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Introduction:Detection and counting of Centroblast cells (CB) in hematoxylin &

eosin (H&E) stained whole slide image (WSI) is an important workflow in grading

Lymphoma. Each high power field (HPF) patch of a WSI is inspected for the

number of CB cells and compared with the World Health Organization (WHO)

guideline that organizes lymphoma into 3 grades. Spotting and counting CBs

is time-consuming and labor intensive. Moreover, there is often disagreement

between di�erent readers, and even a single reader may not be able to perform

consistently due to many factors.

Method: We propose an artificial intelligence system that can scan patches

from a WSI and detect CBs automatically. The AI system works on the principle

of object detection, where the CB is the single class of object of interest. We

trained the AI model on 1,669 example instances of CBs that originate from WSI

of 5 di�erent patients. The data was split 80%/20% for training and validation

respectively.

Result: The best performance was from YOLOv5x6 model that used the

preprocessed CB dataset achieved precision of 0.808, recall of 0.776, mAP at

0.5 IoU of 0.800 and overall mAP of 0.647.

Discussion: The results show that centroblast cells can be detected in WSI with

relatively high precision and recall.

KEYWORDS

H&E, whole slide image, object detection, centroblast, artificial intelligence

1 Introduction and background

Follicular lymphoma (FL) is the second most common lymphoid malignancy

both in Western and Asian countries. It accounts for about 5–35% of non-Hodgkin

lymphoma (1–3). The majority of FL harbors t(14;18), resulting in overexpression of

the BCL-2 protein. In general, patients with FL are present with lymphadenopathy and

infrequent B-symptoms. A combination of clinical and laboratory findings, as well as the

histopathological grade of the disease, can help predict the course of the disease. Some

patients may have a relatively indolent course or a slow progression and can live for many

years without any treatment, while others may have a more aggressive course and a shorter

survival time without timely and properly treated. The diagnosis of FL is usually established

by a histopathological examination together with immunohistochemical studies.
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The histological grade is determined by the number of

the enlarged B cell with multiple eccentric nucleoli and high

proliferative capacity in the germinal center of secondary lymphoid

follicle known as centroblasts (CBs) presented in a tissue sample.

At present, the World Health Organization (WHO) classification

system is the standard for FL grading. The WHO classification

system is used to grade FL into three categories: grade I (0–5 CBs

per high-power field), grade II (6–15 CBs per high-power field),

and grade III (>15 CBs per high-power field). Grade III is further

divided into grades IIIa and IIIb. In grade IIIa, a few centrocytes

are found mixed with the CBs; however, only pure populations of

CBs without admixed centrocytes are seen in grade IIIb. Grades

I and II are considered low risk and may not require treatment

unless the patient has problematic symptoms, while grades IIIa and

IIIb are considered high risk and often require chemotherapy (2).

Currently, the process of grading FL involves manually counting

the CBs in tissue samples using a microscope in conventional

microscopic high-power fields (HPFs) stained with hematoxylin

and eosin (H&E). Traditionally, the average CB count from 10

HPFs is used for grading.

As the number of CBs affects the grade of the disease,

which is considered one of the prognostic factors, evaluation and

CB counting are essential in the diagnostic process. However,

the current routine practice is time-consuming and prone to

subjectivity and variability. Tumor heterogeneity may produce

a selection bias during the process. This results in high inter-

and intra-observer variability and is vulnerable to sampling bias.

Indeed, inter- and intra-pathologist variability has been reported,

which normally ranges from 61 to 73% (4). As the CB counting

process is subjective, not every pathologist will be able to provide

reproducible results. All these issues directly affect the clinical

management of patients. Hence, improving the reliability and

reproducibility of histological grading is of great importance.

Hence, the enumeration of CBs is important to determine

the proper treatment. Based on the manual reading of H&E and

immunohistochemical staining slides by pathologists, the process

takes time and some mistakes can occur. Moreover, CBs are often

confused by similar-looking cells within the tissue, therefore a

system to help their classification is necessary.

