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Purpose: The objective of this study was to create and validate a novel prediction 
model that incorporated both multi-modal radiomics features and multi-clinical 
features, with the aim of accurately identifying acute ischemic stroke (AIS) 
patients who faced a higher risk of poor outcomes.

Methods: A cohort of 461 patients diagnosed with AIS from four centers was 
divided into a training cohort and a validation cohort. Radiomics features were 
extracted and selected from diffusion-weighted imaging (DWI) and apparent 
diffusion coefficient (ADC) images to create a radiomic signature. Prediction 
models were developed using multi-clinical and selected radiomics features 
from DWI and ADC.

Results: A total of 49 radiomics features were selected from DWI and ADC 
images by the least absolute shrinkage and selection operator (LASSO). 
Additionally, 20 variables were collected as multi-clinical features. In terms of 
predicting poor outcomes in validation set, the area under the curve (AUC) was 
0.727 for the DWI radiomics model, 0.821 for the ADC radiomics model, 0.825 
for the DWI  +  ADC radiomics model, and 0.808 for the multi-clinical model. 
Furthermore, a prediction model was built using all selected features, the AUC 
for predicting poor outcomes increased to 0.86.

Conclusion: Radiomics features extracted from DWI and ADC images can serve 
as valuable biomarkers for predicting poor clinical outcomes in patients with AIS. 
Furthermore, when these radiomics features were combined with multi-clinical 
features, the predictive performance was enhanced. The prediction model has 
the potential to provide guidance for tailoring rehabilitation therapies based on 
individual patient risks for poor outcomes.
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1 Introduction

Acute ischemic stroke (AIS) is a globally prevalent condition that 
ranks among the leading causes of disability and mortality, accounting 
for a staggering 60–80% of all stroke incidents (1, 2). The middle 
cerebral artery (MCA) territory is the most common site for AIS (3, 
4). The outcomes of AIS are influenced by various factors related to 
patient differences, such as demographics, general health conditions, 
and the extent of cerebral infarction (5, 6). Predicting the prognosis of 
AIS quickly and accurately is essential for determining appropriate 
clinical management strategies (7, 8).

Radiomics (RA) is a discipline that extracts quantitative and high-
dimensional features from medical images (9, 10). These features are 
indistinguishable to the naked eyes, but they may contain information 
related to the pathophysiology of diseases (11, 12). Currently, the role 
of RA was explored in the prediction of early outcome and long-term 
prognosis of AIS (13–17). However, most studies primarily predicted 
the outcomes of AIS based on a limited sample size of patients from 
either a single hospital or two hospitals (13–17). Additionally, the 
majority of these studies have focused on Computed Tomography 
(CT) images or a single-modality Magnetic Resonance Imaging (MRI) 
images (13, 14). Very few studies have investigated long-term 
outcomes for AIS using multi-modalities MRI images (15, 17), and 
only a few studies have developed combination models that integrated 
clinical and radiomic features with standard validation process 
(15, 16).

In this retrospective multicenter study, we developed a prediction 
model for long-term outcome of AIS in middle cerebral artery 
territory (MCA-AIS) using a combination of multi-model MRI images 
and multiple clinical variables from four medical centers. We extracted 
and selected 49 radiomics features from Diffusion-weighted imaging 
(DWI) and Apparent diffusion coefficient (ADC) images, and 
incorporated various clinical variables, such as general information, 
medical history, neurological scores, neuroimaging score, and 
laboratory examinations. Using machine learning (ML) techniques, 
we established models to rapidly and accurately predict the long-term 
outcomes of AIS. To ensure the robustness of our model, we furtherly 
validated it using comprehensive evaluations.

