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Candida auris has emerged as a global healthcare threat, displaying resistance

to important healthcare antifungal therapies. Infection prevention and control

protocols have become paramount in reducing transmission of C. auris in

healthcare, of which cleaning and disinfection plays an important role. Candida

albicans is used as a surrogate yeast for yeasticidal claims of disinfection

products, but reports have been made that sensitivity to disinfectants by C. auris

differs from its surrogate. In this review, we aimed to compile the information

reported for products used for skin and hard surface disinfection against

C. auris in its planktonic or biofilm form. A comparison was made with other

Candida species, and information were gathered from laboratory studies and

observations made in healthcare settings.
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1 Introduction

The first reported case of Candida auris was in 2009 when it was found in the external
ear canal of an inpatient from Tokyo Metropolitan Geriatric Hospital (1). However, there
is evidence that C. auris infections occurred as early as 1996 (2). Since then, it has been
reported globally (3–7) and has become a major threat for healthcare settings according to
the Centers for Disease Control and Prevention (CDC) (8), European Centre for Disease
Prevention and Control (ECDC) (9) and the World Health Organization (WHO) (10).
The WHO places C. auris together with C. albicans on the critical priority group for
healthcare (10).

The undetected spread of C. auris is thought to be due to misidentification using
conventional phenotypic methods, as it is fairly similar to other Candida species (2, 11,
12). However, major advances have been made in identifying C. auris using selective media
and molecular diagnostic tools (11, 13–17). The greatest threat that C. auris poses is that
it has shown to be resistant to important life-saving antifungal therapies in healthcare,
such as fluconazole, amphotericin B, and echinocandins (4, 18, 19). So far, five clades of
C. auris with a common ancestor have been identified containing antimicrobial resistance
mutations and have been linked with invasive infections (12).

The genetic differences observed between the clades suggests that each clade emerged
independently but simultaneously at different geographic locations (4, 20). Furthermore,
each clade has been found far from its point of origin in different continents (12, 20). Clade
I is generally associated with ear infections and is resistant to antifungal agents to a lesser
degree (12). However, Clade II, III, IV and V have all shown resistance to fluconazole, cross
resistance to amphotericin B and echinocandins, and some strains are pan-resistant (12).
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Pan-resistance indicates that it is not susceptible to any clinically
available antimicrobials. Therefore, the greatest threat that C. auris
pose is its resistance to antifungal therapies important in healthcare.

The best solution to control C. auris transmission is using
infection prevention and control methods, which include cleaning
and disinfection of environmental surfaces and patient care
equipment. In this review, the threat that C. auris pose to
healthcare, its mechanism of persisting on skin and surfaces, and
the current knowledge of cleaning and disinfection methods to
control its transmission are discussed.

2 The threat that C. auris poses in
healthcare facilities

When present on environmental surfaces, C. auris can survive
in both dry and moist areas for long durations and has shown to
survive up to 7 or 14 days (21, 22). When comparing survival,
C. auris has a greater tendency to survive on surfaces than
C. albicans but is similar to C. parapsilosis or C. glabrata (21).
It appears that Candida species are often present on hospital
environmental surfaces and have been found on floors, sinks and
high touch areas, which could all be reservoirs for transmission
(23). Since C. auris can be present on various objects for long
durations, healthcare staff and patients can become contaminated
after having contact with these surfaces (5). It is, therefore, essential
to reduce the presence of C. auris in healthcare environments as
the mortality rates of C. auris outbreaks in areas with critically ill
hospitalized patients can range from 30 to 72% (24).

3 Mechanisms that contribute to the
persistence of C. auris in healthcare
settings

Candida auris differs from other Candida species genetically,
but also shows differences in resilience and pathogenicity (4). Even
though C. auris is considered less virulent than C. albicans (25), it
has shown to undergo phenotypic transitions, and to form unique
multicellular aggregates (26–32). It can also tolerate high salinity
and temperatures up to 42◦C (22, 33, 34). The ability of C. auris to
form biofilms appear to be the main challenge that this yeast poses
to healthcare as it can persist on human skin and environmental
surfaces (21, 27, 35–37). It may resist removal efforts through
standard cleaning and disinfection practices where the cleaning
agent cannot disrupt or reach the biofilm.

