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Background: Non-alcoholic fatty liver disease (NAFLD) and ulcerative colitis 
(UC) are two common health issues that have gained significant global attention. 
Previous studies have suggested a possible connection between NAFLD and 
UC, but the underlying pathophysiology remains unclear. This study investigates 
common genes, underlying pathogenesis mechanisms, identification of 
diagnostic markers applicable to both conditions, and exploration of potential 
therapeutic targets shared by NAFLD and UC.

Methods: We obtained datasets for NAFLD and UC from the GEO database. The 
DEGs in the GSE89632 dataset of the NAFLD and GSE87466 of the UC dataset 
were analyzed. WGCNA, a powerful tool for identifying modules of highly 
correlated genes, was employed for both datasets. The DEGs of NAFLD and UC 
and the modular genes were then intersected to obtain shared genes. Functional 
enrichment analysis was conducted on these shared genes. Next, we  utilize 
the STRING database to establish a PPI network. To enhance visualization, 
we employ Cytoscape software. Subsequently, the Cytohubba algorithm within 
Cytoscape was used to identify central genes. Diagnostic biomarkers were 
initially screened using LASSO regression and SVM methods. The diagnostic 
value of ROC curve analysis was assessed to detect diagnostic genes in both 
training and validation sets for NAFLD and UC. A nomogram was also developed 
to evaluate diagnostic efficacy. Additionally, we used the CIBERSORT algorithm 
to explore immune infiltration patterns in both NAFLD and UC samples. Finally, 
we investigated the correlation between hub gene expression, diagnostic gene 
expression, and immune infiltration levels.

Results: We identified 34 shared genes that were found to be associated with 
both NAFLD and UC. These genes were subjected to enrichment analysis, which 
revealed significant enrichment in several pathways, including the IL-17 signaling 
pathway, Rheumatoid arthritis, and Chagas disease. One optimal candidate 
gene was selected through LASSO regression and SVM: CCL2. The ROC curve 
confirmed the presence of CCL2 in both the NAFLD and UC training sets and 
other validation sets. This finding was further validated using a nomogram in 
the validation set. Additionally, the expression levels of CCL2 for NAFLD and UC 
showed a significant correlation with immune cell infiltration.
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Conclusion: This study identified a gene (CCL2) as a biomarker for NAFLD 
and UC, which may actively participate in the progression of NAFLD and UC. 
This discovery holds significant implications for understanding the progression 
of these diseases and potentially developing more effective diagnostic and 
treatment strategies.

KEYWORDS

bioinformatics, non-alcoholic fatty liver disease, ulcerative colitis, machine learning, 
diagnosis, immune infiltration

1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is a prevalent condition 
characterized by the accumulation of fat in the liver cells, known as 
steatosis (1). NAFLD includes a range of diseases ranging from NAFL 
to NASH, which involves both fat accumulation and inflammation in 
the liver. NASH can progress to more severe forms of liver damage, 
including cirrhosis and HC. The global prevalence of NAFLD is 
estimated to be around 25%, making it one of the most common 
chronic liver diseases worldwide (2). One concerning aspect of 
NAFLD is its association with various extrahepatic complications. 
Research has shown that individuals with NAFLD have an increased 
risk of developing CVD, CKD, and T2DM (3).

Ulcerative colitis (UC), a chronic inflammatory bowel disease, 
caused by multiple reasons and mediated by abnormal immunity. The 
main manifestations are recurrent diarrhea, abdominal pain, and 
mucopurulent bloody stools (4). Looking toward future trends, it is 
estimated that there will be  approximately 5 million cases of UC 
worldwide by 2023 (5). In recent years, more and more studies have 
pointed out that Irritable bowel syndrome (IBS) and IBD (including 
Crohn’s disease and UC) have partial overlap in clinical manifestations 
and pathophysiological mechanisms. For example, studies have found 
that IBS-like symptoms are not uncommon in patients with IBD, 
especially when IBD is in remission, and this overlap can lead to 
misdiagnosis and mistreatment (6, 7). In addition, intestinal 
microecological disorder, intestinal barrier dysfunction and low-grade 
chronic inflammation may be the common underlying pathological 
mechanisms (8). Due to the high prevalence of IBS, this greatly 
increases the prevalence of NAFLD due to intestinal causes (9).

