor spread following surgery (35, 36). However, in patients with 
proximal or intrahepatic bile duct obstruction, PTBD provides more 

TABLE 1 Causes of biliary strictures.

Category Cause Specific descriptions

BBS

 • Iatrogenic injury Post-cholecystectomy, post-liver transplantation, post-endoscopic sphincterotomy, post-other cholangioenterostomy

 • Autoimmune inflammation IG4 sclerosing cholangitis, autoimmune pancreatitis, primary sclerosing cholangitis

 • Non-autoimmune inflammation Acute pancreatitis, chronic pancreatitis, acute suppurative cholangitis, inflammatory pseudotumor

 • Benign tumors Bile duct adenoma, giant cell tumor, papillary tumors, intraductal papillary neoplasm of the bile duct

 • Obstructive Mirizzi syndrome, portal biliary disease, common bile duct stone

 • Infectious diseases HIV infection, parasites, biliary tuberculosis

 • Ischemic diseases Post-intrahepatic perfusion of chemotherapy drugs, hepatic artery stenosis or embolism, vasculitis

MBS
 • Primary tumors Cholangiocarcinoma, pancreatic cancer, hepatocellular carcinoma, ampullary carcinoma, gallbladder carcinoma

 • Secondary tumors Metastatic tumors from other sites, lymphoma, metastasis from peripheral lymph nodes

BBS, benign biliary strictures; MBS malignant biliary strictures.
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complete drainage, shorter drainage times, and better recovery of liver 
function compared to endoscopic retrograde biliary drainage (ERBD) 
(37). Numerous studies have highlighted the advantages of PTBD in 
cases of advanced hepatic portal stenosis (38). Additionally, long-term 
use of a nasobiliary duct following ENBD may lead to laryngeal 
irritation, water and electrolyte imbalances, and risks such as rupture, 
detachment, or displacement. Therefore, ENBD is typically utilized for 
short-term symptom relief rather than for long-term treatment.

3.2.2 Biliary drainage under EUS
Approximately 5–10% of patients cannot successfully undergo 

ERCP (9, 39). Common complete obstructions of the bile duct in these 
patients are due to distal MBS or postoperative anatomical changes in 
BBS, making it difficult for an endoscope to pass through the duodenal 
papilla (40, 41). For individuals unsuitable for ERCP drainage, 
conventional treatments encompass PTBD drainage or endoscopic 
intervention. However, these methods carry an elevated risk of 
complications and extended hospitalizations (42, 43). Endoscopic 
ultrasound-guided biliary drainage (EUS-BD) presents a minimally 
invasive and safer option, appropriate for patients unsuitable for ERCP 
biliary drainage (44). EUS-BD can be  performed through stent 
placement and fistula creation for drainage. Endoscopic ultrasound-
guided choledochoduodenostomy (EUS-CD) or hepaticogastrostomy 
(EUS-HG) is typically chosen. EUS-CD is suitable for distal bile duct 
strictures, while EUS-HG is appropriate for gastric outlet obstruction 
or postoperative bile duct strictures. The practitioner can initially 
position an ultrasound probe within the stomach or duodenal bulb to 
facilitate ultrasonic imaging of the bile duct. Subsequently, utilizing a 
needle, they access the intrahepatic bile duct or common bile duct and 
introduce contrast. Ultimately, under needle guidance, a stent is 
positioned to facilitate bile drainage into the stomach or intestinal 
cavity, alleviating biliary obstruction (45, 46). EUS allows for direct 
puncture into the bile duct through the stomach or duodenal wall, 
thereby avoiding the duodenal papilla.

Compared to PTBD, EUS-BD is not only more effective in patients 
with MBS but also has fewer adverse events and complications, with a 
lower rate of reintervention (47–49). Importantly, for patients with 
inoperable malignant biliary strictures who have failed ERCP-guided 
biliary stent placement, endoscopic ultrasound-guided biliary drainage 
(EUS-BD) appears to be  a superior treatment option. EUS-BD is 
associated with a higher success rate for biliary drainage and fewer 
complications compared to percutaneous transhepatic biliary drainage 
(PTBD) (49, 50). In comparison with ERCP, EUS-BD boasts a 
comparable success rate and, on the whole, a diminished likelihood of 
adverse events. In specific scenarios, like patients experiencing biliary 
obstruction post-gastroduodenal stent placement, EUS-BD might 
exhibit superior technical success (51). With the ongoing advancement 
of the EUS-BD technique, research is now delving into identifying 
patients who might benefit more from EUS-BD than ERCP, or even 
positioning EUS-BD as the principal drainage approach for those not 
suitable for surgery (52–54). However, numerous EUS-BD procedures 
exist, each with intricate indications. Consequently, further research is 
imperative to elucidate the risks and advantages of each procedure and 
ascertain its efficacy across diverse biliary stricture types.