The presence of C. auris on skin as biofilms is not unique
and has been associated with other Candida species (38). A study
conducted by Tharp et al. (39) suggested that C. auris is only
present or occurs on an infected person’s skin, but it was unclear
whether C. auris was causing a dysbiosis of the skin microbiome or
whether it was present as a result of the dysbiosis. The persistence
of C. auris on the skin of patients is a great concern as living
cells are continuously shed from the infected patient where it can
contaminate sensitive environments in healthcare (40, 41). Horton
et al. (36) compared the biofilm formation characteristics of C. auris
with C. albicans in a laboratory study using skin niche conditions,

including porcine skin. The observations made in this study
suggests that the advantage C. auris has compared to C. albicans
is its ability to survive high saline conditions and environmental
desiccation that might otherwise be challenging for C. albicans,
thereby enabling its persistence in hospital environments.

The biofilm structure formed by C. auris seems to be similar
to what is produced by other Candida species, which is rich in
mannan-glucan polysaccharides (42, 43). The biofilm consists of
multiple layers of accumulated yeast and the formed extracellular
matrix traps fluconazole thereby reducing its concentration to
a level where it is not efficacious anymore (42). However, this
observation is not uncommon and drug tolerance has been already
associated with the extracellular matrix of biofilms (44–46). The
biofilm formed by C. albicans, C. parapsilosis and C. glabrata has
all shown to negatively impact the outcome of patients (47–49).

Candida species, including C. auris, can be controlled with
the correct cleaning and disinfection practices to minimize the
spread of the environmental contaminants (23). Dry surface
biofilms of Staphylococcus aureus have shown to be resistant to
important disinfectants in healthcare, i.e., sodium hypochlorite
(50), and it might be similar for C. auris. For instance, recovery of
C. auris aggregative cells were observed two weeks post-treatment
with sodium hypochlorite (51). Using a three-dimensional biofilm
model, Kean et al. (52) observed that matured C. auris biofilms
can tolerate chlorhexidine and hydrogen peroxide treatment. The
research covering the impact of disinfectants on C. auris planktonic
cells and biofilms is limited, but what is known will be discussed in
the subsequent sections.

4 The efficacy of skin disinfectants
against C. auris

Infection prevention and control (IPC) protocols and screening
methods are considered the best solution to reduce transmission
(6), which will include skin cleaning and disinfection. For hand
hygiene, the CDC recommends, among other practices, washing
with soap and water and/or the use of alcohol-based hand sanitizers
prior and after the use of gloves (53, 54). A similar recommendation
is made by the Public Health England (PHE) and the Centre
for Opportunistic, Tropical and Hospital Infections (COTHI).
Currently, there are no recommended methods for decolonization
or removing C. auris from the skin of an infected person (53). In
the following sections the findings of skin cleaning and disinfection
will be summarized and discussed.

4.1 Chlorhexidine as skin disinfectant

Chlorhexidine is a biocide often used in products targeted for
skin disinfection and is known to be effective against Candida
species (53, 55). It’s a biocide known to target the microbial
cell membrane (56). Using a suspension test (EN 13624:2013),
Moore et al. (57) evaluated the efficacy of chlorhexidine against
C. auris. The authors selected two products, one containing 2% w/v
chlorhexidine with 70% (v/v) isopropyl alcohol (IPA), and the other
contained 4% v/v chlorhexidine only. The products were diluted by
50% to simulate the addition of water, and the contact times ranged
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from 30 s to 2 min (57). The outcome of the study showed that
the diluted product containing chlorhexidine with IPA had a better
performance after a 2 min contact time than the product containing
chlorhexidine alone. The chlorhexidine together with IPA could
reduce the counts of C. auris and C. albicans by ≥ 5-logs, but
chlorhexidine alone could only reduce the counts of C. auris by ≤ 1-
log even though the concentration was higher (57). Unlike C. auris,
C. albicans was more sensitive to chlorhexidine alone and the log
reduction ranged from 3.57-logs in clean condition to 3.36-logs in
dirty conditions. The poor performance of chlorhexidine against
C. auris, and the improvement observed when adding IPA, has been
confirmed by another study conducted on porcine skin (58).

