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Purpose: Early and rapid diagnosis of mild cognitive impairment (MCI) has 
important clinical value in improving the prognosis of Alzheimer’s disease 
(AD). The hippocampus and parahippocampal gyrus play crucial roles in the 
occurrence of cognitive function decline. In this study, deep learning and 
radiomics techniques were used to automatically detect MCI from healthy 
controls (HCs).

Method: This study included 115 MCI patients and 133 normal individuals 
with 3D-T1 weighted MR structural images from the ADNI database. The 
identification and segmentation of the hippocampus and parahippocampal 
gyrus were automatically performed with a VB-net, and radiomics features 
were extracted. Relief, Minimum Redundancy Maximum Correlation, Recursive 
Feature Elimination and the minimum absolute shrinkage and selection operator 
(LASSO) were used to reduce the dimensionality and select the optimal features. 
Five independent machine learning classifiers including Support Vector Machine 
(SVM), Random forest (RF), Logistic Regression (LR), Bagging Decision Tree 
(BDT), and Gaussian Process (GP) were trained on the training set, and validated 
on the testing set to detect the MCI. The Delong test was used to assess the 
performance of different models.

Result: Our VB-net could automatically identify and segment the bilateral 
hippocampus and parahippocampal gyrus. After four steps of feature 
dimensionality reduction, the GP models based on combined features (11 
features from the hippocampus, and 4 features from the parahippocampal 
gyrus) showed the best performance for the MCI and normal control subject 
discrimination. The AUC of the training set and test set were 0.954 (95% CI: 
0.929–0.979) and 0.866 (95% CI: 0.757–0.976), respectively. Decision curve 
analysis showed that the clinical benefit of the line graph model was high.

Conclusion: The GP classifier based on 15 radiomics features of bilateral 
hippocampal and parahippocampal gyrus could detect MCI from normal 
controls with high accuracy based on conventional MR images. Our fully 
automatic model could rapidly process the MRI data and give results in 1  minute, 
which provided important clinical value in assisted diagnosis.
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Introduction

Alzheimer’s disease (AD) is an irreversible chronic 
neurodegenerative brain disease that poses a serious threat to human 
health. The main clinical manifestations include memory impairment, 
aphasia, loss of use and recognition, impairment of visual and spatial 
skills, executive dysfunction, and personality and behavioral changes 
(1). The occurrence and development of AD is a continuous process, 
and mild cognitive impairment (MCI) is considered as the preclinical 
stage of AD (2, 3). Early diagnosis and timely treatment of MCI can 
delay the disease progression and have important clinical value to 
improve the prognosis (2–4).

At present, the diagnosis of MCI still relies on subjective clinical 
symptoms. Objective examination methods are urgently needed in 
clinical practice. FDG-PET and Amyloid-PET are expensive and 
need to be exposed to radiation, which limits their usefulness (5). As 
a medical imaging technique, MRI has the advantages of 
non-invasive, non-radiation exposure, and high-resolution 
capabilities, making it widely used in the diagnosis and staging of 
neurological diseases. As an important part of emotion regulation, 
the hippocampus and parahippocampal gyrus play key roles in 
cognitive function, especially emotional memory (6, 7). Recent 
studies have reported that the morphology and network connectivity 
changes of the hippocampus and parahippocampal gyrus were 
important indicators of MCI and AD (8–11). However, these studies 
mainly focused on macroscopic markers, but overlooked the small 
structural indicators. Lambin et  al. proposed radiomics in 2012, 
which could help diagnose and differentiate diseases by quantifying 
the subtle information in medical images that were difficult to assess 
with the naked eye (12). Radiomics has shown important application 
value in many neurology diseases, such as PD, AD, epilepsy, and 
brain tumors (13–17). Previously, a radiomics study by Zhang et al. 
suggested that 3D textures of the hippocampus and entorhinal cortex 
might be a diagnostic biomarker for AD (18). Luk et al. used the 
hippocampus texture features of MRI to predict the conversion of 
mild cognitive impairment to AD with an accuracy of 76.2% (19). 
However, most of these literatures used manual methods to segment 
the brain region and extract relevant parameters, which were time-
consuming, taking approximately 4 h to process a patient. These 
shortcomings limited their clinical use greatly. In this study, 
we  developed a CNN-based artificial intelligence model for the 
automatic segmentation and radiomics features extraction of bilateral 
hippocampus and parahippocampal gyrus, and established 
diagnostic models to help distinguish between MCI and HC in a 
short time.