3.2.3 Other novel endoscopic techniques
Techniques such as endoscopic radiofrequency ablation (RFA), 

125I particle implantation, and magnetic compression anastomosis 

(MCA) are progressively integrated into biliary stricture treatment 
protocols. RFA is frequently employed for the palliative care of 
MBS. By generating electromagnetic waves via high-frequency 
alternating current, RFA induces intense heat and coagulative necrosis 
in the stenotic tissue, markedly enlarging the constricted bile duct’s 
diameter (32, 55). Likewise, 125I particle implantation serves as a 
therapeutic approach for MBS. 125I particles, being a low-energy 
radiation source, can inflict direct harm to the DNA double helix 
structure. This disrupts tumor cell replication, induces cell apoptosis, 
and potentially activates CD3+ and CD4+ cells, eliciting an anti-tumor 
immune response (56). 125I seeds can be attached to the stent and 
inserted into the bile duct, providing targeted destruction of the tumor 
tissue. Employing endoscopic ultrasound-guided 125I particle in 
conjunction with stent implantation markedly enhances the survival 
rate and quality of life for MBS patients, exhibiting a robust safety 
profile (57, 58). Traditionally, this therapeutic strategy is 
predominantly employed through the PTC approach. Regarding the 
endoscopic method, comprehensive research is essential to elucidate 
the operational technique, application range, efficacy, and safety of 125I 
particle implantation. It is noteworthy that for patients presenting 
with complete biliary stricture or those unresponsive to ERCP and 
percutaneous liver puncture therapy, MCA stands as a viable option 
(59). MCA employs regional compression between two magnets to 
proficiently accomplish the recanalization of complete stenoses, 
thereby reinstating normal drainage at the stenotic site through the 
induction of ischemic necrosis and epithelialization within the 
affected area. Studies indicate that the recanalization success rate of 
MCA ranges between 77 and 100% (60–62). During treatment, 
physicians typically employ endoscopic or percutaneous techniques 
to position magnets at both ends of the bile duct stricture—one at the 
proximal end and the other at the distal end. As the magnets attract 
each other within the body, the tissue at the stricture site becomes 
compressed and undergoes necrosis. This process allows the magnets 
to gradually converge, ultimately restoring the patency of the bile duct. 
While these emerging technologies hold potential as alternatives to 
conventional drainage methods, but a standardized criterion for 
assessing their application techniques and indications is unable to 
be  established. Consequently, the selection of an appropriate 
technology remains reliant on the clinical acumen and technical 
expertise of practicing physicians.

4 Evolution of biliary stents

4.1 Plastic stents

PS pioneered clinical usage as a biliary stent. Initiated by Professor 
Soehendra from Germany, who first employed a plastic stent for the 
endoscopic treatment of distal common biliary strictures in 1979, 
endoscopic stent placement has become a prevalent practice in clinical 
treatments (63). Typical materials for plastic stents encompass 
polyethylene, polyurethane, and polytetrafluoroethylene (Teflon). 
Owing to its superior flexibility and strength, polyethylene remains 
the predominant choice in clinical settings (64). Teflon exhibits a 
higher possibility to perforation compared to polyethylene, whereas 
polyurethane demonstrates diminished strength, potentially 
sustaining damage during removal (65–67). The prevalent plastic 
biliary stents vary in length from 1 to 18 cm and feature a range of 
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diameters from 5 to 12F, encompassing both straight and pigtail types. 
Due to their cost-effectiveness, ease of removal compared to SEMS, 
and safety, they find extensive utilization in clinical settings. The 
guidelines of ACG advocate for prioritizing PS placement in patients 
with benign biliary strictures (BBS) who retain the gallbladder, as well 
as in cases of perihilar biliary stricture induced by cholangiocarcinoma 
(3). Furthermore, BBS patients utilizing PS should undergo treatment 
for a duration exceeding 12 months. Intestinal bacteria may adhere to 
the stent’s inner surface via the stent opening, fostering the formation 
of bacterial biofilms. This phenomenon renders plastic stents 
susceptible to blockages (68). Firstly, the predominant solution 
involves multiple stent replacements. Research indicates that 
substituting plastic stents with progressively increasing diameters can 
more effectively facilitate tissue remodeling (69). A significant 
drawback of this approach is the necessity for recurrent endoscopic 
examinations, necessitating at least three annual visits, which might 
result in patients disregarding medical advice and exacerbating the 
discomfort associated with treatment. Secondly, drug-coated novel 
stents can effectively reduce the adhesion of various bacteria, but there 
is still a lack of research to evaluate the impact on systemic drug 
concentrations after stent placement (70). Lastly, employing an anti-
reflux plastic stent (ARPS) presents a viable alternative to counter the 
infiltration of intestinal bacteria. Dua et al. (71) pioneered the use of 
ARPS in 2007, demonstrating that this stent could prolong the median 
patency duration from 101 to 145 days. Conversely, Vihervaara et al. 
(72) undertook a clinical study utilizing the identical ARPS, but their 
study was prematurely halted owing to early stent occlusions within 
the ARPS group. This group exhibited a median stent patency of 
merely 34 days, markedly less than the 167 days observed in the 
general stent group. Therefore, while theoretically ARPS has the 
potential to diminish the incursion of duodenal bacteria and enhance 
stent patency, further comprehensive studies are requisite to 
substantiate its clinical efficacy.