Rutala et al. (59) also confirmed the poor performance of
chlorhexidine against C. auris and C. albicans when using 2%
or 4% with a disk-based quantitative method and could confirm
that C. albicans is more sensitive to chlorhexidine than C. auris.
A product containing 1% chlorhexidine together with 61% ethyl
alcohol was also tested (59), but it had a poor performance as only a
2-log reduction was observed for C. auris and a 1.9-log reduction
for C. albicans. The contact time used was 1 min (59), which
might be the cause for the lower performance. Taken together,
these findings show that chlorhexidine is minimally efficacious
against C. auris when used as the sole active ingredient, but
when combined with alcohol the yeasticidal performance might
substantially improve.

4.2 Alcohol-based skin disinfectants

To disinfect hands or skin to avoid the spread of C. auris,
alcohol-based products are recommended. Alcohol is thought to
target the microbial cell membrane, and essential protein, as its
mode of action (56). Rutala et al. (59) made use of a disk-based
quantitative carrier test with dirty conditions and used a contact
time of 1 min to understand the performance of alcohol-based
products against C. auris. The product containing 70% IPA was
efficacious against both C. auris and C. albicans as a 3.8- and 4.1-
log reduction was obtained, respectively. Similarly, 70% ethanol
provided a 4-log reduction for C. auris but only a 2.5-log reduction
was obtained for C. albicans. It seemed that ethanol was more
efficacious against C. auris than C. albicans (59). Using a pig
skin model, Fu et al. (60) assessed the efficacy of various alcohol-
base products against Candida species, including C. auris and
C. albicans. The authors observed that with a contact time of
1 min, alcohol-based products are sufficient to provide a 3-log
reduction. This was observed when testing ethanol (54 to 66%)
combined with n-propanol (9 to 11%), and when testing ethanol
(75%) alone (60). The authors interestingly observed that when
combining the alcohol with an additional product containing 0.1
to 0.2% p-chloroxylenol, the log reduction was similar but that the
contact time was reduced to between 15 and 30 seconds (60).

4.3 Other products evaluated for skin
disinfection

There are other products used for skin disinfection without
chlorhexidine or alcohol. Povidone-iodine was tested at a 10%

concentration (1% iodine) and was found to have a limited
yeasticidal performance against C. auris as only a 2.5-log reduction
was obtained (59). It also had a poor performance against
C. albicans as only a 2.3-log reduction was observed. The contact
time used was 1 min. These findings are in contrast with the
observation made by Abdolrasouli et al. (61), which reported that
10% povidone-iodine provided sufficient efficacy against C. auris
as an 8-fold reduction in growth was obtained when performing a
suspension test in a 96-well microtiter plate. Moore et al. (57) used
a standardized suspension test method (EN 13624:2013) and found
that 10% povidone-iodine, when used at a 2 min contact time,
could reduce C. auris and a clinically isolated C. albicans strain
by ≥ 4-logs in both clean and dirty conditions. C. albicans strain
ATCC 10231 typically used in EN methods, however, had only a
2.5-log reduction in clean condition and a 3-logs reduction in dirty
conditions. C. albicans was thus less sensitive to 10% povidone-
iodine (57). Iodine interacts with essential intracellular components
such as proteins and nucleic acids, which leads to cell death (56)

An antiseptic containing 3% hydrogen peroxide showed to have
a poor performance against C. auris as only a 1.4-log reduction
was obtained (59). Similarly, only a 1.8-log reduction was obtained
against C. albicans. Hydrogen peroxide is an oxidizing agent that
produce free radicals which attach essential cell components for
survival (56). Chloroxylenol was tested at a 1% concentration, and
it was shown to have a better performance than 3% hydrogen
peroxide. However, only a 2.8-log reduction was obtained against
C. auris and a 3.9-log reduction when tested against C. albicans at
a 1 min contact time (59). Chloroxylenol is a halophenol and its
mode of action is thought to be the cell membrane (56). The results
suggest that hydrogen peroxide or chloroxylenol might have a poor
performance against C. auris when used as a skin disinfectant, but
the information about the performance of these actives against
C. auris are limited and might differ when the contact time is
extended to more than 1 min.

5 Hard surface disinfectants tested
against C. auris

For hard surface disinfection, the CDC suggests the use
of Environmental Protection Agency (EPA)-registered products
approved for healthcare and the ECDC recommends European
Standards (EN)-registered products with antifungal claims (8, 9,
53, 62). The PHI suggests the use of 1,000 ppm hypochlorite
(53). The COTHI suggests 1,000 ppm chlorine-releasing agents,
and optionally hydrogen peroxide vapor (53). The WHO suggests
cleaning with soap and water followed by disinfection with 0.1%
bleach (1,000 ppm) (53). In the subsequent sections we compiled
the most recent information available about the performance of
hard surface disinfectants used in healthcare tested against C. auris.