In this study, we focus on the detection of CBs in HPF patches

to count the number of CB cells automatically. The region(s) of

a WSI from which the patches are extracted from were chosen by

manual inspection at low magnification.

2 Materials and methods

2.1 H&E staining of FL and patients
information

This study included 88 cases of FL admitted for treatment at

the Faculty of Medicine Siriraj Hospital between 2016 and 2020.

The protocols for collecting and using tissue were approved by the

Siriraj Institutional Review Board (SIRB) (COA no. Si973/2020).

Detailed information about the patient group is shown in

Table 1. Formalin-fixed paraffin-embedded (FFPE) tissue samples

were prepared for automated H&E staining at the Department

of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol

TABLE 1 Demographic data of FL patients and clinicopathological

correlation.

Characteristics n (%)

Age (year) (n = 88)

≥60 56 (64.0)

<60 32 (36.0)

Sex (n = 88)

Female 44 (50.0)

Male 44 (50.0)

Grading (n = 87)

1 49 (56.3)

2 21 (24.2)

3 2 (2.3)

3a 12 (13.8)

3b 3 (3.4)

Hemoglobin level (n = 86)

<120 g/L 86 (100.0)

≥120 g/L 0 (0.0)

No. of nodal areas involved (n = 84)

≤4 35 (41.7)

>4 49 (58.3)

Serum lactate dehydrogenase (n = 84)

≤280 U/L 33 (39.3)

>280 U/L 51 (60.7)

University, and scanned at a resolution of 0.12 µm/pixel using a

3DHistech Panoramic 1,000 microscope with a 40x objective lens.

The resulting images were saved inmrxs format for further analysis.

2.2 Machine learning background and
related works

In early works that focused on applying image processing and

machine learning to CBs, it was considered an image classification

problem—deciding whether a cell is a CB or not, given a single-cell

image that had already been cropped, manually or otherwise. Some

studies also addressed the segmentation of individual cells from

HPF images, typically by thresholding and image morphological

operations. In (5), 41 and 53 images of CBs and non-CBs (each

showing a single cell) were obtained from 11 HPF images. Features

based on pixel homogeneity as well as histogram statistical features

were extracted from each image. Principal component analysis

(PCA) was used to reduce the size of the feature space, and the

k-nearest neighbor classifier was used. In (6), the authors address

segmentation by Otsu thresholding followed by morphological

image operations. The classification features were obtained by

transforming each cell image to the frequency domain and

performing PCA on the spectral features. The reported accuracy
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was 82.56% over the size of the test set of 88 images. In (7), which

was a continuation of (5) by the same group, the study was extended

by new features, larger dataset size, and k-fold validation during

training.

Some studies addressed the problem of where to extract the

HPF patches. One strategy was to make use of not only H&E-

stained WSI but also the immunohistochemical (IHC) stains such

as the CD10/CD20 of the same tissue sample. Tumor regions are

more clearly discernible under IHC stains and can be used to help

guide where to zoom in. The disadvantage, besides needing more

laboratory procedures and resources, is that the two WSIs now

have to be registered together before the additional information

from the IHC stain can be utilized. In (8), H&E and CD20 WSIs

were registered together, where the objective was to classify each

HPF as one of the three classes: mantle, follicle, and intrafollicle.

The follicle is the region where one would want to be searching for

CBs. The authors used standard image features such as histogram

statistics, with support vector machine (SVM) and k-nearest-

neighbor (KNN) as the classifiers, and reported accuracy of around

60%.

Several more studies later on proposed new features for

the classification of CBs. The studies (9, 10) focused on the

classification of CBs without segmentation. The approaches

are similar except for the feature engineering, which were a

combination of color and morphological and frequency domain

statistics. Heavy feature engineering was very common in the

machine learning field before the rise of deep learning. Both

studies obtained ground truth labels using consensus of multiple

pathologists and reported similar classification accuracy in the

80% range. Later, Kornaropoulos et al. (11) proposed a novel

feature based on the concept of subspace from signal processing.