Recent studies have highlighted the co-existence of NAFLD and 
UC (7). NAFLD is a prevalent condition among individuals with UC, 
affecting up to one-third of UC patients globally. Moreover, research 

has shown that UC patients are twice as likely to develop NAFLD 
compared to healthy individuals (8). In recent years, studies have also 
suggested a potential association between UC and NAFLD through 
the enteric-liver axis (10). Chronic intestinal inflammation may cause 
bacterial products (such as endotoxins) to enter the liver through the 
portal vein by disrupting the intestinal barrier function, thereby 
triggering an inflammatory response in the liver and promoting the 
occurrence and development of NAFLD (11, 12). In this complex 
process, the immune system’s involvement is equally important (13). 
Therefore, based on the complex crosstalk between two diseases, 
Identifying factors related to the co-development of two syndromes 
and identifying common pathophysiological pathways can represent 
diagnostic and treatment strategies, which is of great significance.

Advancements in the field of bioinformatics have revolutionized 
our ability to study coexpressed genes that are associated with NAFLD 
and UC. These tools have opened up new opportunities for researchers 
to delve deeper into the molecular mechanisms underlying these 
diseases and identify potential targets for treatment (14). We analyzed 
the coexpressed genes of NAFLD and UC using bioinformatics tools. 
By examining common genes across both NAFLD and UC, we have 
identified diagnostic markers that could indicate disease presence or 
progression. Additionally, we  provide valuable information about 
immune infiltration within both affected NAFLD and UC. This 
research has significant implications for improving patient outcomes 
through more targeted therapies explicitly tailored toward individuals 
with NAFLD and UC. The workflow can be seen in Figure 1.

2 Materials and methods

2.1 Data acquisition

Four datasets were downloaded from the GEO database (15). The 
GSE89632 (16) dataset comprises 24 HC patients and 39 NAFLD 
patients. The GSE87466 (17) dataset comprises 21 HC and 87 UC 
patients. Additionally, we also obtained the GSE48452 (18) dataset 
consisting of liver tissues from 32 NAFLD patients and 41 HC patients, 
as well as the GSE92415 (19) dataset consisting of liver tissues from 
162 UC patients and 21 HC patients for external validation purposes. 
Details for the data sets were provided in Table 1.

2.2 Identification of DEGs

We utilized the “limma” R package to analyze the GSE89632 dataset 
and identify DEGs between the NAFLD and HC groups. The criteria 
for selecting DEGs were set at |log2 FC| ≥ 0.886 or 1 and p-adjust <0.05. 

Abbreviations: AUC, Area under the curve; BP, Biological process; CC, Cellular 

component; CCL2, C-C motif chemokine 2; CKD, chronic kidney disease; CVD, 

cardiovascular disease; DEGs, differentially expressed genes; GEO, Gene Expression 

Omnibus; GO, Gene ontology; GSEA, gene set enrichment analysis; HC, 

hepatocellular carcinoma; IL-1β, interleukin 1 beta; INF-α, interferon-α; IBS, Irritable 

bowel syndrome; LASSO, Least Absolute Shrinkage and Selection Algorithm; MF, 

Molecular function; NAFL, Non- alcoholic simple fatty liver; NASH, non-alcoholic 

steatohepatitis; NFκB, nuclear factor kappa B; oxLDL, oxidized low-density 

lipoprotein cholesterol; PAMP, permeability of the increased exposure of immune 

cells to microbial-associated molecular patterns; SVM-RFE, Support Vector Machine 

Recursive Feature Elimination; T2DM, type 2 diabetes mellitus; TLR4, Toll-like 

receptor 4; TNF-α, tumor necrosis factor alpha; WGCNA, Weighted gene 

co-expression network analysis.
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To visualize the DEGs, a volcano plot was generated using the “ggplot2” 
package. Additionally, a heatmap was created to display the top 25 
DEGs. Additionally, we applied the same methodology described above 
to analyze another dataset called GSE87466.