5.1 Chlorine-based disinfectants

Chlorine-based disinfectants containing sodium hypochlorite
or sodium dichloroisocyanurate are commonly used in healthcare
settings to disinfect against methicillin-resistant Staphylococcus
aureus (MRSA) or carbapenemase-producing bacteria (53).
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Chlorine-based disinfectants typically causes oxidative damage to
the cell membrane, and essential intracellular components (63).
A study conducted during an outbreak at a United Kingdom
hospital reported that chlorine-based disinfectants were sufficient
at 1,000 ppm for daily routine disinfection of patient care areas and
equipment to prevent C. auris (53, 64), and has been recommended
by the WHO, PHI and COTHI. Moore et al. (57) utilized a
standardized suspension test (EN 13624:2013) and showed that
1,000 ppm chlorine is efficacious against both C. auris and
C. albicans as a ≥ 4-log reduction was obtained for both clean
and dirty conditions when the contact time was 5 min. Rutala
et al. (59) utilized a disk-based quantitative carrier test for two
chlorine-based disinfectant products. The product contained
6,700 ppm sodium hypochlorite and was diluted to 670 ppm when
tested against C. auris. This concentration showed to be sufficient
to reduce C. auris by 4.1-logs and C. albicans by 4-logs, thereby
confirming that a 1,000 ppm may be sufficient to target C. auris.
The yeasticidal performance of chlorine-based disinfectants against
C. auris has been confirmed in various studies, such as when using
the quantitative carrier disk test method (ASTM E2197-11) (65),
the EPA liquid disinfection test (EPA MLB SO MB-35-00) (66), a
quantitative carrier disk test method (ASTM E-2197-02) (67) in a
simulated room environment test (66) and using a microdilution
method (61).

C. auris is expected to be present on environmental surfaces
as biofilms. Therefore, it is essential to understand whether
disinfectants can penetrate the protective layers of the biofilms
and kill viable C. auris present. Limited information was available
about the performance of chlorine-based products against C. auris
biofilms, and the only study found was performed by Ledwoch et al.
(68). The study combined a wipe test for bacteria (ASTM E2967-
15) and a dry-biofilm method to assess the efficacy of chlorine-
based disinfectants against C. auris dry biofilms when loaded
onto wipes. Two products contained chlorine dioxide (300 ppm
and 1,000 ppm), five contained sodium dichloroisocyanurate
(1,000 ppm and 10,000 ppm), and two products contained sodium
hypochlorite (500 and 1,000 ppm). These products had the same
main active ingredient but differed in formulation composition.
The authors investigated whether the wipe loaded with the product
would reduce initial counts of the C. auris dry biofilm, whether the
cells are transferable through the wipe, and whether regrowth will
occur after cleaning (68).

The chlorine dioxide (1,000 ppm) product performed
poorly as only a 2.5-log reduction was observed, the product
transferred C. auris after cleaning, and regrowth post-wiping
was observed after 2 days (68). Only one out of the five sodium
dichloroisocyanurate products reduced the C. auris biofilm by ≥ 4-
log, showed low transferability. Regrowth of C. auris was observed
after 4 days. This product contained the co-formulants adipic
acid, sodium toluene sulfonate, and sodium-N-lauroyl sarcosinate,
in addition to the 1,000 ppm sodium dichloroisocyanurate. The
product containing 1,000 ppm sodium hypochlorite reduced the
C. auris by ≥ 7-logs and none of the C. auris cells picked up by
the wipe was transferred to a new surface. However, regrowth was
observed within 2 days. It appears that chlorine-based products
containing sodium dichloroisocyanurate or sodium hypochlorite at
1,000 ppm are the best performing biocidal actives against C. auris,
but its performance is dependent on the composition of the final
formulation (68).