4.2 Self-expanding metal stents

In 1990, Gillams pioneered the use of UCSEMS in the treatment 
of benign biliary strictures (73). SEMS, an expandable mesh structure, 
can be  initially positioned at sizes of 8.5F or smaller (74). Upon 
expansion, it attains a diameter that substantially surpasses that of PS 
(24–30F). Regarding materials, SEMS typically incorporate elements 
such as platinum, characterized by a platinum core enveloped in a 
nickel-titanium alloy shell, stainless steel, or nickel-titanium alloy 
(75). Clinically, three prevalent SEMS models are utilized: UCSEMS, 
FCSEMS, and partially covered self-expanding metal stents 
(PCSEMS). According to ACG, a confirmed diagnosis of MBS is 
requisite prior to the utilization of UCSEMS (3). Moreover, patients 
undergoing treatment with FCSEMS for BBS should adhere to a 
treatment duration of up to 6 months. In instances where the 
treatment extends beyond 12 months, a stent replacement is mandated 
at the 6-month mark. Once positioned, UCSEMS tends to remain 
stable, resisting displacement (76). However, it exhibits a relatively 
high incidence of stent occlusion, attributed to tissue ingrowth within 
the stent. Furthermore, its removal post-placement presents a 
considerable challenge. PCSEMS features a central coating within the 
stent, allowing the ends to embed within the tissue, thereby mitigating 
the risk of stent displacement. While it facilitates short-term 

endoscopic removal, it is associated with a higher incidence of severe 
adverse events, particularly migration (77, 78). The pharmaceutical 
coating adorning the surface of FCSEMS can mitigate tissue ingrowth, 
albeit augmenting the likelihood of stent displacement or slippage. 
Furthermore, exacerbated tissue proliferation at the stent extremities, 
coupled with sludge accumulation, can precipitate stent obstruction 
(27, 79). Currently, a myriad of novel stents are under development to 
enhance clinical efficacy. Cho et al. (80) successfully minimized tissue 
proliferation and sludge accumulation by infusing nickel-titanium 
stents with nanosilver particles. Park et al. (81) devised a novel spiral 
spring biliary metal stent capable of significantly reducing the 
displacement rate while concurrently delaying occlusion. The main 
limitation of FCSEMS is frequent displacement and removal 
complications. Park et  al. (82) incorporated fixed winglets at the 
proximal end of FCSEMS or adopted an outward design at the same 
location, a modification that substantially diminishes the migration 
rate following stent placement. Regarding the selection of SEMS, 
despite the scrutiny in preceding studies, the findings pertaining to 
patency, safety, and cost-effectiveness remain disparate (75). 
Consequently, a definitive clinical standard governing its utilization is 
unable to be established. The clinical applicability of PS and SEMS still 
needs to be based on their advantages and disadvantages and the 
clinical characteristics of the patients, combined with the experience 
of clinical doctors and surgical conditions. For more details, please 
refer to Table 2.

4.3 Biodegradable biliary stents

Biodegradable biliary stents (BDBS) have emerged as a novel type 
of biliary stent. In tandem with the progression of medical technology 
and evolving clinical demands, their research and implementation 
have progressively garnered attention. BDBS exhibit superior 
biocompatibility and undergo natural degradation within the body, 
thereby obviating complications associated with prolonged stent 
placement. This feature also precludes the necessity for subsequent 
surgical intervention for stent removal, markedly enhancing the 
patient’s quality of life and the facilitation of treatment (1, 83–86). The 
primary materials for BDBS include polyesters and magnesium-based 
alloys. It can also serve as a drug carrier to treat diseases or delay 
obstruction (1, 74). A comparison of the characteristics of various 
materials and their research status can be found in Table 3.