2.3 Weighted gene co-expression network 
analysis

The WGCNA method was utilized to identify functional modules. 
To ensure the accuracy of the analysis, only the top 25% of genes with 
the highest variation were chosen for further investigation. Next, to 
eliminate any ineligible genes and samples, the goodSamplesGenes 
function was employed, creating a scale-free coexpression network. 
Subsequently, the soft powers β were determined using the 
pickSoftThreshold function. A dynamic tree-cutting technique was 
applied to detect gene modules within the coexpression network. 
Additionally, these identified gene modules will be linked to clinical 
features. Finally, a Venn diagram on a bioinformatics platform (20) 
displayed the overlapping genes between NAFLD’s green module 
genes with DEGs and UC’s turquoise module genes with DEGs.

2.4 Functional enrichment analysis

We used GSEA with version 4.8.2 of the “clusterProfiler” 
package to identify KEGG pathways enriched by key genes in 
NAFLD and UC. Additionally, we  conducted GO and KEGG 
enrichment analyses on the Metascape platform (21) to explore the 
functional biological roles of co-expressed genes. We  applied a 
significance threshold of p-value <0.01 for these analyses. The 
results were then visualized using Sankey dot pathway enrichment 
diagrams on a bioinformatics platform.

2.5 Construction of PPI network and 
identification of hub genes

To analyze the interactions between commonly recognized 
genes, the string platform was used to construct PPI 
networks. Setting screening criteria with interaction scores 
exceeding 0.4 is significant. Next, Cytoscape software is utilized 
to visualize. We applied the cytoHubba plugin in Cytoscape, which 
calculates centrality measures based on maximal cliques within a 

FIGURE 1

Detailed flowchart of research design.

TABLE 1 Detailed information of datasets used in this study.

ID Organism Platform Normal vs. NAFLD Type of samples

GSE89632 Human (samples of liver) GPL14951 24 vs. 39 (62) NAFLD

GSE87466 Human (Mucosal biopsy samples) GPL13158 21 vs. 87 (108) UC

GSE48452 Human (samples of liver) GPL11532 41 vs. 32 (73) NAFLD

GSE92415 Human (Mucosal biopsy samples) GPL13158 21 vs. 162(183) UC
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FIGURE 2

Identification of in the integrated NAFLD and UC datasets. (A,B) Red indicates upregulated DEGs, while blue indicates downregulated DEGs. (C,D) Red 
circles represent upregulated DEGs, while blue circles represent downregulated DEGs.

network, allowing for identification of highly connected nodes or 
hub genes.

2.6 Machine learning for screening key 
genes and validation

The LASSO and the SVM algorithm were used to identify key 
genes in GSE89632 and GSE87466. Tw o independent datasets, 
GSE48452 and GSE92415, were used to validate the critical genes 
identified. The “glmnet” R package was employed for the LASSO 
logistic regression analysis. The smallest lambda value obtained from 
this analysis was considered optimal for predicting disease outcomes. 
SVM, powerful machine learning algorithms, and RFE that select a 
subset of relevant genes by iteratively eliminating less informative ones 
based on five-fold cross-validation were employed to acquire critical 
genes. The ROC curves were generated using the pROC package to 
evaluate diagnostic accuracy. The “Rms” package is utilized to 
construct a nomograph and assess its predictive capability through the 

calibration curve—box plots generated by ggplot2 visualized 
expression levels of diagnostic genes in different groups or conditions. 
Statistical significance was denoted as *p < 0.05 and **p < 0.01.

2.7 Immune infiltration analysis

The abundance of 22 subtypes of immune cells in NAFLD 
samples and UC samples was determined using the cibersort 
algorithm from the “IOBR” package in R software and the 
CIBERSOTRx platform.1 This analysis provided insights into the 
cellular composition of the immune microenvironment in both 
NAFLD and UC. Additionally, we performed Spearman correlation 
analysis to investigate potential relationships between hub genes and 
different subsets of immune cells.