Materials and methods

Patient information

All data in this study were collected from the Alzheimer’s 
disease Neuroimaging Initiative (ADNI) database.1 This study was 
approved by the ethics standards committee of our institution. 

1 http://adni.loni.usc.edu

Totally 248 subjects with 3D-T1 weighted MR structural images, 
including 115 MCI patients and 133 normal individuals were 
included. According to the ADNI protocol, the diagnostic criteria 
for MCI should meet: (a) Cognitive problems reported by 
participants or those around them; (b) The patient showed 
impairment in the subtest logical memory-II on the Wechsler 
Memory Scale R; (c) Mini-Mental State Examination (MMSE) 
score ≥ 24. Clinical information was obtained for all participants, 
including age, sex, education, and MMSE score (Table 1).

Image acquisition and preprocessing

For all participants, 3D-T1-MPRAGE or equivalent protocol 
with slimly different resolutions was used. ADNI website offered 
all of the detailed imaging parameters.2 For scanner 1 (Siemens 
Medical Solutions, 3.0 T), the scanning parameters were listed 
below: repetition time (TR) = 2300.0, echo time (TE) = 3.0, 
matrix = 240 × 256 × 176. For scanner 2 (General Electric 
Healthcare, 3.0 T), the scanning parameters were: TR = 7.7–7.0, 
TE = 3.1–2.8, matrix = 256 × 256 × 196. For scanner 3 (Philips 
Medical Systems, 3.0 T), the MR imaging data were acquired with 
the following parameters: TR = 6.8, TE = 3.1, matrix = 256 × 256 × 
170. The layer thickness of the three different scanners was 1.0 or 
1.2 mm, and the layer spacing was 0.

The hippocampus and parahippocampal 
gyrus segmentation

The hippocampus and parahippocampal gyrus segmentation 
module was implemented using a deep learning algorithm based on a 
3D VB-NET network (20). The data preprocessing module performed 
a series of operations, including rotation, resampling, resizing, skull 
stripping, image non-uniform correction, histogram matching, and 
gray-scale normalization on the MRI images used for training and 
testing. All images were standardized to the size of 
256*256*256*1 mm3 in the standard Cartesian LPI coordinate system, 
and the gray-scale range was within the interval (−1, 1). The model 
was constructed based on 1,800 subjects and evaluation showed an 
averaged 0.92 Dice overlap with ground truth. The segmentation 
process took less than 1 minute for each patient.

2 http://adni.loni.usc.edu/methods/documents/

TABLE 1 The demographic data of MCI and HC groups.

MCI HC t/Z/F p-
value

Sample size 115 133 - -

Gender, female (%) 50 (43.48) 80 (60.15) 6.873 0.009

Age (years) 72.43±7.88 69.13±7.25 −3.441 0.001

Education (years) 16.55±2.36 16.68±2.12 0.480 0.632

MMSE [M (Q1, Q3)] 27.75 (27, 29) 29.03 (29, 30) −5.314 <0.001

MMSE, Mini-Mental State Examination.
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Radiomics features extraction

Totally 2,264 radiomics features were automatically extracted 
from the bilateral hippocampus or parahippocampal gyrus of each 
patient. The radiomics features included four categories of first-
order features, shape features, texture features, and wavelet-based 
features (21). The first-order statistics and shape features could 
reflect the shape and size of the brain region. Texture features 
included Gray Level Co-occurrence Matrix (GLCM) features, Gray 
Level Run Length Matrix (GLRLM) features, Gray Level Size Zone 
Matrix (GLSZM) features, Neighboring Gray Tone Difference 
Matrix (NGTDM) features, and Gray Level Dependence Matrix 
(GLDM) features. The high-level features were obtained through 
24 filters (including Box Mean, additive Gaussian Noise, binomial 
blur, curvature flow, Box-Sigma, normalization, Laplace 
Sharpening, discrete Gaussian, mean, speck noise, recursive 
Gaussian, Shot Noise and LoG with sigma values of 0.5, 1, 1.5 and 
2), as well as wavelet transformations (LLL, LLH, LHL, LHH, HLL, 
HLH, HHL, and HHH).