4.3.1 Polyester material

4.3.1.1 Polydioxanone
Polydioxanone (PDX) as a preeminent biodegradable material, 

widely used in clinical fields such as bio-sutures, coronary stents, and 
biliary stents (1). It is fabricated from the dioxanone monomer, 
undergoing degradation into glycolic acid via hydrolysis of its ester 
bonds. Presently, its application has permeated the domain of biliary 
stents. PDX stents exhibit exceptional flexibility and mechanical 
properties. These stents are capable of undergoing natural degradation 
over a period of 3–6 months, thereby obviating the requirement for 
subsequent surgical intervention for removal (84, 87). This 
development markedly amplifies the quality of life for patients and 
facilitates the treatment process. Regarding efficacy, Siiki et al. (87) 
orchestrated a prospective study on 13 BBS patients and 83% of them 
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did not require further intervention after the placement of a PDX stent 
(single stent insertion, length 40–80 mm, diameter 8–10 mm). Mauri 
et al. (85) conducted a two-year surveillance on 107 patients who 
underwent PDX stent (diameter: 8–10 mm, length: 40–70 mm. 
Customized per patient’s condition) implantation, noting a patency 
rate surpassing 80% (no further invasive treatment was needed). 
Pertaining to safety, Siiki’s et al. (87) study highlighted that 25% of 
patients encountered mild cholangitis during the stent’s placement, 
while 17% experienced restenosis, potentially attributable to the stent’s 
gradual degradation and possible rupture. Giménez et  al. (88) 
implanted PDX biliary stents (10 mm in diameter by 40 mm long) in 
13 patients and followed up for 21 months; aside from one case of 
restenosis and one of cholangitis, 84.6% of the patients symptom-free. 
Anderloni’s et al. (89) prospective study involving 38 patients indicated 
that the migration rate of PDX stents was analogous to that of 
FCSEMS. Considering design, PDX stents exhibit potential for further 

refinement. Huang et al. (90) scrutinized the performance and impacts 
of 12 distinct biliary stent structures, analyzing the fluid and structural 
interactions among bile, bile ducts, and polydioxanone biliary stents. 
Consequently, they devised two superior stent model structures to 
rectify the existing structural deficiencies. In conclusion, the 
preliminary validation of the clinical efficacy and safety of PDX stents 
has unveiled promising clinical prospects. However, additional 
development and research are imperative to enhance the stent design 
and facilitate larger-scale prospective clinical studies for evaluating 
efficacy and potential complications.

4.3.1.2 Polylactic acid
While the safety and efficacy of PDX have garnered initial 

verification, its short degradation time remains a significant limitation. 
Conversely, Polylactic acid (PLA) exhibits excellent mechanical 
attributes in bile, undergoing a degradation process that spans beyond 

TABLE 2 Comparisons of PS and SEMS.

Type Advantages Disadvantages Clinical applications References

SEMS

 • FCSEMS

 • PCSEMS

 • FCSEMS can prevent mucosal growth 

and tissue invasion

 • FCSEMS is prone to displacement  • Long-term drainage

(3, 10, 30, 66, 74)

 • UCSEMS

 • UCSEMS can be embedded in the 

bile duct and is not easily displaced

 • UCSEMS is prone to blockage and 

difficult to remove after placement

 • Palliative treatment for MBS patients less 

than 12 months

 • Larger lumen, stronger support  • May lead to complications like 

cholecystitis and pancreatitis

 • Preoperative biliary drainage for MBS

 • Longer patency time (12 months)  • Tumor ingrowth  • FCSEMS treatment for BBS should be more 

than 6 months, and if more than 12 months, 

the stent should be replaced at 6 months

 • No need for multiple treatments  • High initial cost  • UCSEMS treatment should be based on a 

clear diagnosis of MBS

PS

 • Low cost  • Prone to displacement  • Long-term treatment for BBS patients

(3, 30, 66, 67)

 • Easy to insert and remove  • Shorter patency time 

(3–6 months)

 • MBS patients with a survival time of more 

than 12 months

 • Smaller lumen, multiple stents can 

be inserted at once

 • Needs frequent replacement, 

increasing patient discomfort

 • Patients with preserved gallbladder

 • High safety for long-term placement  • May lead to cholangitis, stone 

formation, etc.

 • Temporary drainage for undiagnosed 

patients

 • Wide applicability, more flexible use  • Overall cost comparable to SEMS

PS, plastic stents; SEMS, self-expanding metal stents.

TABLE 3 Comparisons of material features and research status of BDBS stents.

