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Objective: High-grade serous ovarian cancer (HGSOC) has the highest mortality 
rate among female reproductive system tumors. Accurate preoperative 
assessment is crucial for treatment planning. This study aims to develop multitask 
prediction models for HGSOC using radiomics analysis based on preoperative 
CT images.

Methods: This study enrolled 112 patients diagnosed with HGSOC. Laboratory 
findings, including serum levels of CA125, HE-4, and NLR, were collected. 
Radiomic features were extracted from manually delineated ROI on CT images 
by two radiologists. Classification models were developed using selected 
optimal feature sets to predict R0 resection, lymph node invasion, and distant 
metastasis status. Model evaluation was conducted by quantifying receiver 
operating curves (ROC), calculating the area under the curve (AUC), De Long’s 
test.

Results: The radiomics models applied to CT images demonstrated superior 
performance in the testing set compared to the clinical models. The area under 
the curve (AUC) values for the combined model in predicting R0 resection 
were 0.913 and 0.881  in the training and testing datasets, respectively. De 
Long’s test indicated significant differences between the combined and clinical 
models in the testing set (p  = 0.003). For predicting lymph node invasion, 
the AUCs of the combined model were 0.868 and 0.800 in the training and 
testing datasets, respectively. The results also revealed significant differences 
between the combined and clinical models in the testing set (p = 0.002). The 
combined model for predicting distant metastasis achieved AUCs of 0.872 
and 0.796 in the training and test datasets, respectively. The combined model 
displayed excellent agreement between observed and predicted results in 
predicting R0 resection, while the radiomics model demonstrated better 
calibration than both the clinical model and combined model in predicting 
lymph node invasion and distant metastasis. The decision curve analysis (DCA) 
for predicting R0 resection favored the combined model over both the clinical 
and radiomics models, whereas for predicting lymph node invasion and distant 
metastasis, DCA favored the radiomics model over both the clinical model and 
combined model.

Conclusion: The identified radiomics signature holds potential value in 
preoperatively evaluating the R0, lymph node invasion and distant metastasis in 
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patients with HGSC. The radiomics nomogram demonstrated the incremental 
value of clinical predictors for surgical outcome and metastasis estimation.

KEYWORDS

radiomics, preoperative evaluation, serous ovarian cancer, computer tomography, 
nomogram

1 Introduction

High-grade serous ovarian cancer (HGSOC) is the malignant 
tumor with the highest mortality rate in female reproductive system 
at present. The early clinical symptoms of HGSOC are not obvious, 
and most patients are already in the middle to late stage when 
detected. The current standard treatment methods for HGSOC are 
platinum-based chemotherapy after primary tumor reduction 
surgery (PDS), or intermittent tumor reduction surgery after 
neoadjuvant chemotherapy (1). Studies have shown that these two 
treatment methods can achieve similar prognosis in patients with 
stage IIIC-IV ovarian cancer (2). However, for patients who are 
suitable for early surgical intervention, the biggest risk of undergoing 
surgical treatment after chemotherapy is the possibility of losing the 
opportunity for early surgery and developing tolerance to chemical 
drugs (3). Additionally, the residual lesion size after tumor reduction 
surgery is one of the most important independent risk factors for the 
prognosis and survival of ovarian cancer patients (4). Therefore, 
precise preoperative evaluation of tumors is crucial for selecting 
treatment plans. Factors such as lymph node invasion, distant 
metastasis, and whether complete resection of all visible diseases (R0 
resection) can be  achieved are important considerations for 
preoperative evaluation.

Radiomics is a powerful and promising image mining method 
that utilizes high-throughput feature selection based on imaging data. 
It has been proven to improve diagnostic accuracy, evaluate treatment 
response, and predict prognosis (5, 6). Several published radiomics 
prediction models have been established based on computer 
tomography (CT) (7, 8). However, these radiomics models mainly 
focused on the location, size, and the metastasis of the abdomen, and 
they all focused on a single prediction point. In this study, we aimed 
to establish multitask prediction models for HGSOC by utilizing 
preoperative CT image assessments based on radiomics.

2 Materials and methods

2.1 Study population

This retrospective study was approved by our hospital ethics 
committee, and the requirement for patient informed consent was 
waived. A total of 112 consecutive patients (age range: 36–84 years) 
with confirmed serous ovarian cancer based on pathology were 
enrolled in our study. The enrollment period spanned from November 
2012 to January 2022.