Radiomics features selection, models 
establishment and validation

All patients were randomly divided into a training group and 
a testing group in an 8:2 ratio. Four feature selection methods, 
namely Relief, Minimum Redundancy Maximum Correlation, 
Recursive Feature Elimination, and LASSO were used to gradually 
select the optimal radiomics features. Then, five independent 
machine learning classifiers, including Support Vector Machine 
(SVM), Random forest (RF), Logistic Regression (LR), Bagging 
Decision Tree (BDT) and Gaussian Process (GP) algorithm were 
trained on the training set, and validated on the testing set in the 
form of 10 fold cross-validation. The flow chart of this study was 
shown in Figure 1.

Statistics analysis

Statistical analysis was conducted using SPSS software 
(version 22.0, IBM). Quantitative data was tested for normality 
using the Kolmogorov–Smirnov method. Continuous variables 
with normal distribution were expressed as mean standard 
deviation and compared using independent sample t-tests. 
Continuous variables without normal distribution were expressed 
as median and compared using the Mann–Whitney U test. 
Classified variables were expressed in frequency (percentage) and 
compared using the chi-square test or Fisher’s exact test. The 
statistical significance was considered to be p < 0.05. The model 
performance was evaluated using the receiver operating 
characteristics (ROC) curve. The area under the curve (AUC), 
sensitivity, specificity, accuracy, as well as F1 score were calculated. 
The calibration curve was used to evaluate the calibration of the 
model, and DCA was used to evaluate the clinical applicability of 
the model.

Results

Totally 115 MCI patients and 133 healthy controls were included 
in this study. There was no significant difference in educational level 
between the MCI and healthy control groups.

In the training set, 200 features were selected from 4,528 
radiomic features of bilateral hippocampus by features 
dimensionality reduction of the Relief, Minimum Redundancy 
Maximum Correlation and Recursive Feature Elimination 
methods. Then 13 optimal features were obtained using the 
LASSO method. According to the same method, 12 optimal 
features were obtained from the bilateral parahippocampal gyrus. 
300 features were selected from radiomic features of both the 
bilateral hippocampus and parahippocampal gyrus by Relief, 
Minimum Redundancy Maximum Correlation and Recursive 

FIGURE 1

The flow chart of segmentation and models construction.
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Feature Elimination methods, and then 15 optimal features were 
obtained as combined features using the LASSO method 
(Figure 2).

Fifteen models were established based on the optimal features 
of the hippocampus, parahippocampal gyrus and combined 
features. ROC curves of GP, LR, SVM, BDT and RF models are 
shown in Figure 3. The DeLong test showed that GP models based 
on combined features (11 features from the hippocampus, and 4 
features from parahippocampal gyrus) showed the best 
performance. The AUC of the training set and test set were 0.954 
(95% CI: 0.929–0.979) and 0.866 (95% CI: 0.757–0.976), 
respectively. The sensitivity, specificity, and accuracy of the training 
set and test set were 0.848, 0.896, 0.874, and 0.870, 0.852, and 
0.860, respectively (Table 2). The calibration curve showed a good 
agreement between the actual and predicted probabilities of the 
sample (Figure 4). Decision curve analysis showed that the GP 
model had the highest clinical net benefit (Figure 5).