Material 
category

Features Research status Degradation 
time

References

PDX Commonly used, good flexibility, low mechanical strength Human (in vivo) 3–6 months (82, 106)

PLA Good mechanical properties, adjustable degradation time, self-cleaning Pigs, dogs, in vitro (bile) >9 months (1, 94, 95)

PCL Good biocompatibility, drug-controlled release, low melting point Pigs, in vitro (bile) 3 months (96, 97, 102, 104)

PGA Good biocompatibility, fast degradation Pigs 2 months (106, 108)

PLGA Fast but adjustable degradation In vitro (bile) 2–3 weeks (90)

PTMC Average mechanical strength, adjustable degradation time Rats, in vitro 10–14 weeks (109, 110)

Magnesium alloy Widely used, safety, adjustable degradation speed, can inhibit the 

development of biliary tumors

Rabbits 20 weeks (115–117)

PDX, polydioxanone; PLA, polylactic acid; PCL, polycaprolactone; PGA, polyglycolic acid; PLGA, poly(lactic-co-glycolic acid); PTMC, poly (trimethylene carbonate).
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9 months (91). Its characteristics can be modulated by amalgamating 
different materials, bestowing PLA with considerable versatility in 
medical applications (92). In recent years, PLA has found extensive 
utilization in the fabrication of biodegradable bone screws, bone plates, 
vascular stents, and tissue engineering scaffolds (1, 93–95). Furthermore, 
PLA stents have demonstrated possibility in non-vascular lumens, 
catalyzing their adoption in the domain of biliary stents. Zhang et al. 
(96) implanted PLA and PDX stents in porcine bile ducts, observing 
that the PLA stents exhibited a prolonged deformation period (23 weeks 
compared to 11 weeks) and an extended median patency duration 
(25.7 weeks versus 11.3 weeks), without any notable postoperative 
complications in either group. Yamamoto et al. (91) implanted PLA 
stents in canine bile ducts, noting the onset of degradation between 6 to 
9 months. A fraction of 22% (2 out of 9) of the stents became embedded 
in the bile duct wall, with no complications documented across all 
experimental subjects. Remarkably, the PLA material exhibits self-
cleaning properties. Meng et al. (97) immersed PLA films in human bile 
for a duration of 2 months. Starting from the third week, the surface of 
the PLA samples began to degrade, diminishing the accumulation of 
bile sludge, thereby highlighting the promising self-cleaning attributes 
of PLA. Meanwhile, the PE stent used in the experiment showed no 
significant effect. However, despite the numerous benefits associated 
with PLA, its application in human subjects remains unexplored, and 
animal studies are limited. Comprehensive evaluations of its safety, 
efficacy, and biocompatibility necessitate further extensive animal 
experiments and clinical trials for validation.

4.3.1.3 Polycaprolactone
Polycaprolactone (PCL) constitutes an outstanding biodegradable 

polyester substance characterized by minimal toxicity and optimal 
biocompatibility (98). However, its low melting point (Tm 57°C) 
restricts its utilization as an independent stent material, predominantly 
serving as a coating substance for other stents at present (99–102). Hu 
and Lin (103) employed PCL as a medium to incorporate silver 
nanoparticles (AgNPs) and cisplatin (DDP). Utilizing electrospinning, 
they fabricated a PCL-AgNPs-DDP fibrous-coated dual-functional 
airway stent, demonstrating efficacy in diminishing microbial 
adhesion and granulation tissue proliferation. Kim et  al. (104) 
illustrated that a stent, which integrates PCL with a sorafenib drug-
eluting component, significantly curtails angiogenesis, proliferation, 
and invasion of tumor cells in mice afflicted with bile duct cancer. Jang 
et  al. (105) fabricated a dual-layer drug-eluting stent (DES) by 
integrating a 3D-printed paclitaxel-PCL stent with SEMS, effectively 
curtailing the proliferation of malignant tumors in patients suffering 
from hilar MBS. Moreover, PCL stents preserve remarkable ductility 
and flexibility post-implantation. Oh et al. (106) demonstrated in vitro 
that the PCL stent maintained over 80% of its initial radial force even 
after 15 weeks and sustained more than 90% of its initial strength 
following 56 days. In contrast, the PDX stent experienced a reduction 
of over 50% in its mechanical strength within a span of 14 days. 
Consequently, PCL demonstrates a brighter potential for application 
in the treatment of BBS compared to PDX. The shortcomings of PCL 
stents are quite apparent. Kim et al. (104) inserted stents primarily 
composed of PCL into the bile ducts of pigs, observing that 27.3% 
(3/11) of the stents were displaced, and an equal percentage 
experienced stent fractures. Moreover, the fibrosis thickness in the bile 
duct of the stent group, measured at 0.46 mm, was significantly greater 
than that of the control group, which was 0.21 mm. However, the 

fibrosis thickness observed in this study remains within a relatively 
safe margin, not inducing complications such as biliary obstruction or 
bile leakage in the pigs, thereby illustrating its promising safety and 
feasibility. The worrying thing is this study lasted only 3 months and 
did not evaluate efficacy. Therefore, longer-term studies are needed to 
assess its safety (whether the degree of fibrosis will cause new 
strictures) and effectiveness (whether it can reduce obstructions in the 
long run). In conclusion, PCL exhibits more pronounced benefits 
compared to other polyester materials. While it has demonstrated 
promising clinical efficacy and safety as a coating material, further 
investigations concerning its technological application and design are 
warranted when utilized as the main component in stent fabrication.