Patients’ laboratory findings, including serum cancer antigen-125 
(CA125), serum human epididymis protein 4 (HE-4) level, and 
neutrophil-to-lymphocyte ratio (NLR), were collected from the 

electronic medical record. Additionally, preoperative unenhanced CT 
scans of the abdomen and pelvis were obtained. A total of 112 
patients were included in the study to predict R0 status, lymph node 
invasion, and distant metastasis.

2.2 Radiomics analysis

The workflow of radiomics analysis consists of five steps: obtaining 
ROI, computing features, selecting features, constructing the model, 
and evaluation. Radiomics analysis was performed using the uAI 
Research Portal (United Imaging Intelligence, China), which is a 
clinical research platform implemented in Python programming 
language (version 3.7.3). the widely used package PyRadiomics 
package1 (9, 10) was utilized for this analysis.

The volume of the entire ovarian lesion was manually delineated 
on CT images by two radiologists (L. Fu with 12 years of imaging 
experience and WJ. Wang with 14 years of imaging experience) 
using the uAI Research Portal, denoted as ROI (region of interest). 
A total of 2,264 radiomic features were extracted from the ROI on 
each CT image, including 104 original features grouped as: 18 the 
first-order statistics, 72 texture, and 14 shape features. Among 14 
shape features, selection was done only on original images, while 
the others were based on both original images and images processed 
through 25 filters such as boxmean, wavelet, laplacian, etc. To 
account for any difference in index dimension, the extracted 
radiomic features for each sequence were standardized into normal 
distributed z-scores. For the three classification tasks, the top 10, 9, 
and 8 highest-ranking radiomic features were selected, respectively, 
on CT images using feature selection methods such as K best and 
least absolute shrinkage and selection operator regression (LASSO), 
as shown in Figure 1.

To evaluate the performance of the classifier and protect against 
overfitting due to the limited amount of data, we  used the cross-
validation method. Specifically, we employed 5-fold cross-validation 
(9). The feature set was randomly split into five partitions, ensuring 
that each partition maintained the same ratio of positive and negative 
images. During each fold, the classifier was trained on four-fifths of 
the dataset and validated on the remaining partition. This process was 
repeated five times with different subgroups, resulting in five distinct 
training/testing sets. The average performance across these folds was 
then calculated to obtain an overall result. To maximize the 
discrimination ability of the radiomics algorithm, we implemented 
machine learning classifiers including logistic regression (LR), 

1 https://pyradiomics.Readthedocs.io/en/latest/index.html
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random forest, decision tree, and support vector machine (SVM) for 
model construction.

Using the selected optimal feature sets, we  constructed 
classification models to predict R0 status, lymph node invasion, and 
distant metastasis. Finally, we plotted receiver operating characteristic 
(ROC) curves and calculated the area under the curve (AUC), 
sensitivity, specificity, and accuracy to evaluate the performance of 
the models.

2.3 Statistical analysis

All statistical analyses for the present study were performed using 
SPSS software (version 26.0), R (version 4.1.0), and Python (version 
3.5.6). A significance level of p < 0.1 was considered statistically 

significant. DeLong’s test was used to compare the AUC values of 
different models.

3 Results

3.1 Clinical characteristics

The clinical baseline data of patients are presented in Table 1 for 
three postoperative predictors. Firstly, a total of 112 patients were 
included to predict R0 status, with 80 patients classified as non-R0 
status and 32 patients as R0 resection. The cancer antigen-125 
(CA125), human epididymis protein 4 (HE-4), and lymphocyte levels 
showed significant differences between the R0 and non-R0 groups 
(p < 0.05), while no significant differences were observed in patient 

FIGURE 1

Flowchart of radiomics analysis.
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age, neutrophil-to-lymphocyte ratio (NLR), and Neutrophils (all 
p > 0.05). Secondly, among the 112 patients collected for predicting 
lymph node invasion, 58 patients had non- Invasion status and 54 
patients had Invasion. The NLR and Neutrophils showed significant 
differences (p < 0.05), while no significant difference was detected in 
other characteristics. Thirdly, the 112 patients were collected to predict 
distant metastasis, with 79 patients having non- Metastasis status and 
33 patients having Metastasis. The age did not show a significant 
difference (p > 0.01), while significant differences were noted in other 
characteristics (all p < 0.05).