2 Methods

2.1 Study population

This study was a retrospective multi-center investigation. The 
study received approval from the Ethics Review Committee of Tongji 
Hospital in Shanghai (Approval No. K-2020 021), written informed 
consent for participation was not required for this study in 
accordance with national legislation and the institutional 
requirements. We pooled individual patient-level data from patients 
with AIS admitted to Tongji Hospital affiliated to Tongji University, 
Xinhua Hospital affiliated to the School of Medicine of Shanghai 
Jiaotong University, East Hospital affiliated to Tongji University and 
Putuo Hospital affiliated to Shanghai University of Traditional 
Chinese Medicine from January 2018 to December 2021. The 
admission criteria are as follows: (1) patients who had brain MRI 
(including DWI and ADC images) examination within 3 days after 
symptom onset; (2) initially diagnosed MCA-AIS patients who were 

admitted to the hospital for treatment; (3) patients who underwent 
DWI imaging for depicting lesions with a maximum diameter more 
than 1.5 cm; (4) initially diagnosed MCA-AIS patients who were 
admitted to the hospital for standard stroke treatment. The exclusion 
criteria were as follows: (1) patients with AIS involving posterior 
circulation area; (2) patients with AIS involving the anterior cerebral 
artery region; (3) patients with lacunar infarcts; (4) patients with 
poor quality images. A total of 1,675 AIS patients were included, and 
1,316 patients were excluded due to posterior cerebral AIS (n = 293), 
anterior and posterior AIS (n = 112), anterior lacunar AIS (n = 516), 
anterior cerebral artery cerebral AIS (n = 262), and image artifacts 
(n = 31). Finally, 461 cases met the inclusion criteria. All included 
patients were randomly divided into training cohort (411) and 
validation cohort (50). A flowchart of the patient selection and study 
process was provided in Figure 1.

2.2 Data collection

2.2.1 Multi-model MRI images
The MRI-DWI images were obtained using four different MRI 

scanners. The acquisition parameters were as follows: (1) Philips 
Ingenia 3.0 T: TR = 2,584 ms, TE = 96.7 ms, slice thickness 6 mm, slice 
spacing 7 mm, field of view 23 cm × 23 cm, matrix 256 × 256, 
excitation times 2, echo gap 0.75 ms, b value 1,000 s/mm2; (2) Siemens 
Verio 3.0 T: TR = 4,600 ms, TE = 89 ms, slice thickness 5 mm, scanning 
without spacing, field of view 24 cm × 24 cm, matrix 256 × 256, echo 
gap  0.75 ms, b value 1,000 s/mm2; (3) uMR 1.5 T: TR = 5,400 ms, 
TE = 94 ms, slice thickness 5 mm, layer spacing 6 mm, field of view 
23 cm × 23 cm, echo gap 0.75 ms, b value 1,000 s/mm2; (4) GE SIGNA 
EXCITE 1.5 T: TR = 6,000 ms, TE = 81.1 ms, slice thickness 7 mm, slice 
spacing 8 mm, field of view 23 cm × 23 cm, matrix 256 × 256, 
excitation times 2, echo gap 0.75 ms, b value 1,200 s/mm2. The ADC 
images were automatically created from DWI scans using 
built-in software.

2.2.2 Multi-clinical variables
The following 20 clinical data were collected: (1) General 

information: gender and age; (2) Medical history: history of smoking, 
history of alcohol, history of diabetes, history of myocardial infarction, 
history of coronary atherosclerosis, history of atrial fibrillation, history 
of hypertension and history of stroke; (3) Neurological score scale: 
National Institutes of Health Stroke Scale (NIHSS) on admission; (4) 
Neuroimaging score: diffusion weighted imaging-Alberta Stroke 
Program Early CT Score (DWI-ASPECTS); (5) Laboratory tests on 
admission: prothrombin time (PT), fibrinogen, D-dimer, serum 
Troponin I, blood glucose, blood lipids, and plasma brain natriuretic 
peptide (BNP).

2.3 Image preprocessing and delineation

Three attending neuro-radiologists manually delineated the 
ischemic lesions on MRI-DWI images using ITK-SNAP software 
(Version 3.8.0, available at http://www.itksnap.org). The ischemic 
lesion volume of interest (VOI) was also replicated from the DWI 
images onto another parametric map (ADC) and further refined by 
the radiologists. Finally, all the delineations were reviewed by two 
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chief radiologists with 8 years of experience in brain imaging. All 
parametric maps underwent a normalization using maximum and 
minimum truncation processing.