4.3.1.4 Other polyester materials
Besides the materials previously mentioned, other biodegradable 

substances also demonstrate significant potential in the realm of 
biliary stents. Polyglycolic acid (PGA) is a singular component 
material characterized by favorable biocompatibility, currently finding 
applications in bone implants, tracheal stents, and various other 
domains (107). However, its mechanical strength is somewhat limited, 
sustaining merely for a period of 2 weeks in bile. Furthermore, it 
undergoes rapid degradation, being completely absorbed within a 
mere 2 months, which restricts its utility in the fabrication of biliary 
stents (108). Kwon et al. (108) implanted PGA stents in the bile ducts 
of pigs, observing a swift decline in the stents’ mechanical properties 
beginning from the second week, with noticeable degradation and 
deformation commencing by the sixth week. The degradation 
byproducts did not induce any severe adverse reactions, initially 
affirming its safety for use as a biliary stent. In a similar vein, the 
degradation period of Poly (lactic-co-glycolic acid) (PLGA) in bile 
spans 2–4 weeks, with its mechanical attributes sustaining merely for 
4 days (109). PLGA is synthesized through the polymerization of 
lactic acid and glycolic acid monomers. Jan et al. (110) suggested that 
PLGA exhibits superior biocompatibility and facilitates controlled 
drug release. Encapsulation within the cell membrane can prolong the 
circulation duration of PLGA nanoparticles within the organism, 
enhancing targeting capabilities and minimizing systemic toxicity, 
thus positioning it as a promising material for drug delivery. Zeng 
et  al. (92) manipulated the proportion of PLGA polymers and 
discovered that the 80/20 PLGA composition exhibits a slower 
degradation rate, preserving its mechanical properties for an extended 
period. This suggests its potential as a primary material for BDBS, 
although additional research and validation are requisite. Furthermore, 
poly (trimethylene carbonate) (PTMC) exhibits considerable promise. 
PTMC represents a novel category of aliphatic polycarbonate 
biodegradable substances, extensively utilized in bone implants and 
ureteral stents (111). However, PTMC has not been applied in the bile 
ducts. Zheng et  al. (112) also noted in their study that while the 
mechanical strength of PTMC is somewhat inferior, this limitation 
can be mitigated through polymerization with other substances. In 
conclusion, despite the nascent stage of research concerning these 
materials in the domain of biliary stents, their prospective potential 
should not be underestimated.

4.3.2 Magnesium alloy
Apart from polyester substances, magnesium (Mg) has 

demonstrated considerable potential in the realm of biodegradable 
materials, attributed to its an excellent biocompatibility (113). 
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Through the analysis of its degradation characteristics in bone and 
blood environments, it has found extensive applications in 
orthopedic materials and cardiovascular stents (114, 115). Similarly, 
Mg has exhibited potential in the realm of biliary stents. Liu et al. 
(116) revealed that the weight reduction of the magnesium alloy 
WE43 did not surpass 18% within a span of 60 days, having the 
potential to become a biliary stent. Regarding biocompatibility 
within the bile duct, Song et al. (117) introduced magnesium alloy 
AZ31 into the bile ducts of rabbits, routinely monitoring pertinent 
indicators such as bilirubin and hemoglobin. The findings indicated 
that these markers remained stable within the normal range 
throughout the duration of the study. Furthermore, by the 20th week, 
the AZ31 stent had fully degraded, and the concentrations of 
magnesium and zinc ions generated through degradation did not 
surpass safe thresholds. These observations suggested that the AZ31 
magnesium alloy possesses favorable biocompatibility and safety 
within the bile duct. Besides its potential as a material for BDBS, 
magnesium inherently exhibits a certain inhibitory effect on 
gallbladder cancer. Li et  al. (118) illustrated in their study that 
extracts of magnesium have the potential to curb the growth of 
human cholangiocarcinoma cells, fostering their apoptosis, in 
addition to hindering tumor cell adhesion and the synthesis of 
cytoskeletal proteins. Peng et al. (119) injected gallbladder cancer 
cells subcutaneously into nude mice, establishing subcutaneous 
xenograft tumors, followed by the insertion of magnesium wires into 
these subcutaneous tumors. Following a 24-day period, both the 
tumor volume and weight in the group with magnesium wire 
implantation exhibited a notable reduction compared to the control 
group, illustrating that magnesium possesses a significant inhibitory 
effect on the proliferation of gallbladder cancer tumors. Currently, 
magnesium alloy biliary stents have gradually been put into clinical 
use. Magnesium alloy stents have exhibited multifaceted efficacy in 
bile duct drainage and anti-tumor activities, holding substantial 
promise in the management of benign and malignant biliary 
strictures. However, comprehensive large-scale prospective clinical 
trials are imperative to corroborate their clinical effectiveness in 
human biliary applications.