3.2 Performances of clinical and CT 
radiomics models

The predictive performance of each model is presented in Table 2. 
The clinical models exhibited relatively poor predictive performance 
in the testing set, utilizing six clinical characteristics (AUC_R0 = 0.675, 
AUC_Invasion = 0.591, AUC_Metastasis = 0.729). In contrast, the 
radiomics models on CT images demonstrated better performance in 
the testing set (AUC_R0 = 0.872, AUC_Invasion = 0.770, 

AUC_Metastasis = 0.795) than the clinical models. De Long’s test 
indicated significant differences between the radiomics and clinical 
models for predicting R0 and lymph node invasion in the testing set 
(p = 0.003 and 0.011, respectively). However, there was no statistical 
difference between the radiomics and clinical models for predicting 
distant metastasis (p = 0.367).

3.3 Performances of radiomics-clinical 
comprehensive models

The model for predicting R0 was developed using 10 radiomics 
features and three clinical features, including CA125, HE-4, 
lymphocyte. The AUCs of the combined model were 0.913 and 
0.881 in the training and testing datasets, respectively (Figure 1 and 
Table 2). De Long’s test revealed significant differences between the 
combined and clinical models in the testing set (p = 0.003). However, 
there was no statistical difference between the combined and 
radiomics models (p = 0.756).

The predicting lymph node invasion model was established based 
on 12 radiomics features and two clinical features, including NLR and 

TABLE 1 Patient characteristics for three predicting postoperative results.

Predicting R0 Predicting lymph node invasion Predicting distant metastasis

Non-R0
(n =  80)

R0
(n =  32)

p
Non-

invasion
(n =  58)

Invasion
(n =  54)

p
Non-

metastasis
(n =  79)

Metastasis
(n =  33)

p

Age, mean (SD) 61.7 ± 8.9 60.1 ± 9.9 0.426 61.8 ± 8.5 60.5 ± 9.9 0.475 61.1 ± 9.4 61.3 ± 8.9 0.904

CA125, median 

(IQR)

880 (415, 

2,155)

509 (187, 

1774)
0.039 657 (291, 1860)

1,000 (421, 

2024)
0.094 635 (288, 1,355) 1,432 (834, 2,283) 0.000

HE-4, median 

(IQR)
452 (381, 856) 394 (197, 642) 0.013 452 (198, 706) 452 (376, 944) 0.091 452 (220, 643) 642 (404, 1,011) 0.017

NLR, median 

(IQR)
3.58 (3.0, 5.59)

3.55 (2.71, 

4.96)
0.074 3.58 (2.69, 4.67) 4.39 (2.91, 6.48) 0.026 3.58 (2.69, 4.97) 4.62 (3.13, 6.55) 0.002

Neutrophils, 

median (IQR)

4.70 (3.36, 

6.44)

4.43 (4.02, 

5.15)
0.282 4.64 (3.08, 5.19) 4.71 (4.08, 6.48) 0.045 4.32 (3.33, 5.58) 4.91 (4.42, 5.80) 0.023

Lymphocyte, 

median (IQR)

1.23 (0.95, 

1.39)

1.42 (1.12, 

1.74)
0.007 1.27 (1.07, 1.48) 1.23 (0.86, 1.42) 0.183 1.30 (1.07, 1.50) 1.10 (0.85, 1.30) 0.032

*Negative/positive; p-values in bold indicated that the corresponding variables were closely related to the two types in the univariable logistic regression (p < 0.1). OR, odd ratio; CI, confidence 
interval; CA125, cancer antigen-125; HE-4, human epididymis protein 4; NLR, neutrophil-to-lymphocyte ratio.

TABLE 2 The 5-fold mean performance of the clinical model, radiomics model and radiomics  +  clinical model for predicting postoperative results.