2.4 Radiomics extraction and selection

The flowchart of radiomics analysis was shown in Figure 1. 14 
image filters (such as BoxMean, AdditiveGaussianNoise, 
BinomialBlurImage, CurvatureFlow, BoxsigmaImage, LoG with sigma 
values of 0.5, 1, 1.5, and 2), Wavelet filters (LLL, LLH, LHL, LHH, 
HLL, HLH, HHL, HHH), Normalize, LaplacianSharpening, 
DiscreteGaussian, Mean, SpeckleNoise RecursiveGaussian and 
ShotNoise were used to generate derived images. From these derived 
images, first-order statistics and texture features were extracted. A 
total of 2,264 radiomics features were automatically extracted from 
each ischemic lesion. These features can be categorized into three 
groups: 14 shape features, 450 first-order features that quantify the 
distribution of voxel intensities in the images, and 1800 texture 
features. The texture features consist of 525 gray level co-occurrence 
matrix (GLCM) features, 350 gray level run length matrix (GLRLM) 
features, 400 gray level size zone matrix (GLSZM) features, 400 
neighboring gray tone difference matrix (NGTDM) features, and 125 
gray level dependent matrix (GLDM) features. These texture features 
capture regional heterogeneity differences. All radiomics features were 
normalized using Z-score.

We employed LASSO selection to identify the most reliable 
predictive radiomic features. Initially, we performed feature selection 
separately for each sequence of DWI and ADC modalities. Then, an 
additional round of LASSO selection was conducted to combine the 
selected features from both modalities, resulting in a set of multi-
modality RA features. These multi-modality RA features, along with 
clinical features, were subsequently merged and subjected to another 
round of LASSO selection to obtain a comprehensive combined 
feature set.

Based on Harrell’s guideline, the number of selected features 
should be  less than 10% of the sample size. Consequently, in our 
experiment involving the DWI sequence, ADC sequence, multi-
modality sequence, and the final combination of radiomics with 

clinical features, the final number of selected features was 
approximately 30.

2.5 Prediction model

2.5.1 Predictive task
The objective of our predictive task was to accurately predict the 

long-term prognosis of initially diagnosed MCA-AIS patients. The 
long-term prognosis was defined based on a 90-day modified Rankin 
Scale (90d-mRS) score, where scores of 0–2 indicated a good outcome 
and scores of 3–6 indicated a poor outcome. The majority of the 90-d 
mRS data were collected through telephone interviews, outpatient 
care, and clinical medical records. During phone interviews, patients 
were asked about their functional recovery 90 days after therapy.

2.5.2 Development and validation of the 
predictive model

Based on multi-model MRI RA features and/or multi-clinical 
features, three machine learning models were constructed for binary 
classification (good outcome or poor outcome) by using three 
classifiers, namely random forest (RF), support vector machine 
(SVM), and logistic regression (LR). The prediction model utilized 
input data from one of five feature sets: (1) DWI RA features with 25 
variables, (2) ADC RA features with 24 variables, (3) DWI + ADC RA 
features with 35 variables, (4) Multi-clinical features with 12 variables, 
and (5) Combining-all features with 30 variables. To optimize 
performance, a grid search was conducted on different features and 
classification algorithms for parameter tuning.

2.6 Statistical analysis

Mann–Whitney U test and chi-square test were used for 
evaluating significant differences in the variables (such as age, NIHSS 
score) between the training set and the validation set. The receiver 
operating characteristic curve (ROC) was drawn, and various 
performance metrics including sensitivity (SEN), specificity (SPE), 
accuracy (ACC), F1-Score, and area under the curve (AUC) were 

FIGURE 1

Flowchart of study patients and process. DWI  =  diffusion-weighted imaging, AIS  =  acute ischemic stroke.
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calculated to assess the model’s performance. The Shapley additive 
explanation (SHAP) diagram was utilized for model explanation. A 
two-tailed statistical test was used and p-value lower than 0.05 was 
considered to be  statistically significant. The R software package 
(version 4.0.3) was used to process the demographic data for 
evaluating significant differences in the variables between the training 
set and the validation set. Python (version 3.6) was used for 
programming the training, validation of the prediction model, as well 
as conducting statistical analysis.

3 Results

3.1 Basic characteristics

As shown in Table 1, the basic variables of most of the patients 
showed no statistical differences (p > 0.05) between the training set 
and the validation set, such as general conditions (gender and age), 
medical history (hypertension, diabetes), neurological score scales 
(NIHSS), and laboratory tests (BNP, etc.).