4.4 Future trend stents

4.4.1 Drug eluting stents
DES are a new type of stent developed based on existing stents. 

These stents are endowed with coatings that facilitate the controlled 
release of medicinal agents within the organism, thereby curtailing 
tumor proliferation or mitigating inflammatory responses, 
consequently realizing therapeutic outcomes (74). Firstly, the 
antineoplastic agents sanctioned by the FDA constitute the 
predominant categories of DES, including prominent examples such 
as paclitaxel (PTX) and gemcitabine (GEM). PTX has garnered 
extensive utilization in cardiovascular stents, exhibiting the capacity 
to forestall restenosis through the inhibition of fibroblast activity and 
collagen metabolism (120). The application of PTX in the bile duct is 
under investigation. Tao (121) demonstrated that the paclitaxel-N-
succinyl hydroxyethyl chitosan sustained-release film effectively 
curtails scar formation in the bile ducts of rabbits. Jang et al. (122) 
amalgamated sodium hexanoate with PTX to augment the localized 
anti-tumor effects, a strategy that not only markedly decelerated the 

constriction of the pig’s bile duct but also prolonged the time until 
stent obstruction. Xiao et al. (123) implanted a mixed DES of GEM 
and cisplatin in the pig’s bile duct. This approach not only curtailed 
tumor proliferation but also exhibited a notable safety profile (no 
complications in any group). Secondly, Antibiotic-coated DES have 
demonstrated promising potential. Rapamycin can forestall biliary 
stricture through the inhibition of fibroblasts, while gentamicin can 
restrain intestinal flora, thereby diminishing the onset of cholangitis 
and postponing stent obstruction (70, 124). Furthermore, 
mitomycin-C curtails RNA synthesis and decreases protein expression, 
consequently reducing the prevalence of scar formation within the bile 
duct (125). DES has exhibited substantial therapeutic efficacy and 
potential. Various drug coatings are formulated to target distinct 
primary ailments, thereby facilitating enhanced treatment outcomes 
and presenting considerable versatility in the clinical management of 
biliary stricture.

4.4.2 3D printing stent
3D printing technology amalgamates computer-aided design, 

material processing, and computer-aided manufacturing 
methodologies, facilitating enhanced design adaptability in stent 
fabrication. This innovation permits personalization according to 
patient-specific requirements, enabling the realization of intricate 
shapes and affording precise control over dimensional attributes (1, 
126). 3D printed stents have been initially utilized in domains such as 
cardiovascular, tracheal, and esophageal interventions (127). Thomas 
et al. (128) used tissue engineering techniques to create an extrahepatic 
bile duct model with mechanical properties similar to those of the 
biliary tract. Boyer et  al. (127) pioneered the application of this 
technology in the biliary sector, fabricating a 3D printed stent for the 
bile duct utilizing cross-linked polyethylene glycol. While it has not 
been transitioned to clinical application, this development establishes 
a cornerstone for the creation of patient-specific stent manufacturing 
technology. Kim et al. (104) developed a biodegradable 3D printed 
biliary stent, which exhibited promising safety and feasibility in pig 
models (no complications or adverse events). In addition, 3D printing 
technology can be  combined with BDBS and DES, allowing the 
customization of stents based on the characteristics of the patient’s bile 
ducts and the use of different materials according to the disease. Lee 
et al. (129) designed a 3D-printed stent using PCL, with a surface 
coated with zinc ions and sirolimus. They implanted this stent into the 
bile ducts of rabbits, which not only reduced bacterial adhesion but 
also minimized tissue proliferation and sludge formation. However, 
the implementation of 3D printing technology necessitates the 
involvement of specialized equipment and skilled personnel, and 
further investigation and refinement of its biocompatibility and 
mechanical attributes are imperative. In conclusion, 3D printing 
technology heralds novel avenues in the design and fabrication of 
biliary stents, marking a substantial progression in personalized and 
precision medical interventions.