5.2 Quat and Quat-alcohol-based
disinfectants

Quat is favored in many healthcare facilities due to the
fungicidal, bactericidal and virucidal activity of various quat-based
disinfectants (53). However, laboratory studies show that quat-
based disinfectants have a poor performance against C. auris, and it
has been implied to be the cause for an outbreak in an intensive
care unit (ICU) at the Oxford University Hospital in 2018 (69).
Quats are cationic surfactants that destabilizes the cell membrane,
and targe essential enzymes, leading to cell lysis and eventual cell
death (56, 63). The performance of quat-based products was tested
against C. auris using a disk-based quantitative carrier test with a
contact time of 1 min (59). One product contained a combination
of octyl decyl dimethyl ammonium chloride (ODDMAC; 6.51%);
dioctyl dimethyl ammonium chloride (DODMAC; 2.604%);
didecyl dimethyl ammonium chloride (DDDMAC; 3.906%) and
alkyl dimethyl benzyl ammonium chloride (ADMBAC; 8.68%).
The product was diluted to have a concentration of 0.08% total
quat in use. The authors observed only a 1.7-log reduction for
C. auris and 1.5-log for C. albicans. A quat-based product combined
with an alcohol, containing 0.1% quat with 58% ethanol in use,
reduced the C. auris counts by 3.8-log, and the C. albicans counts
by 4.1-log (59). These findings suggested that quat on its own
has a relatively poor performance against key yeasts, and that the
addition of alcohol to quat improves its performance. Other studies
support the poor performance of quat against C. auris when used
at about 0.1% quat, using a quantitative carrier test (EPA MLB
SOP MB-35-00) (70, 71), and ASTM E2197-11 (65), and when
used in a disinfectant wipe test (72). Even quat-based products that
had supported fungicidal claims against C. albicans failed against
C. auris (71), which highlights that even though a formulation has
fungicidal or yeasticidal claims against C. albicans, it might not be
similarly efficacious against C. auris. When the products were tested
at a 10 min contact time, the log reduction was still insufficient
(65, 71).

The co-active used together with quat does not necessarily
need to be an alcohol. For instance, Müller et al. (73)
used a suspension test (EN 13624) and a surface test with
mechanical action (EN 16615) to evaluate the efficacy against
C. auris and C. albicans of a quat-based product that was
combine with co-actives. The product tested contained 22%
ADBAC/BKC, 17% 2-phenoxyethanol, 0.9% amines N-C12-C14
(even numbered)- alkyltrimethylenedi-, reaction products with
chloroacetic acid. When diluted to 0.25%, the product contained
0.06% ADBAC/BKC, 0.04% phenoxylethanol and 0.003% amine.
The diluted product could reduce both yeasts by ≥ 4-logs when the
suspension test was used with a 2 min contact time, and when using
the surface test with a 1 min contact time (73).

When testing a quat-based product against C. auris dry biofilm,
Ledwoch et al. (68) observed that the product was able to reduce
the initial C. auris counts of the dry biofilm by 4-logs. The sufficient
yeasticidal performance observed against C. auris could be due to
mechanical removal when using the wipe or it could be due to
the higher concentration of quat used in the product. The product
contained benzalkonium chloride (BAC) and polyhexamethylene
biguanide (PHMB) at a total concentration of 5,000 ppm (0.5%)
quat. A low concentration of DDAC was also present. In this study,
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the quat-based product also prevented the transferal of about 80%
of the picked-up yeast to another surface and was able to prevent
regrowth for 2 days after treatment.

5.3 Hydrogen peroxide and peracetic
acid as disinfectants

Non-quat-based disinfectants used in healthcare could contain
hydrogen peroxide (HP) or peracetic acid with acetic acid (PAA).
Both actives are oxidizing agents that denatures proteins and
increase the permeability of the cell wall (56). Cadnum et al.
(65) used the quantitative carrier disk test method (ASTM E2197-
11) to evaluate the performance of peroxides against Candida
species. A product containing 1.4% hydrogen peroxide was tested
at a 1 min contact time and another containing 0.5% hydrogen
peroxide was tested at a 10 min contact time. A disinfectant
containing 12,000 ppm peracetic acid was also tested at a 3 min
contact time. All these products reduced C. albicans, C. glabrata
and C. auris by ≥ 5-logs. A similar observation was made by
Rutala et al. (59) when using a disk-based quantitative carrier test,
by Haq et al. (70) and Sexton et al. (71) using the quantitative
carrier test (EPA MLB SOP MB-35-00), by Voorn et al. (72)
using a wipe test, and by Cadnum et al. (67) when using
a quantitative carrier test. However, yeasticidal performance is
formulation dependent. For example, when testing an antiseptic
that contains 3% hydrogen peroxide in use, the product had
a poor performance against both C. auris and C. albicans
as less than 2-log reduction was obtained (59). However, a
disinfectant containing 1.4% hydrogen peroxide reduced both
yeasts by 4-logs. Both products were tested with a 1 min contact
time (59).