3.2 Assessment of radiomic features

A total of 4,528 radiomics features were extracted from DWI and 
ADC images. The optimal feature subset for the machine learning 
models consisted of 49 radiomic features, with 25 features selected 
from DWI and 24 features selected from ADC. These features were 
comprised of 4 shape features, 16 first-order features, and 29 texture 
features. The detailed information about the features based on 
DWI + ADC model was presented in Figure  2A. Rad-score was 
calculated according to the coefficient of the selected features, and the 
distribution of rad-score between good and poor outcome was shown 
both in train (Figure 2B) and test (Figure 2C) sets.

3.3 Comparison of prediction models

3.3.1 Comparison between different models
The LR model achieved the best classification results in all feature 

sets in our study. Table 2 and Figure 3 illustrated the AUC values along 
with other diagnostic performance metrics such as specificity, 

TABLE 1 Basic patient information.

Training set (n =  411) Validation set (n =  50) p-values

Basic characteristics

Age (Median, IQR) 71 (63, 82) 65 (55.25, 83.75) 0.194

Male (Percentile: %) 259 (56.2%) 25 (5.4%) 0.074

Neurological score scale (Median, IQR)

NIHSS on admission 5 (5, 10) 5 (3.25, 8.75) 0.253

Location (Left: Percentile: %) 228 (49.5%) 26 (5.6%) 0.641

Neuroimaging score scale (Median, IQR)

DWI-ASPECTS 8 (6, 9) 8 (6, 8.75) 0.752

History (Percentile: %)

Alcohol 106 (23%) 11 (2.4%) 0.561

Smoking 167 (36.2%) 17 (3.7%) 0.366

Myocardial infarction 405 (87.9%) 49 (10.6%) 0.555

Coronary atherosclerosis 86 (18.7%) 7 (1.5%) 0.249

Atrial fibrillation 74 (16.1%) 10 (2.2%) 0.730

Hypertension 295 (64%) 32 (6.9%) 0.253

Stroke 103 (22.3%) 14 (3%) 0.652

Diabetes 135 (29.3%) 14 (3%) 0.489

Laboratory test (Median, [IQR])

Prothrombin time 11.5 (10.9, 12.3) 11.25 (10.8, 11.675) 0.023

Fibrinogen 2.97 (2.55, 3.78) 2.8 (2.405, 3.475) 0.072

D-dimer 0.56 (0.27, 1.355) 0.54 (0.25, 1.145) 0.526

Serum troponin I 0.01 (0.01, 0.0305) 0.01 (0.01, 0.019) 0.048

Blood sugar 6.46 (5.605, 8.595) 6.185 (5.235, 7.145) 0.035

Blood lipids 1.21 (0.96, 1.61) 1.21 (1.04, 1.5775) 0.839

Brain natriuretic peptide 103.1 (64.15, 269.3) 103.1 (58.275, 154.95) 0.395

Long-term outcome

Poor outcome (90d-mRS>2) (Percentile: %) 184 (39.9%) 22 (4.8%) 0.918

IQR: interquartile range; NIHSS: National Institute of Health stroke scale; 90d-mRS:90 days-modified Rankin scale.
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sensitivity, accuracy, and F1 Score, which demonstrated the indicator 
results for predicting poor outcomes in the training set, test set, and 
validation set. In the test set for predicting poor outcome using LR 
model, the AUCs were as follows: DWI RA model 0.805, ADC RA 
model 0.823, DWI + ADC RA model 0.838, multi-clinical model 
0.808. When combining multi-clinical features and RA features, the 
AUC was significantly increased, reaching to 0.873. In the validation 
set for predicting poor outcome, the AUCs were as follows: DWI RA 
model 0.727, ADC RA model 0.821, ADC + DWI RA model 0.825, 
multi-clinical model 0.808. When combining all the features, the AUC 
value was increased to 0.86, which means the model with 
combining-all features achieved superior diagnostic performance 
compared to other models.