1 http://cibersort.stanford.edu/
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3 Results

3.1 Screening of DEGs in NAFLD and UC 
datasets

903 DEGs were found in the GSE89632 dataset (16 healthy 
individuals and 16 NAFLD patients were selected). Among these DEGs, 
623 genes were upregulated, while 280 genes were down-regulated. The 
significance of these DEGs is further highlighted in Figure 2A, where 
the top 25 most significant DEGs are displayed as a heatmap. Figure 2C 
shows the DEGs by the volcano diagram. We obtained 882 UC-related 

DEGs in the GSE87466 dataset (21 healthy individuals and 21 patients 
with UC were selected). This analysis showed more downregulated 
genes (643) than upregulated ones (239). The heatmap and volcano 
diagram are shown in Figures 2B,D.

3.2 The co-expression modules in NAFLD 
and UC

We used WGCNA to identify co-expressed gene profiles in the 
NAFLD (GSE89632) and UC datasets (GSE87466). After removing 

FIGURE 3 (Continued)
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FIGURE 3

Identification of module genes in NAFLD and UC. (A,B) Clustering dendrogram showing the samples from NAFLD and UC. (C,D) The soft threshold (β) 
was determined to be 16 and 18, respectively, with a correlation coefficient of 0.9. (E,F) Each branch in the cluster diagram represents a gene, with 
different colors indicating a gene co-expression module. (G,H) Heatmap illustrating the relationships between modules and traits. (I) Venn diagram 
depicting four sets.

abnormal samples, we obtained clustering dendrograms for NAFLD 
and UC (Figures 3A,B). For the NAFLD dataset, a soft-threshold power 
β of 16 was chosen based on an R2 greater than 0.9, indicating scale 
independence (Figure 3C). Similarly, a soft-threshold power β of 18 for 
the UC dataset was chosen (Figure 3D). Using dynamic hybrid shearing, 

nine gene coexpression modules were produced for NAFLD, and 12 
gene coexpression modules were produced for UC (Figures 3E,F). The 
correlation between these gene modules and NAFLD/Normal is 
depicted in Figure  3G. Notably, The first module, called the green 
module, consisted of 453 genes. We  observed a robust correlation 
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FIGURE 4

Functional correlation analysis. (A,B) The GSEA analysis results show the top 5 up and down groups of signaling pathways in NAFLD and UC. (C–E) The 
outcomes of GO enrichment analysis. (F) KEGG enrichment analysis reveals 10 pathways associated with key genes.
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FIGURE 5

Identification of key genes in NAFLD and UC. (A) PPI network. (B) Co-expression of key genes in MCC algorithm by Cytoscape plugin cytoHubba.

between this module and NAFLD. Likewise, the correlation between 
these gene modules and UC/Normal (Figure 3H). The second module, 
known as the turquoise module, contained 1740 genes. We discovered 
a significant correlation between this module and UC. Therefore, the 
green and turquoise modules were selected for subsequent analysis. 
Subsequently, the intersection of these four sets, including the DEGs of 
NAFLD, the DEGs of UC, the green module, and the turquoise, yielded 
34 common genes (Figure 3I). Further research on these specific genes 
could provide valuable insights into understanding the underlying 
mechanisms linking these two conditions together.

3.3 Functional correlation analysis

The GSEA analysis results revealed the top five in the NAFLD active 
UP group. These pathways included Bladder cancer, IL-17 signaling 
pathway, Osteoclast differentiation, Malaria, and TNF signaling 
pathway. The active down group included Base excision repair, Lipoic 
acid metabolism, Mismatch repair, Non-homologous end-joining, and 
Nucleotide excision repair (Figure 4A). Similarly, in the UC group, the 
active UP-enriched pathways were found to be  the IL-17 signaling 
pathway, Malaria, Primary immunodeficiency, TNF signaling pathway, 
and Viral protein interaction with cytokine and cytokine receptor. The 
active down group included Ascorbate and alternate metabolism, 
Chemical carcinogenesis−DNA adducts, Drug metabolism-
cytochrome P450, Pentose and glucuronate interconversions, and 
Porphyrin metabolism (Figure 4B). Next, With the metascape platform, 
further GO and KEGG enrichment analysis of critical genes showed 
their involvement in various BPs such as inflammatory response, 
chemotaxis, and taxis (Figure 4C). Regarding CCs, essential genes were 
principally associated with the secretory granule membrane, secretory 
granule lumen, and cytoplasmic vesicle lumen (Figure 4D). The MFs 
analysis indicated cytokine activity, receptor-ligand activity, and 
signaling receptor activator activity (Figure 4E). The essential genes’ top 
three significant KEGG pathways were enriched in the IL-17 signaling 
pathway, Rheumatoid arthritis, and Chagas disease (Figure 4F).