Cell images are flattened into vectors, which form columns of

a rectangular matrix. The matrix is then decomposed using

singular value decomposition (SVD). Subspaces of the positive

(CB) and negative (non-CB) were constructed using the top k

largest singular values and by projecting each original vector

into its class’s subspace. At inference time, a query vector is

classified by solving a least squares problem to find the centroid

that the vector is closer to. The study reported very high

classification accuracy of around 99%. The dataset size was 213

CB and 234 non-CB. The disadvantage of this method is that

it requires solving the SVD of a matrix of size #pixels by

#training examples, which does not scale to a large number

of examples. The same team shortly after published (12),

which proposed a complete pipeline including preprocessing and

segmentation. The segmentation part followed standard image

processing techniques as in earlier research. Average recall value

for CBs over three test WSIs was 82.52%. This shows that

high classification accuracy alone does not transfer over to high

detection performance, since any segmentation error will impact

the downstream classifier that was trained only on perfectly

segmented cell images.

A larger scale study for CB classification was proposed in (13),

involving 3,771 and 4,000 CBs and non-CBs, respectively. The

feature extraction and classifier were standard techniques as used

in other previous studies. Segmentation was performed by image

registration with CD20-stained WSIs, which provides much better

follicle delineation than using H&E stain alone. The classification

accuracy was reported at 80%.

2.3 Deep learning approach to WSI
classification

Studies after this point were after deep learning (DL) (14) had

become popular and the focus shifted from feature engineering to

applying DL to entire WSI classification, not individual cells. For

example, this can be used to classify WSIs into different stages

or types of cancer. DL is very successful at image classification,

matching, or surpassing humans on many such problems, and

it is logical to consider applying DL to WSI classification.

Unfortunately, unlike standard image classification, where the

images can be resized to a size that can be accommodated by a

deep neural network, typically around 224 × 224 up until 1, 024 ×

1, 024—resizing huge WSIs to such small sizes will result in the loss

of all details. Feeding an entire WSI into a deep neural network and

training it the same way as a standard image recognition problem,

while simple in principle, cannot be done in practice since it would

require much more memory than any graphical processing unit

(GPU) has at present.While this feat was recently achieved by Chen

et al. (15) by taking advantage of CUDA (a GPU programming

library) unified memory architecture, it took 2 months to train

the model on a supercomputer, thus impractical for most research

teams. It should also be noted that the size of the WSIs used in this

study is 10, 000 × 10, 000 which is still relatively small, as WSIs of

size 50, 000× 50, 000 or more are not uncommon.

While the results of many studies were promising, image

classification where the features are hand-crafted are known to

be brittle—the performance rapidly decrease with small deviations

from the statistics of the original training data. Moreover, the

feature engineering must be performed each time a condition is

changed, such as a newWSI imaging machine.

Because an entire WSI will not fit in GPU memory, or even

the system memory of most computers when fully decompressed,

applying DL to WSIs means that one must operate at the patch

level rather than at the slide level. WSIs utilize hierarchical

representation that trade size for resolution, and when viewed at

full size (the entire slide is visible on the screen), the resolution

(px/µm) is the lowest. When viewed at full resolution, the situation

is reversed and one screen shows only a tiny fraction of the slide.

The patch level refers to images cropped from the slide zoomed in

all the way, i.e., at full resolution. One can crop at this level and

choose the patch size that current hardware is able to handle. The

problem is then how to make a decision for the entire slide while

looking only at just the patches.

The approach to solve this is to aggregate the decisions made

by a patch level model on a group of patches that are chosen as

the representative of the entire slide. The patches are chosen by

hand, then a model classifies each patch and then the results are

converted into a slide-level decision. This can be as simple as by

voting or averaging of the class probabilities, or another model can

be trained to combine the outputs of the patch level model into a
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slide level label. This is called the patch level model approach in the

literature.

The patch level model approach can be improved by using

multiple instance learning (MIL), first proposed in the context of

WSI classification by Hou et al. (16). MIL first divides the slide

into regions (chosen manually or otherwise) called bags. A bag

is considered negative if all the patches inside of it are classified

as negative by a patch level model. On the other hand, a bag is

considered positive if at least one patch inside of it is classified as

positive. MIL then proceeds in two phases; First, is patch selection,

where k-most positive patches are chosen from the positive bags.