Model AUC Sensitivity Specificity Accuracy

Predicting

R0

Clinical 0.675 (0.567–0.784) 0.652 0.648 0.649

Radiomics 0.872 (0.806–0.938) 0.819 0.835 0.827

Radiomics+ Clinical 0.881 (0.806–0.956) 0.833 0.784 0.802

Predicting Clinical 0.591 (0.406–0.885) 0.647 0.489 0.563

Lymph node Radiomics 0.770 (0.563–0.972) 0.704 0.702 0.705

Invasion Radiomics+ Clinical 0.800 (0.614–0.970) 0.776 0.689 0.732

Predicting Clinical 0.729 (0.425–0.925) 0.686 0.697 0.696

Distant Radiomics 0.795 (0.572–0.998) 0.729 0.718 0.722

Metastasis Radiomics+ Clinical 0.796 (0.623–0.981) 0.781 0.711 0.731

The highest AUC was bold in Table 2.
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Neutrophils. In the training and test datasets, the combined model 
achieved AUCs of 0.868 and 0.800, respectively. Significantly different 
results were observed between the combined and clinical models in 
the testing set according to De Long’s test (p = 0.002). However, no 
statistical difference was found between the combined and radiomics 
models (p = 0.185).

In establishing the predicting distant metastasis model, we utilized 
10 radiomics features and five clinical features, including CA125, 
HE-4, NLR, Neutrophils, and lymphocyte. The combined model 
achieved AUCs of 0.872 and 0.796 in the training and test datasets, 
respectively. However, there was no statistical difference observed 
among the three models, as all p-values were greater than 0.05.

3.4 The calibration and clinical utility of all 
models

The calibration curves of all models are shown in 
Figures 2A–C. The calibration of the radiomics model for predicting 
lymph node invasion was superior to that of the clinical model and 
combined model. Similarly, the calibration of the radiomics model for 
predicting distant metastasis outperformed that of the clinical model 
and combined model. On the other hand, the combined model for 
predicting R0 demonstrated excellent agreement between the 
observed and predicted results, surpassing both the clinical model and 
radiomics model.

The DCA of all models is displayed in Figures 2D–F, illustrating 
the clinical utility. The DCA of the radiomics model for predicting 
lymph node invasion outperformed the clinical model and combined 

model. Furthermore, the DCA of the radiomics model for predicting 
distant metastasis exhibited better results compared to both the clinical 
model and combined model. Similarly, the DCA of the combined 
model for predicting R0 demonstrated superior performance compared 
to both the clinical model and radiomics model.

4 Discussion

Accurate and non-invasive prediction of R0, lymph node invasion, 
and distant metastasis is crucial for implementing individualized 
management and improving the prognosis of patients with HGSOC. In 
this study, we developed and validated three multitask prediction 
models for HGSOC that integrate CT radiomics features and clinical 
information. The combined model demonstrated excellent 
performance in predicting R0, with AUCs of 0.913 and 0.881 in the 
training and testing datasets, respectively. For predicting lymph node 
invasion, the combined model achieved AUCs of 0.807 and 0.800 in 
the training and testing datasets, respectively. Additionally, for 
predicting distant metastasis, the combined model achieved AUCs of 
0.807 and 0.800  in the training and testing datasets, respectively. 
Notably, the AUC values of the combined models were consistently 
higher than those of the clinical models in both the R0 cohort and 
lymph node invasion cohort.

Most studies have only focused on the features of metastases for 
R0 prediction (8, 11). The observation of extensive metastases in the 
abdomen, affected by bowl and ascites, might make it hard to 
accurately predict R0  in practice. Studies had also shown that the 
likelihood of metastases can be predicted through the assessment of 

FIGURE 2

The calibration curves and DCA curves of all models. (A–C) The calibration curves for predicting lymph node invasion, distant metastasis, and R0, 
respectively. (D–F) The DCA curves for predicting lymph node invasion, distant metastasis, and R0, respectively.
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primary tumors (12, 13). Radiomics has been shown to be a high-
performance method for accurately predicting treatment response by 
assessing tumor heterogeneity (14). Rizzo et al. found that patients 
with values below the median for F2-Shape/Compactness1, F1- 
GrayLevelCooccurenceMatrix25/0-1InformationMeasureCorr2, and 
above the median for F1-GrayLevelCooccurenceMatrix25/−333-
1InverseVariance showed a higher risk of residual tumor (36, 36, and 
35%, respectively, as opposed to 18, 18, and 18%). However, models 
were not developed for prediction, or considering the value of clinical 
information (15). A radiomics signature–based nomogram was 
developed for the preoperative prediction of R0  in patients with 
advanced HGSOC. It demonstrated favorable performance in both 
training and validation sets with an AUC of 0.815 and 0.803, 
respectively (16). The metastatic situation of HOSG determines the 
FIOG stages and operation range, actual assessment carries significant 
weight. The radiomics nomogram demonstrated favorable calibration 
and discrimination in both the training cohort (AUC = 0.821) and test 
cohort (AUC = 0.843) (17). Previous studies on radiomic for predicting 
R0, lymph node invasion and distant metastasis have been based on 
CT enhanced images and MR enhanced images. However, some 
individuals may be  allergic to contrast agents or have renal 
dysfunction, making them unsuitable for enhanced CT/MRI 
examination. Additionally, some individuals may have claustrophobia 
or metal implants that are not suitable for MRI examination. 
Therefore, we explored the performance of radiomic based on CT 
examination without injecting contrast agent in predicting R0, lymph 
node invasion, and distant metastasis. The three clinical-radiomic 
combined models showed good performance, indicating that CT 
examination without contrast agent can provide favorable evidence 
for the preoperative evaluation of ovarian cancer.