Kean et al. (74) tested the performance of 2,000 ppm peracetic
acid on various carrier materials and obtained a 4-logs reduction
of C. auris, C. glabrata and C. albicans after a contact time of
5 min. Notably, one out of the four C. auris strains tested was less
sensitive to peracetic acid and was only reduced by about 3-logs.
The carrier materials used were polyester polymer, stainless steel
and cellulose matrix. However, even though the yeast counts could
be reduced sufficiently, regrowth was observed after treating the
adhered C. auris on stainless steel or polyester. Regrowth was not
observed on the porous cellulose matrix (74).

Regrowth of C. auris after treatment with peracetic acid-based
products was also assessed against dry-biofilms by Ledwoch et al.
(68). Two products were tested containing 3,500 ppm peracetic
acid, which is higher than the previously mentioned study. The
authors reported a ≥ 7-logs reduction of the initial C. auris
counts when treating a dry biofilm. Regrowth of C. auris after
cleaning was only observed after 6 days. No yeast was transferred
from the wipe after cleaning, which indicates the active could
kill the yeast cells removed from the surface (68). These findings
suggest that peracetic acid used at the reported concentration is
efficacious against C. auris, it could eliminate dry biofilms and
prevent regrowth shortly after cleaning.

Hydrogen peroxide was also evaluated as a vapor and was used
at 8 g peroxide per cubic meter room (61). The authors tested
the vapor on desiccated C. auris cells in a 96-well microtiter plate

and obtained no viable cells after the treatment time. Hydrogen
peroxide vapor was also combined with a chlorine-based cleaner
(1,000 ppm) as part of a regular disinfection regime, and it was
observed to aid the controlling of C. auris during an outbreak in
a UK-based hospital (64). These findings suggest that HP or PAA-
based products might be an alternative to quat-based disinfectants.

5.4 Other products tested as hard surface
disinfectants

There are other biocidal products commercially available
as hard surfaces disinfectants, but information about their
performance against C. auris is limited. An alcohol-based product
containing ethanol at 12% with 17.5% propan-1-ol was tested using
a suspension test (EN 13624) and a surface test with mechanical
action (EN 16615) (73). C. auris counts could be reduced by
≥ 4-logs using both test methods (73). Glutaraldehyde was tested
at 2.4% using a quantitative carrier test method (59). A contact
time of 1 min was used and the product could reduce both
C. auris and C. albicans by 4.1-logs. Glutaraldehyde targets the
microbial cell envelope and cross-links essential macromolecules
(56). Ortho-phthalaldehyde was used at 0.55% and gave a 2.3-log
reduction when tested against C. auris and 3.8-log reduction against
C. albicans. A diluted product containing 0.07% o-phenylphenol
with 0.06% p-tertiary amylphenol reduced C. auris by 4.1-logs and
C. albicans by 3.6-logs when a 1 min contact time was used (59).
The results obtained after treatment with the latter two products
highlighted that there could be a difference in susceptibility
between the two Candida species.