These k patches are the “representative” of the entire positive

slide and constitute a “positive example” for the slide-level model.

A negative example is obtained by randomly sampling from the

negative bags. The slide-level model is then updated like in a

standard binary classification problem. The main advantage of MIL

over the standard patch level approach is that no patch level labeling

by hand is needed for newWSIs, at least once a patch level model is

available. All patches are selected during training and are assumed

to be the same class as what the patch level model predicts, an

assumption called weak supervision in the literature. A large-scale

study using MIL for WSI classification was done in (17), involving

thousands of slides in each cancer category.

Although successful, MIL is basically a workaround. It also

brings new challenges. The first is that the ranking of the k

top patches are done using outputs of the patch level image

classification model. One of the common misconceptions in DL

is that the output probability indicates “how sure” the model is

given a particular input, i.e., an output of 0.2, 0.8 is more sure

that the answer is class 1 than the output of 0.4 and 0.6. This

has been shown to be not true (18), and there is no way to

rank the confidence of the model’s output without spending a

significant amount of computation doing variational inference.

The second challenge is selecting the value for k. If it is too

low, the number of informative (positive) patches may be less

than what it actually is, and on the other hand, if it is too high,

then irrelevant (negative) patches may be included in a positive

training example. For simplicity, most studies set the value of k =

1 to take the most relevant patch only from each bag, but this is

complicated by the problem stated earlier that there is no easy way

to rigorously rank the patches. Finally, using MIL involves having

two models that operate at different levels and there is no way to

train both of them together in an end-to-end manner because of

the sampling operation between the patch level model and the slide

level model.

For these reasons, we propose the use of object detection as a

patch level (and the only) model. We assume in this study that the

regions of interest at the slide level have been previously selected by

a pathologist or obtained a priori by other means. Alternatively, all

non-background patches in a WSI can be considered the region of

interest—an approach that requires more bootstrap labeling for the

training the initial patch level model. The advantage/disadvantage

of using object detection instead of MIL can be summarized as

follows:

1. It is conceptually the same task as what a human pathologist

does, which is to detect and count the number of CBs for each

HPF. There is no need to train a separate slide level model for

aggregation because the number of CBs is already what is needed

in clinical practice.

2. The object detection model that we used is engineered for fast

inference, as it is common for this kind of model to be applied

to real time detection in streaming video. In contrast, image

recognition models are not designed with fast inference being

a priority. Inference speed is especially important if the entire

non-background area of the WSI is considered as the region of

interest, as thousands of tiles must be processed for one WSI.

3. The disadvantage is that this approach is only applicable to

lymphoma since it focuses exclusively on CBs.

2.4 Object detection

The object detection task is to draw a tight bounding box(es)

around the object(s) of interest in an image. For the current use

case, we are interested in its ability to count the number of objects

(CBs) in a patch. There are currently three different families of

object detection models in wide use: RCNN (19), SSD (20), and

YOLO (21). We choose the YOLO family for this study due to its

unique combination of fast inference speed and detection accuracy.

YOLO is a single-pass object detector that is designed to be trained

end-to-end from the beginning. In the original version, an image

is divided into a grid of 11-by-11 cells. Each cell is responsible

for detecting at most two objects whose centroid’s coordinates fall

within the cell. The target output of the model is a 3D array of

shape 11-by-11 by L. The class label and bounding box coordinate

of each object (or two objects) is encoded in the 1 by L vector

“tube”. In addition, part of the tube is the probability that this cell

has an object, set to 1 for cells that actually contain an object and

0 for cells that do not. The loss function is a weighted sum of

softmax loss for object type classification, the mean square error

for the bounding box coordinates, and the “objectness” probability.

Later versions offered improvements such as normalizing the

bounding box coordinate, anchor boxes, increased input resolution,

and speed optimization. Recently, there are multiple groups that

claim to be the latest official version. We choose the version 5

implementation at https://github.com/ultralytics/yolov5 since the

repository is highly active with over 200 contributors and almost

30 thousand stars on Github. There is no associated publication for

version 5. The last published article was for version 4 (22).