4.4.3 Tissue engineering stents
Tissue-engineered stents are novel stents that mimic the 

extracellular matrix in the body to promote the formation of new 
tissue and the restoration of function. In the wake of the relentless 
advancements in biomaterial science and tissue engineering 
technology, both stem cells and induced pluripotent stem cells can 
be  guided to differentiate into biliary cell (130). Furthermore, 

https://doi.org/10.3389/fmed.2024.1334154
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ni et al. 10.3389/fmed.2024.1334154

Frontiers in Medicine 10 frontiersin.org

cholangiocyte organoids hold a significant advantage in simulating 
physiological microenvironments (131). Leveraging this technology, 
stents enveloped with living tissue surfaces have been engineered, 
facilitating integration with patient physiology or serving as a viable 
option for biliary reconstruction to mend the bile duct, thereby 
demonstrating promising potential in the management of biliary 
stricture (132). Boyer et al. (127) conceptualized a novel approach 
involving the utilization of 3D printing technology amalgamated 
with collagen injection molding to fabricate bio-integrated biliary 
stents. This methodology encompasses the infusion of collagen, 
human placental mesenchymal stem cells, and biliary cells, thereby 
affirming the viability of these innovative stents. Biodegradable 
materials, when synergized with tissue engineering techniques, 
exhibit superior biocompatibility (133). Li et al. (134) utilized a PCL 
stent as a scaffold to facilitate the proliferation, migration, and 
differentiation of biliary cells. This research substantiated that the 
PCL stent fosters cell proliferation on its surface, thereby serving as 
a viable framework for the development of biologically active 
artificial bile ducts. Zong et al. (135) fabricated a dual-layer stent 
utilizing PCL and PLGA, incorporating human bone marrow 
mesenchymal stem cells, and subsequently implanted them into 18 
pigs. Within a span of 6 months, none of the experimental animals 
exhibited any indications of biliary stricture or bile stasis. Moreover, 
the tissue-engineered stent demonstrated superior reparative effects 
on biliary injuries compared to the blank PCL/PLGA stent. This 
suggested that tissue-engineered stents represent a novel 
methodology for addressing biliary stricture. These stents can 
be tailored to meet individual patient needs, boasting undeniable 
biocompatibility. Moreover, they facilitate the rapid regeneration of 
biliary endothelial cells, thereby expediting the repair process of the 
bile duct. Despite being in the nascent stages of development, tissue-
engineered stents have exhibited encouraging initial outcomes, 
hastening bile duct recovery and reducing the duration of treatment 
cycles. However, this type of stent is currently in the animal testing 
stage, comprehensive evaluations of their long-term safety and 
efficacy are necessary to be conducted.

5 Conclusion and outlook

The advancement in endoscopic treatment for biliary stricture 
has been substantial, with the utilization of PS and SEMS markedly 
enhancing the alleviation of patients’ clinical symptoms and 
improving post-treatment outcomes. However, given the intricate 
etiology of biliary stricture, along with pronounced individual 
variations and differing patient survival durations, the two existing 
stent types retain certain limitations in their therapeutic efficacy. 
Firstly, a majority of patients are required to undergo numerous 
endoscopic procedures to facilitate the removal and reinsertion of 
stents, thereby escalating both the physical discomfort and financial 
burden. Consequently, this could deter patients from adhering to 
regular medical consultations, potentially compromising the efficacy 
of the treatment (69). Secondly, due to the complex course of the bile 
duct, stent displacement is a problem. Once displaced, additional 
surgery is required to address the issue. Although UCSEMS can 
be fixed by tissue ingrowth after insertion, its irretrievability makes 
its clinical application more cautious, and only patients with a clear 
diagnosis are suitable (3). Therefore, enhancing the post-treatment 

quality of life for patients and making personalized selections based 
on comprehensive clinical evaluations continue to be paramount. The 
forthcoming generation of stents presents promising avenues to 
mitigate these existing challenges. On the one hand, there should 
be continued research and development of biodegradable materials 
with superior mechanical properties and biocompatibility, regulating 
degradation time, and perfecting BDBS design. On the one hand, 
there should be  continued research and development of 
biodegradable materials with superior mechanical properties and 
biocompatibility, regulating degradation time, and perfecting BDBS 
design. On the other hand, 3D printing and tissue engineering 
technologies can be used to customize biliary stents for patients, 
providing more precise individualized treatment based on their 
conditions. These innovative technologies have the potential to 
significantly mitigate the discomfort associated with secondary 
surgeries and reduce postoperative complications. Furthermore, DES 
facilitates treatment adjustments based on the root causes, 
theoretically augmenting the likelihood of favorable clinical 
outcomes. However, the existing research remains nascent. Although 
good physicochemical properties and safety have been demonstrated 
in animal and in vitro experiments, only a few studies have been 
applied to humans. Therefore, clinical efficacy has not been widely 
recognized. Moreover, the diverse characteristics of various stent 
materials, although adaptable to complex conditions, pose a challenge 
to the clinical practitioner’s accurate assessment of the condition. 
This necessitates not only interdisciplinary collaboration between 
medical and other fields, but also an amplification of prospective 
clinical research efforts to substantiate their efficacy. Such 
advancements are poised to mitigate patients’ distress, enhance their 
quality of life, and extend the benefits of medical advancements to a 
broader patient population.
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