Discussion

With the aging of the population, the incidence of AD is increasing 
year by year. It had been proven that AD could be prevented, and the 
key lied in early detection of mild cognitive impairment (22–24). 
Therefore, developing a fast and accurate method to distinguish MCI 
and HC had become an important focus in clinical practice. Previous 
studies had reported that the morphological changes of hippocampal 
regions were closely related to the occurrence of MCI (25, 26). In this 
study, an automatic segmentation framework was established on 
3D-T1 (MPRAGE) sequence images based on a 3D VB-NET deep 
learning model. The bilateral hippocampus and parahippocampal 
gyrus were automatically segmented and a large number of radiomic 
features were automatically extracted. We  found that among the 
classifiers of GP, LR, SVM, BDT, and RF algorithms, the GP classifier 
had the highest classification performance, with an AUC of 0.954 in 
the training set and 0.866 in the test set. Our results showed that the 

FIGURE 2

15 optimal radiomics features were obtained as the optimal combined features using the LASSO method.
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application of artificial intelligence technology to analyze raw 
T1-weighted MRI images could accurately detect MCI from normal 
controls. This was a very objective method that did not rely on the 
patient’s personal medical history or the doctor’s clinical experience. 
Previously, Ferrarini et al. had used markers based on the shape of the 
hippocampus to distinguish between AD and MCI with an accuracy 
of 80% (27). A meta-analysis of the value of hippocampal volume in 
the diagnosis of MCI showed a sensitivity and specificity of 60 and 
75%, respectively (28). Beheshti et  al. used a voxel-based 
morphometric method to construct a structural connection network 
and a support vector machine (SVM) model to achieve a 70.38% 
accuracy for MCI and normal control discrimination (29). Feng et al. 

(30) developed a logistic regression machine learning model to 
identify MCI from normal control with an accuracy of 0.79 and 0.76 
using radiomics features of the hippocampus. In these previous 
studies, the accuracies were low and many software such as VBM, 
SPM, Freesufer, 3DSlicer or Python were used to achieve manual brain 
region segmentation and features extraction, which greatly reduced 
the work efficiency. Compared to them, our method could achieve 
fully automated brain segmentation, feature extraction, and diagnostic 
modeling establishment. Our results were more accurate and the 
results could be obtained in several minutes. It had the characteristics 
of objectivity, high speed, low cost, and high accuracy, making it more 
suitable for clinical application and promotion.

FIGURE 3

The models performance of GP, LR, SVM, BDT, and RF classifiers in the discrimination between MCI and normal controls.

TABLE 2 Performance of GP, BDT, SVM, RF, and LR models on training set and testing set.

AUC Sensitivity Specificity Accuracy

Models Training set Testing set Training set Testing set Training set Testing set Training set Testing set