2.5 Data collection

The HPF patches for model training and validation were

obtained by a two-phase process. The challenge was that having

pathologists inspect entire slides to search for all CBs is impractical,

because each WSI can have hundreds of thousand of patches, most

of which do not contain CBs. Therefore, to create the training data,

we first cut each WSI into individual patches and then applied

the Hovernet cell segmentation model (23) to each patch. The

segmented cells were then filtered with the following heuristics

to detect potential CBs: each segmented cell’s area was calculated

using contours, and this gives the area in pixel squared. We made
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FIGURE 1

The detail screen of one of the patches. The bounding box is shown being drawn.

the assumption that each cell’s shape is approximately a circle and

calculated the diameter of the circle that would have the same area.

Then, the unit of the diameter of the circle was converted from

pixels to microns by the conversion factor of 0.12 µm/pixel (the

resolution of our equipment). The diameter was then used as the

selection criteria, and we included cells which have an equivalent

diameter of at least 5.13 µm and an aspect ratio (the ratio between

the major and minor axis of the cell’s contour) between 0.7 and 1.3.

These criteria are based on the general characteristic of CBs that

they tend to be large and approximately round. Cells that match

these criteria are considered as potential CB, and the patch that

contains the cell(s) was saved for data labeling by pathologists, who

see just the raw patches without any prior labels or annotation. Due

to the labor-intensiveness of the labeling process, we were not able

to use all the patches from all WSIs.

We created a web-based tool (Figure 1) that allows multiple

pathologists to work on data labeling in parallel and prevent two

pathologists from working on the same image. There are two types

of users in this system: labelers and reviewers. A labeler can draw

bounding box(es) around CB(s) in a patch, or just click confirm to

pass if the patch is a false positive and does not actually contain

a CB. A reviewer can sign off a patch and also make modification

to the bounding box(es) if necessary. We only include patches and

bounding boxes that had both been labeled and reviewed in the

training data.

As mentioned, we gathered training data in two phases. In

the first phase, candidate patches were identified using pre-trained

Hovernet and the heuristics as mentioned above. After labeling and

validation, we obtained 445 instances of CB bounding boxes that

could be used to train the first generation object detection model.

We then used that model to scan through another set of patches.

Since the first generation model is already trained to detect CBs

directly, the second phase no longer need the size/aspect ration

heuristic, and the patches where CB(s) were detected were saved

for the second round of labeling. In total, both phase combined

gave a total of 1,669 instances of validated CBs instances for (second

generation) model training.

2.6 Model training

We trained the YOLOv5 object detection model on the dataset

with 1,669 CB instances for the training set and the rest for the

test set. Unless stated otherwise, the training hyperparameters are

the same as in defaults in the file data/hyps/hyp.scratch-low.yaml

under the Github repository https://github.com/ultralytics/yolov5.

The other hyperparameters not included in the file are as follows:

batch size = 16, number of epochs = 100, and the optimizer used was

SGD (stochastic gradient descent). The training environment was

Ubuntu version 20.04 with the GTX2060 as the GPU. The input

image size, model size, and preprocessing were varied during the

experiments. YOLOv5 offers several different model sizes, and we

experimented with sizes m (smallest), x and x6 (largest).

2.7 Experimental setups

In this research, the whole slide image (WSI) for Centroblast

(CB) dataset have been collected and slices into 512 × 512 pixels

tiles images. After labeling and validation were performed, the total

dataset gave 1,669 instances of validated CBs from 1,205 tile images,
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FIGURE 2

(A) Experimental setup of Experiment 1, default CB. (B) Experimental setup of Experiment 2, preprocess CB.

as illustrated in Table 1. Figure 2A shows the experimental setup

using the default CB dataset, named Experimental 1 Default CB.

In the first step (Exp1-1), the dataset is fed into detection model,

YOLOv5, and the best model is evaluated and selected. The selected

model is used for collecting false positive instances, in other terms,

the non-CB objects, in the second step (Exp1-2). The non-CBs
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FIGURE 3

Experimental setup of Experiment 2. (A) A patch before preprocessing. (B) The same patch after preprocessing.