3.4 PPI network analysis and Core genes 
selection

A PPI network consisting of 34 protein targets was constructed 
using the STRING database. They were deleting disconnected nodes 
in the network. There were 24 nodes and 81 edges in Figure 5A. The 
cytoHubba plugin in Cytoscape was employed to score the 
importance of each gene based on their connectivity within the 
network. After applying this analysis method, the top 10 key genes 
with the highest node scores were identified, including IL1B, IL6, 
CXCL8 (IL8), CCL2, S100A12, IL1RN, S100A9, CCL3, CD44, and 
S100A8 (Figure 5B).

3.5 Machine learning for screening core 
genes and validation

24 core genes were screened using the two machine learning. LASSO 
logistic regression identified 7 diagnostic core genes of NAFLD in the 
model. On the other hand, the SVM-RFE method identified a more 
extensive set of 18 diagnostic core genes for NAFLD (Figures 6A,C,E). 
LASSO logistic regression and SVM identified 6 and 24 diagnostic core 
genes, respectively, for UC (Figures 6B,D,F). These two diseases’ common 
diagnostic core genes are considered diagnostic markers for NAFLD 
with UC (Figure 6G). Finally, one diagnostic marker was obtained: CCL2.

In order to evaluate the role of one biomarker in NAFLD and UC 
diagnosis, the nomogram containing one biomarker (CCL2) was 
generated (Figures 7A,C). The calibration curve generated from this 
nomogram revealed a slight difference between actual and predicted 
values. This suggests that the nomogram has a high diagnostic value 
(Figures 7B,D). Moreover, ROC analysis was used to determine the 
AUC and 95% CI of the candidate gene in the training and validation 
sets. The findings were as follows: CCL2 (AUC: 0.9961, 95% CI: 0.938–
1.000) in GSE89632, CCL2 (AUC: 0.6748, 95% CI: 0.656–0.781) in 
GSE48452, CCL2 (AUC: 0.9138, 95% CI: 0857–0.857) in GSE87466, 
CCL2 (AUC: 0.932, 95% CI: 0.857–0.905) in GSE92415 
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(Figures  7E–H). In the validation set, it was observed that the 
expression level of CCL2 was significantly higher than that of the 
normal group (Figures 7I,J). The above results show that CCL2 has a 
high diagnostic value.

3.6 Immune cell correlation analysis

The enrichment analysis results revealed a significant overlap 
between the genes associated with NAFLD and UC, particularly in 
terms of their involvement in inflammatory response and immune 
regulation. Consequently, a more in-depth analysis of immune 
infiltration is required for both NAFLD and UC. First, Both 

CIBERSORTx and CIBERSORT algorithms were used to evaluate the 
proportions of 22 immune cells in GSE89632 (16 normal controls 
and 16 patients with NAFLD) and GSE87466 (21 normal controls 
and 21 patients with UC). The proportions of the immune cell 
composition showed clustering and individual differences 
(Figures 8A–D). T cells CD4 memory resting, Mast cells restings, 
Tγδ, Macrophagess M1, and Macrophagess M2 were significantly 
upregulated in NAFLD samples; however, the levels of Plasma cells, 
Monocytes, and NK cells activated were significantly decreased. In 
UC samples, T cells CD4 memory activated, T cells follicular helper 
and Macrophagess M1 were significantly upregulated; however, the 
levels of Plasma cells, T cells CD8, and Macrophagess M2 were 
significantly decreased (Figures  8E,F). Additionally, our analysis 

FIGURE 6 (Continued)
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FIGURE 6

The use of machine-learning algorithms to screen for potential 
biomarkers of NAFLD with UC. (A,B) LASSO logistic regression used 
to analyze the core genes. (C,D) Five-fold cross-validation for turning 
parameter (λ) selection in the LASSO regression model. (E,F) SVM-
RFE algorithm used to analyze the core genes. (G) Venn diagram of 
the intersection of five sets of core genes.

identified feature genes closely associated with immune cell 
infiltration. In NAFLD samples, CCL2 was positively correlated with 
monocytes and mast cells activated; however, it was negatively 
correlated with mast cells resting and macrophage M2 (Figure 8G). 
In UC samples, CCL2 was positively correlated with Neutrophils, and 
Macrophagess M0 negatively correlated with mast cells resting and 
Macrophagess M2 (Figure 8H). These genes likely play a critical role 
in shaping the local microenvironment within both NAFLD and 
UC-affected tissues.