5.5 Ultraviolet light (UV-C) as a
non-chemical hard surface disinfection
method

No-touch disinfection methods, such as UV-C, are considered
beneficial for treating hospital surfaces after manual cleaning
and/or disinfection has been employed as some areas might have
been missed or cleaned improperly. UV-C is known to cause
damage to nucleic acids in the microbial cell (75, 76). Cadnum
et al. (77) tested the impact of UV-C of healthcare relevant Candida
species in comparison with MRSA and Clostridium difficile. The
authors found that at 1.5 meters, MRSA was more susceptible to
UV-C than C. auris, C. albicans and C. glabrata and C. difficile when
exposed for 10 min. C. auris was the least sensitive Candida specie
tested. C. auris had less than a 2-log reduction, and C. albicans
and C. glabrata had less than a 3-log reduction after a 10 min
exposure. However, after 20 min a more than 4-log reduction was
observed for all the Candida species tested. When an exposure time
of 30 min was used, the reduction went higher than 5-logs (77).
This suggests that UV-C treatment is effective against Candida, but
the exposure time is longer than what is typically used for bacteria.
In contrast with the observations made by Cadnum et al. (77), Fu
et al. (60) could obtain ≥ 3-logs reduction for various Candida
species, including C. auris and C. albicans, when exposed at 1 meter
for 10 min and 2.5 meter for 1 hr, which further improved when
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treated for a longer period (60). The C. auris isolates used in the
study performed by Fu et al. (60) were clinical isolates from patients
located in India, and Cadnum et al. (77) used clinical isolates
from Germany and an isolate that showed antifungal sensitivity.
The difference in observations when testing UV-C by the two
separate studies could be due to the fact that different clades were
being used as C. auris test subjects and/or the differences in UV-
C doses delivered. Previous studies have reported differences in
sensitivity to disinfection strategies between strains in the same
clade, and between different clades (78–80), and an association
between a reduced sensitivity and the aggregating phenotype has
been drawn (78, 80). Overall, various studies confirmed the efficacy
of UV-C against C. auris, but its performance depends on the
dose delivered (i.e., treatment distance and exposure time) (11, 53,
81–83). The data obtained by Chatterjee et al. (78), was the only
study reporting a poor performance against C. auris as less than
1-log reduction was obtained after a 30 min exposure time for all
the clades tested.

6 Conclusion

Standardized biocidal efficacy methods were established to
ensure that claims made by manufacturers regarding the product’s
antimicrobial efficacy are reliable, reproducible and scientifically
valid. These laboratory methods aim to represent “real-world”
scenarios but are actually controlled conditions. “Real-world”
scenarios are often complex that cannot be fully captured by
standardized methods or other laboratory tests, such as whether
the manufacturer’s guidelines were being followed. Therefore, these
tests should be interpreted in the context of their limitations. In
this review, we observed various studies showing the antimicrobial
efficacy of disinfectant products against C. auris, amongst other
Candida species, in laboratory settings. Limited information about
the performance of these products is known in the “real-world.”

Laboratory studies suggest that quat-based products used
for hard surface disinfection have limited performance against
Candida. However, combining quat with an additional biocidal
compound appears to be sufficient to improve its performance.
A similar observation was made for chlorhexidine typically used
for skin disinfection. Therefore, the use of quat-based products or
chlorhexidine-based products should be used with the awareness
that its performance depends on the formulation composition, the
biocide concentration and contact time used. This point could
be made of all disinfection products, irrespective of the main
biocidal active present.

From studies performed on both skin and hard-surface
disinfectants, it was clear that there are differences in sensitivity
between C. auris and C. albicans. This difference in sensitivity was
not atypical compared to other Candida species, such as C. glabrata
or C. parapsilosis. Disinfectants with fungicidal or yeasticidal claims
against C. albicans also showed to not be equally efficacious against
C. auris, and differences in sensitivity between C. auris clades or
strains were observed. These findings suggest that biocidal products
should be approved for C. auris claims in addition to C. albicans
when used in a healthcare setting. When testing the efficacy of a
disinfectant product against C. auris, the clade or strain selection as
a test subject should also be considered.

The unique aggregating phenotype of C. auris was
associated with a lower sensitivity to disinfectants compared
to other Candida species, but further research is required to
understand the role that aggregation plays in the persistence
or reduced sensitivity of C. auris. Various studies discuss
the importance of biofilm formation in the persistence and
transmission of Candida, including C. auris, in healthcare
but only one study performed by Ledwoch et al. (68) tested
various disinfectants against C. auris dry biofilms. Variations in
efficacy between formulations with the same concentration of
biocidal active ingredient was observed, but most importantly
some products were unable to prevent transferring the yeast
from the wipe after cleaning. Regrowth of C. auris after a few
days of cleaning was observed and it differed between the
products tested. The latter two observations are important as
it might be contributing to the persistence and transmission of
C. auris in healthcare.

In conclusion, resistance to antifungal drugs does not mean
C. auris cannot be controlled by using cleaning and disinfection
products. The findings reviewed here confirmed that efficacy still
remained dependent on the composition of the formulations
and not on the single biocide active present in the product.
A difference in sensitivity was observed between C. auris and
C. albicans, and it might benefit healthcare facilities to have a
combination of both C. auris and C. albicans claims for relevant
disinfection products.
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