3.3.2 Model interpretability
We generated a nomogram to predict the probability of long-term 

outcomes using the multi-clinical feature set (Figure 4). It showed that 
patients with higher NIHSS on admission, a history of myocardial 
infarction, and lower DWI-ASPECTS were at greater risks for 
poor outcome.

The Shap values corresponding to each feature in combining-all 
model were also calculated. In each prediction, a positive Shap value 
denoted an elevated risk of poor outcome, while a negative value 
suggested the opposite. The accompanying Figure 5A presented the 
average Shap values for each feature within the test set. Notably, the 
NIHSS admission emerged as the most influential predictor in 
forecasting long-term outcomes. Alongside, several RA features, such 

as ADC_log_boxsigmaimage_firstorder_maximum, ADC_ 
normalize_firstorder_mean, and DWI_Wavelet_firstorder_wavelet-
lhh-mean also played an important role in this predictive model. The 
detailed SHAP values of the most important variables for one typical 
patient from the validation group (poor outcome) was illustrated in 
Figure 5B.

4 Discussion

In this retrospective multicenter study, we developed a logistic 
regression model based on DWI RA features, ADC RA features, and 
multi-clinical factors to predict long-term outcomes in patients with 
AIS. Our model was applicable to MCA-AIS patients receiving 
different therapies and provided preferable accuracy. It was worth 
mentioning that our study just conformed to the “big data” trend of 
medicine which took radiomics as a block of “big data”.

RA can provide quantitative morphological and texture features 
based on voxel level while our naked eye can only distinguish 16 gray 
scales (18). In this context, regarding the heterogeneity of AIS lesions, 
radiomics seems to be superior to conventional imaging visual analysis 
(19, 20). As we know, ADC images can more accurately reflect diffusion 
restriction than DWI images without the influence of T2 shining-
through effect. In this study, we found that the prediction model with 
ADC RA features performed better than the model with DWI RA 
features that was consistent with the principle of diffusion sequence 
imaging mentioned above, and a previous study has also yielded similar 

FIGURE 2

Radiomics based on DWI  +  ADC feature set for long-term prognosis prediction: the coefficient of each feature was taken to make a bar chart, which 
showed the importance of the top 10 feature in the prediction (A). The box diagrams of rad-score for discriminating good and poor outcomes in the 
train (B) and test sets (C).
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results (21). First-order features (ADC_boxsigmaimage_firstorder_
Maximum) was positively correlated to infarction core volume, which 
was considered to be critical factors for stroke severity and treatment 
plan in the guidelines. And Vogt et al. have reported that the initial lesion 
volume of cerebral infarction acted as an independent predictor of 
prognosis (90d-Rankin score) (22). Our study included MCA-AIS cases 
in 72 h from onset, predominantly capturing patients in the acute-
subacute phase. There was vascular edema and/or cytotoxic edema in 
acute-subacute cerebral infarction, that was the pathophysiology 
mechanism of the signal elevation on DWI images and signal reduction 
on ADC maps. First-order feature (ADC_normalize_firstorder_Mean, 
DWI_wavelet_firstorder_wavelet-LHH-Mean) showed the average gray 
level intensity within the infarction core, and both higher gray level 
intensity on DWI and lower gray level intensity on ADC reflected more 
severe overall diffusion restriction within the lesion, suggesting a higher 
grade of overall edema. Consequently, we hypothesized that the voxel-
based diffusion restriction heterogeneity represented the progress rate of 
blood–brain barrier destruction. First-order feature (ADC_normalize_
firstorder_totalenergy) measured the magnitude of voxel values in 

images, with larger values indicating a higher sum of the squares of these 
values. This metric suggested that the infarction core on ADC images of 
patients with poor outcomes had more heterogeneity. A two-center 
study showed that infarction lesion homogeneity of DWI images 
indicated favorable outcomes, which was similar with our results (16).