4 Discussion

The enterohepatic axis is thought to play a vital role in the 
comorbidities of NAFLD and UC. Recent studies have shown that the 
interaction between the gut microbiota and the host influences the 
development and course of both diseases through multiple pathways 
(22). In addition, metabolic syndrome is commonly seen in NAFLD 
patients and is characterized by insulin resistance, obesity, etc. These 
factors may also influence the development of UC by altering 
microbiome composition (23). Therefore, based on the physiological 
mechanisms of the hepatoenteric axis of these two diseases, a deeper 
understanding of these complex interactions through bioinformatics 
approaches could help to shed light on the pathogenesis of the 
coexistence of NAFLD and UC and provide potential targets for the 
development of new therapeutic strategies.

The results of the GO enrichment analysis indicate that key genes 
are primarily enriched in inflammatory response, chemotaxis, and 
taxis. This suggests that inflammatory processes play a significant role 
in the co-pathogenesis of NAFLD and UC. Oxic lipid entities such as 
palmitic acid, oxLDL, and free cholesterol, which are increased in 
NAFLD, can activate innate immune pathways (e.g., TLR4, IL-1β, 
TNFα, NFκB) to drive hepatic inflammation (24). Pro-inflammatory 

cytokines such as TNFα, IL-6, IL-12, and IL-23 play a crucial role in 
the occurrence and progression of UC. These cytokines are closely 
associated with the inflammatory response seen in UC patients (25). 
One important factor contributing to this inflammatory response is 
the increased permeability of the intestinal barrier. When the 
intestinal barrier becomes more permeable, immune cells are exposed 
to higher levels of PAMPs. This exposure triggers an inflammatory 
response and allows harmful substances, such as bacterial toxins or 
inflammatory molecules, to enter systemic circulation more easily, 
which may provide a beneficial way to initiate and further develop 
NAFLD (25, 26). In the GSEA and KEGG analysis, we find that the 
IL-17 and TNF signaling pathways have emerged as crucial players in 
the development and progression of two diseases. One key finding is 
that IL-17, a pro-inflammatory cytokine, is pivotal in promoting the 
transition from NAFL to NASH (27). Research has shown that the IL 
23/IL17 axis is critically involved in UC pathogenesis. The interaction 
between these two molecules promotes the differentiation and 
activation of Th17 cells, which contribute significantly to immune 
responses and inflammation (28). Additionally, the TNF signaling 
pathway has been implicated in both NAFLD and UC pathogenesis 
based on numerous pieces of evidence (29, 30).

Furthermore, we used the Cytoscape plugin cytoHubba to score 
and screen 34 genes. This analysis identified the top 10 key genes: 
IL1B, IL6, CXCL8 (IL8), CCL2, S100A12, IL1RN, S100A9, CCL3, 
CD44, and S100A8. These genes are believed to play crucial roles in 
NAFLD and UC. IL1B, a pro-inflammatory cytokine, has been found 
to induce the formation of lipid droplets in hepatocytes and promote 
the recruitment of neutrophils in the liver. Additionally, IL1B 
contributes to the progression from liver inflammation to liver fibrosis 
(31). Patients with UC have increased levels of IL1B mRNA in their 
intestine tissues. This increase reduces occludin expression by 
enterocytes and increases TJ permeability. Consequently, it promotes 
the occurrence and development of UC. Another cytokine, IL-6, has 
been implicated in liver injury and apoptosis when overexpressed for 
long periods (32). Inhibiting IL-6 is an effective treatment for UC (33). 
CCL2 signaling is associated with metabolic disorders during the 
development of NASH and contributes to lipid accumulation in 
hepatocytes (34). The CXCL8-CXCR1/2 axis participates in UC 
pathogenesis through multiple signaling pathways, including PI3k/
Akt, MAPKs, and NF-κB (35). Based on these findings, these genes, 
IL1B, IL-6, CCL2, and CXCL8, have been shown to contribute not 
only to NAFLD but also to UC occurrence and development. They 
hold potential as new treatment targets.