Wavelet features belong to higher-order statistical features, which 
can more comprehensively reflect the heterogeneity of the original 
image and may also result in more valuable features than the original 
image (18). The three prediction models in this study include many 
Wavelet feature (Figure 1). This suggests that higher-order texture 
features have a good correlation with surgical outcomes and metastasis 
in advanced serous cancer patients. A model for predicting platinum 
resistance was constructed based on the radiomic features proposed 
by T2WI, DWI, and CE-T1WI sequences of 114 EOCs. In the 
validation set, the AUC was 0.89 (accuracy = 85.0%, sensitivity = 87.0%, 
and specificity = 80.0%) (19). The platinum resistance prediction 
model also includes 9 wavelet features, which is similar to our research 
results and once again confirms the good performance of wavelet 
features for preoperative evaluation of advanced serous ovarian cancer.

This study selected clinical features and laboratory examination 
indicators such as age, CA125, HE4, lymphocytes, neutrophils, and 
NLR to explore the differences between different groups. The clinical 
model composed of CA125, HE-4, and lymphocytes showed poor 
performance. However, with the addition of radiomic features, the 
performance of the model for predicting R0 significantly increased. 
The clinical model composed of NLR and neutrophils showed average 
performance but with the addition of radiomic features, the efficiency 
of the model for predicting lymph node infiltration significantly 
increased. This suggests a good correlation between radiomic features 
and surgical outcomes, as well as lymph node metastasis. The clinical 
models for predicting distant metastasis composed of CA125, HE-4, 
NLR, neutrophils, and lymphocyte generally performed good. 
However, the addition of radiomic features did not significantly 

improve the performance of the model possibly due to a small sample 
size. The predictive value of some blood inflammatory composite 
markers in OC has been extensively reported (20). They can be used 
for early detection and differential diagnosis of OC and can also 
predict survival, treatment response, and recurrence in the affected 
patients. Our results confirmed the NLR is related to R0 status, lymph 
node invasion, and distant metastasis in HGSC patient. This suggests 
a close correlation between NLR and surgical outcomes as well as 
metastasis. Further exploration of these correlations will be conducted 
at the molecular level in future studies. A radiomic-clinical nomogram 
based on MRI for predicting R0 also included CA125, LDH, and 
NLR (16).

The DCA of the combined model for predicting R0 confirmed the 
incremental clinical utility of the proposed model for individualized 
prediction. This finding is consistent with several previous radiomics 
studies on HGSOC and cervical carcinoma (21–23). However, the 
DCA of the combined models for predicting lymph node invasion and 
distant metastasis did not show the superior performance compared 
to a single model. The combined models were less sensitive in 
evaluating tumor heterogeneity, and other artificial intelligence 
methods will be explored to optimize the model fusion.

This study had several limitations. First, selection bias was 
inevitable due to the retrospective nature of the study and strict 
inclusion and exclusion criteria. Second, the retrospective datasets 
were relatively small, with an unbalanced distribution of patients. 
Third, radiomics has inevitable limitations in terms of reproducible 
application as it heavily relies on artificial segmentation and 
handcrafted features (24). Moreover, although volumetric tumor 
segmentation can provide a robust way to characterize tumor 
heterogeneity, it may be  time-consuming, especially for larger 
ovarian tumors.

5 Conclusion

The identified radiomics signature holds potential value in 
preoperatively evaluating the R0, lymph node invasion, and distant 
metastasis in patients with HGSC. The radiomics nomogram 
demonstrated the incremental value of clinical predictors for surgical 
outcomes and metastasis estimation. However, further external 
validation is required before its wide clinical application.
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