Hippocampus

GP 0.912 (0.873–0.951) 0.839 (0.718–0.960) 0.761 0.783 0.849 0.889 0.808 0.840

BDT 0.987 (0.974–0.999) 0.855 (0.749–0.961) 0.946 0.739 0.962 0.815 0.955 0.780

SVM 0.888 (0.843–0.933) 0.810 (0.674–0.946) 0.793 0.739 0.821 0.815 0.808 0.780

RF 0.873 (0.825–0.921) 0.815 (0.692–0.938) 0.522 0.565 0.925 0.926 0.737 0.760

LR 0.863 (0.813–0.913) 0.794 (0.655–0.933) 0.750 0.826 0.821 0.778 0.788 0.800

Parahippocampal 

gyrus

GP 0.938 (0.907–0.968) 0.826 (0.709–0.943) 0.848 0.739 0.877 0.778 0.864 0.760

BDT 0.968 (0.946–0.990) 0.736 (0.592–0.880) 0.913 0.739 0.877 0.630 0.894 0.680

SVM 0.845 (0.790–0.900) 0.784 (0.650–0.918) 0.772 0.696 0.811 0.852 0.793 0.780

RF 0.902 (0.861–0.944) 0.731 (0.586–0.876) 0.696 0.522 0.906 0.815 0.808 0.680

LR 0.802 (0.741–0.862) 0.684 (0.528–0.840) 0.685 0.652 0.736 0.667 0.712 0.660

Combined 

features

GP 0.954 (0.929–0.979) 0.866 (0.757–0.976) 0.848 0.870 0.896 0.852 0.874 0.860

BDT 0.989 (0.979–0.999) 0.836 (0.719–0.952) 0.913 0.739 0.962 0.815 0.939 0.780

SVM 0.911 (0.870–0.952) 0.850 (0.737–0.964) 0.826 0.783 0.868 0.852 0.848 0.820

RF 0.925 (0.889–0.961) 0.833 (0.717–0.948) 0.750 0.652 0.953 0.852 0.859 0.760

LR 0.872 (0.823–0.922) 0.853 (0.740–0.967) 0.772 0.826 0.830 0.778 0.803 0.800

GP, Gaussian Process; BDT, Bagging Decision Tree; SVM, Support Vector Machine; RF, Random forest; LR, Logistic Regression.
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FIGURE 4

Calibration curves for GP, LR, SVM, BDT, and RF models.

FIGURE 5

Clinical decision curves of GP, LR, SVM, BDT, and RF models.

Radiomics features contain much microstructure information that 
reflects the underlying early biomarkers of pathophysiology. In this 
study, the optimal model contained 15 radiomics features, including 
11 features from the hippocampus and 4 features from the 
parahippocampal gyrus. The 11 features from the hippocampus 
included 4 first-order features, 3 GLSZM features, 2 GLRLM features, 
and 2 GLCM features. The four radiomic features of the 
parahippocampal gyrus included 2 first-order features, 1 GLCM 
features and 1 GLRLM features. The hippocampus is located between 
the thalamus and the medial temporal lobe of the brain and is part of 
the limbic system. It is mainly responsible for the storage, conversion, 
and orientation functions of short-term memory (31). The 
hippocampus is one of the earliest brain regions affected by 
Alzheimer’s disease. As the disease progresses, hippocampal damage 
gradually worsens, which can help determine the severity of the 
disease, monitor the progress of the disease, or evaluate the 
effectiveness of interventions such as medication, cognitive therapy, 
and healthy lifestyles (32). The parahippocampal gyrus is an important 
structure that assists the hippocampus in its function (33). The 

damage of them can cause abnormalities in emotion, cognition and 
behavior. The first-order features include mean absolute deviation, 
kurtosis, energy and minimum, which mainly reflect the basic 
statistical information of the image from various angles. It could 
measure the asymmetry and flatness of the morphological layout of 
the brain regions. Previously, Feng et  al. had found hippocampal 
neuroanatomical abnormalities of size, shape, gray value distribution 
and spatial heterogeneity in MCI subjects (30). GLSZM, GLRLM, and 
GLCM belong to texture features. They are based on different grayscale 
matrices to evaluate the spatial distribution of pixel intensity. These 
features have been proven to be useful in studying neuropathological 
heterogeneity. When pathological changes occur in the internal 
structure of the brain, its smoothness, roughness, and heterogeneity 
can be reflected through GLSZM, GLRLM, and GLCM features. The 
texture features of hippocampal microstructure have been proven to 
reflect cognitive function in direct and indirect ways (9).

Our study had several limitations. Firstly, this was a retrospective 
cross-sectional study, which did not track the dynamic process of the 
radiomic features. A prospective longitudinal follow-up study in the 
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future is needed. Secondly, the sample size of MCI patients was 
relatively small, and internal cross-validation was adopted; therefore, 
the generalization of the model needed to be further verified by a 
larger sample and external validation. Finally, in order to achieve rapid 
and fully automated diagnosis, this study only considered imaging 
information. Adding more clinical information and biological 
indicators could further increase accuracy.

Conclusion

The GP classifier based on 15 radiomics features of bilateral 
hippocampal and parahippocampal gyrus could detect MCI based on 
conventional MR images with high accuracy. Our fully automatic 
model could rapidly process the MRI data and distinguish MCI and 
HCs in 1 minute. Our method was fast, simple, and accurate, which 
provided important clinical value in assisted diagnosis.
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