One diagnostic marker was obtained from 24 core genes using 
two algorithms to investigate the diagnostic markers of NAFLD 
complicated by UC. Numerous studies have indicated that 
Chemokines are a group of signaling proteins that play crucial roles 
in various biological processes involved in the development and 
progression of NAFLD. These processes include inflammation, 
immune cell migration, and inflammatory mediator secretion. By 
regulating chemotaxis, which is the movement of immune cells 
toward sites of inflammation, chemokines contribute to the overall 
pathophysiology of NAFLD (36, 37). Conversely, genetic depletion 
or pharmacological inhibition of CCL2 in mice has been shown to 
improve steatosis progression, alleviate hepatic inflammatory 
response, and reduce liver injury (38, 39). Another study has shown 
that the expression level of CCL2 in the liver positively correlates with 
the severity of fatty liver disease. Elevated CCL2 levels may promote 
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FIGURE 7

Nomogram construction and prediction accuracy evaluation. (A,C) Nomogram for diagnosing NAFLD with UC. (B,D) Calibration curves assessing the 
predictive accuracy of the nomograms. (E–H) ROC curves for candidate gene (CCL2) in the training (GSE89632 and GSE87466) and validation sets 
(GSE48452 and GSE92415). (I,J) Validation of key genes. CCL2 were significantly up-regulated in NAFLD (GSE48452) and UC (GSE92415). *p  <  0.05; 
**p  <  0.01.
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FIGURE 8 (Continued)

the migration and infiltration of monocytes, thereby exacerbating 
liver inflammation and fibrosis processes (40–42). Moreover, CCL2 
is crucial in recruiting macrophages during the inflammatory process 
(43). Zheng et al. improve the inflammatory status of the liver by 
suppressing CCL2 expression (44). Therefore, these findings suggest 
that the CCL2 gene may serve as a biomarker for NAFLD, offering 
new avenues for early screening and intervention. Similarly, in the 
study of the etiology and pathogenesis of UC, the role of the CCL2 

gene has attracted significant attention. Previous studies have shown 
that CCL2 expression levels are associated with various inflammatory 
diseases, including UC (45). CCL2 is a potent chemotactic cytokine 
that controls the chemotaxis and infiltration of monocytes/
macrophages in the gut (46). CCL2 enhances the expression and 
production of other inflammatory cytokines and the infiltration of 
inflammatory cells and macrophages (47). Previous data suggest that 
ulcerative colitis is improved by inhibiting the CCL2/NF-κB/IL-18 
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pathway, thereby preserving colon function (45). In addition, studies 
by Yamada et al. (48) have found that palmitic acid, a long-chain fatty 
acid produced by intestinal flora, can promote the increase of CCL2 
secretion, leading to a significant increase in the number of 
macrophages in the liver and aggravating high-fat diet-induced 
mouse steatosis. However, this change will be  reversed after the 
removal of intestinal flora. These results suggest that some metabolites 
of intestinal flora can affect the process of NAFLD through 
macrophages. Therefore, CCL2 may be an important gene in the 
comorbidities of NAFLD and UC, mainly promoting the occurrence 
of the comorbidities of NAFLD and UC by inducing inflammation 
on the physiological basis of enterohepatic axis.