This study collected multiple-dimension clinical variables, 
including general information, medical history, neuroimaging scores, 
and laboratory test, which was different from previous studies (13–
17). We observed that NIHSS score on admission remained associated 
with the risks for poor outcomes whether in multi-clinical model or 
combing-all model. The National Institute of Health Stroke Scale 
(NIHSS) is the most commonly used clinical score (23), which 
quantitatively and comprehensively evaluates the functional 
impairment in stroke patients. A history of myocardial infarction, 
indicative of underlying atherosclerotic disease, and a shortened 
prothrombin time, suggestive of hypercoagulability, are both 
significant risk factors for the onset and progression of AIS (24). 
We also found that DWI-ASPECTS played an important role in the 
multi-clinical model. It is a 10-point semi-quantitative scoring system 

TABLE 2 The performance of the prediction models.

Models AUC* Sensitivity Specificity Accuracy F1 score

Training (n = 411) Train Test Train Test Train Test Train Test Train Test

DWI 0.839 (0.797–0.882) 0.805 (0.711–0.903) 0.776 0.73 0.763 0.748 0.769 0.74 0.751 0.71

ADC 0.847 (0.806–0.889) 0.823 (0.732–0.915) 0.791 0.762 0.746 0.734 0.766 0.747 0.752 0.728

DWI + ADC 0.868 (0.83–0.907) 0.838 (0.753–0.925) 0.85 0.838 0.738 0.721 0.788 0.774 0.783 0.768

Multi-clinics 0.838 (0.796–0.882) 0.808 (0.714–0.903) 0.759 0.724 0.764 0.752 0.762 0.74 0.742 0.712

Combining-all 0.912 (0.883–0.944) 0.873 (0.802–0.949) 0.847 0.805 0.815 0.801 0.83 0.803 0.817 0.783

Validation (n = 50)

DWI 0.727 (0.588–0.867) 0.636 0.679 0.66 0.622

ADC 0.821 (0.707–0.936) 0.682 0.821 0.76 0.714

DWI + ADC 0.825 (0.713–0.937) 0.727 0.75 0.74 0.711

Multi-clinics 0.808 (0.690–0.927) 0.727 0.788 0.76 0.727

Combining-all 0.86 (0.757–0.964) 0.773 0.788 0.78 0.756

*AUC = area under the receiver operating characteristic curve; DWI = diffusion-weighted imaging; ADC = apparent diffusion coefficient.

FIGURE 3

Performances of machine learning models for prediction of outcome: Receiver operating characteristic (ROC) curves of five feature sets when using 
the logistic regression classifier in the train (A), test (B) and validation (C) set, respectively.
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for assessing the degree of ischemic changes (25, 26). ASPECTS has 
been widely utilized to identify patients that presumed to have a large 
ischemic core and high risks for intracerebral hemorrhage and poor 
clinical outcome (27, 28). These findings are consistent with the 
current guidelines and consensus for the diagnosis and therapy of AIS 
(29, 30). However, medical history and laboratory test contributed 
little to the prediction models in our study.

Despite the favorable prognostic efficacy of the combining model, 
our research still has some limitations. First, a more extensive and 
prospective study cohort is needed to generalize the performance of 
the prediction model in the future. However, compared with most 
previous studies (13–17), our sample size had certain advantages, 
especially the four-center characteristic. Second, reperfusion factors, 
such as collateral circulation and vascular recanalization, have not 
been investigated as a variable. Third, when collecting the data, the 
lacunar cerebral infarction patients with good prognosis were 
excluded, which meant that this study did not include all clinically 
common cases of AIS.

5 Conclusion

Our findings highlighted the utility of radiomics based on DWI 
and ADC images in predicting long-term outcomes in patients with 
MCA-AIS. The prediction model, which incorporated multi-clinical 
variables along with ADC + DWI RA features, demonstrated the 
highest efficiency in the prediction of long-term outcomes for 

AIS. This model has the potential to assist clinicians in offering 
personalized management strategies for optimal patient care.
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FIGURE 5

Shapley additive explanation (SHAP) diagram of variable contributions for the optimal (combining-all) predictive model: (A) The relative contributions of 
RA features and multi-clinical variables for long-term prognosis prediction. The color intensity of the graph revealed a discernible pattern: an 
increment in the NIHSS admission score corresponded to an escalating probability of a poor outcome. For the DWI_Wavelet_firstorder_wavelet-lhh-
mean feature, the lower the value of the feature, the higher likelihood of a poor outcome. (B) SHAP values of a typical patient from the positive group 
(poor outcome), illustrated with the important variables.
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