There are immune cells in the liver that play a crucial role in 
developing NAFLD (49). On the other hand, UC is an autoimmune 
disease caused by an overactive immune system (50). To better 
understand how immune cell infiltration affects NAFLD with UC, 
we assessed immune infiltration using CIBERSORT. Previous studies 
have shown that dysregulation of M1/M2 macrophages can lead to 
chronic inflammation, cancer, and NAFLD (51). Increasing evidence 
suggests that γΔ T cells in the liver respond to liver-targeted injury and 
regulate the progression of liver disease (52). The dysfunction of CD4+ 
T cells has emerged as a significant pathological factor in the 
advancement of NAFLD and NASH. Both human and mouse NASH 
models have revealed peripheral and intrahepatic CD4+ T cell 
accumulation (53). Additionally, macrophages are essential effector 
cells of the innate immune system that contribute to intestinal mucosal 
homeostasis (54). Previous research has indicated potential therapeutic 
benefits from targeting macrophages in UC treatment (55). CD4+ T 
cells consist of various functionally diverse subsets such as Th1, Th2, 
Th17, and Treg cells. All these subsets have been implicated in initiating 
or propagating intestinal inflammation in UC patients (56).

The correlation between the six hub genes and immune cells 
revealed consistent expression of these genes with multiple 
immune cells. For instance, all six hub genes were overexpressed 
in NAFLD patients compared to HCs. Additionally, the expression 
of these genes was positively correlated with an increase in resting 
mast cells, which were found to be elevated in NAFLD patients 
compared to HCs. Based on this information, the high expression 
of these hub genes may contribute to the increase in multiple 
immune cells associated with NAFLD. Furthermore, these genes 
may play a role in shaping the characteristic immune 
microenvironment of NAFLD. Our research suggests that the 
CCL2 gene may be an essential core gene among these six identified 
genes. CCL2 is a chemokine that attracts inflammatory monocytes 
to stressed or injured tissues. Infiltrating inflammatory monocytes 
and upregulation of CCL2 have been strongly implicated in liver 
disease pathogenesis based on animal models (57, 58). Similarly, 
studies have shown that macrophages can secrete chemokines and 
mediate immune cell recruitment during the inflammatory cascade 
process (59). The FBXW7/EZH2/CCL2/CCL7 pathway has been 
shown to exacerbate colitis severity by recruiting CX3CR1 
proinflammatory MPhs (60).

In summary, in this study, we explored the potential mechanisms 
of comorbidities between NAFLD and UC based on bioinformatics 
analysis. The results show that inflammation plays a vital role in the 
co-pathogenesis of NAFLD and UC, primarily through inflammatory 
response, immune regulation, and other pathways, affecting both 
pathological processes. We  found that a critical diagnostic gene, 
CCL2, is abnormally expressed in both NAFLD and UC, suggesting 
that this molecule may be  a common pathogenic factor for both 
diseases. Through in-depth analysis of related genes and signaling 
pathways, we propose that the dual role of inflammatory factors such 

FIGURE 8

The 22 immune cells and their correlation with NAFLD and UC. (A,C,E) The distribution of 22 immune cells in NAFLD and Normal samples is depicted 
via the Scale diagram, the heatmap, and the Multiple sets of box diagram. (B,D,F) The distribution of 22 immune cells in samples with HC and UC is 
depicted by the Scale diagram, the heatmap, and the Multiple sets of box diagram. (G) Spearman correlation analysis of the 6 common core genes and 
22 immune cells in NAFLD. (H) Spearman correlation analysis of the 6 common core genes and 22 immune cells in UC. *p  <  0.05; **p  <  0.01.
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as CCL2  in NAFLD and UC may provide new targets for future 
diagnosis and treatment. However, there are some limitations. First, 
the study data came from an existing database, so the authenticity and 
completeness of the results depend on the data. Second, the results do 
not reflect all actual cellular network characteristics in living 
organisms, and our findings still need to be validated in vivo and in 
vitro to guide clinical practice better.

5 Conclusion

In this study, we have identified 34 key genes that are associated 
with the comorbidity between NAFLD and UC, which were mainly 
involved in the IL-17 signaling pathway. 10 hub genes (including IL1B, 
IL6, CXCL8 (IL8), CCL2, S100A12, IL1RN, S100A9, CCL3, CD44, and 
S100A8) may have a significant impact on the pathophysiological 
mechanisms of these two diseases. The machine learning analysis also 
revealed a single feature gene CCL2 that could potentially serve as a 
diagnostic biomarker for NAFLD and UC. This diagnostic marker not 
only affects immune cells, but also has the potential to become a 
therapeutic target when NAFLD coexists with UC.
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