TABLE 2 Dataset information.

Dataset Train Validate Test Total

Images 915 229 61 1,205

CB labels 1,275 313 81 1,669

Non-CB labels 517 96 16 629

instances is created and added to default CB dataset, the new dataset

now containing 2 classes, the CBs and non-CBs.

Figure 2B shows another experimental setup using the

preprocess CB dataset, named Experimental 2 Preprocess CB. The

default CB dataset undergos preprocess method for creating clear

CB instances. The histogram equalization is used to adjust intensity,

brightness, and channel of the image. Then, image contour is used

to eliminate overly large area and tiny noise in the images. As the

images contain similar shades of purple, the cells are mostly visible

in darker shade of purple. The light purple color is adjusted to

white, where it is higher than average color value of the whole

image. Figure 3 illustrates the differences of (a) default CB datasets

to (b) preprocess CB datasets. In the first step (Exp2-1), the

preprocess dataset then feed into detection model, YOLOv5, and

the best model is evaluated and selected. The selected model is

used for collecting false positive instances, in other terms, the non-

CB objects, in the second step (Exp2-2). The non-CBs instances is

created and added to preprocess CB dataset, the new dataset now

containing 2 classes, the CBs and non-CBs.

After performing the mentioned experiments, the total dataset

of 1,669 CB dataset is containing 1,205 images with CBs instances

and 629 non-CBs instances in both experiments. Table 2 shows the

partition of dataset for training YOLOv5 detection model. The test

dataset is separated by 5% of total dataset, while train and validation

dataset are divided by 80–20% from the rest. The non-CB labels are

collected by controlling the number of instances to not more than

CBs instance and controlling its shape to CB’s similarity. Figure 4

shows illustration of CBs and non-CBs instances, where (a) shows

plot of instances, (b) shows size of bounding boxes of CBs and

non-CBs instances, (c) shows distribution of bounding boxes from

overall dataset, and (d) shows distribution of size of bounding boxes

from overall dataset.

2.8 Performance measurement of object
detection

Performance of object detection is measured by a quantity

called mean average precision (mAP). A predicted bounding

box is considered a true positive (TP) if the intersection over

union between the predicted bounding box and the ground truth

bounding box is over a certain threshold, typically 0.5. The IOU has

its maximum value at 1.0 when the predicted box and the ground

truth box perfectly overlap. On the other extreme, the minimum

value of IOU is 0 when the predicted box and the ground truth

box do not overlap at all. A predicted box is considered a TP if the

IOU between it and the corresponding ground truth box is ≥0.5.

If a predicted box gives IOU less than this value either because it is

in the wrong location or because the corresponding ground truth

box does not exist, it is considered a false positive (FP). Once the

value of TP and FP are obtained, the precision can be calculated

by the standard formula precision = TP
TP+FP . The precision value is

calculated once for each confident threshold—amodel will predict a

box when its confident is above this value. By varying the confident

threshold value and calculating the precision for each one and then

taking the average, one can get the average precision (AP) value.

Finally, the AP values for each class of object are averaged to get

the final mAP value. In this study, since there is only one class of

object—the CB—the AP value is the same as the mAP value. In

the results, mAP@0.5 means that the mAP value was calculated

using IOU threshold of 0.5. While mAP with no @ is the average of

mAP values calculated at different IOU thresholds—typically 0.5–

0.95 in steps of 0.05. For context, mAP value of around 0.5 (50%) is

considered high, see for example Figure 1 of (22).
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FIGURE 4

Descriptions of the CB data. (A) The number of actual CB cells vs. false positives (negative examples). (B) The sizes of the bounding boxes. (C) The

distribution of the position within a patch of CB bounding boxes. (D) The distribution of the weight and height of CB bounding boxes.

2.9 Image preprocessing to boost the
performance of object detection

Due to the fact that the WSIs in this study were collected

retrospectively from existing images, some were scans of slides that

were quite old. The quality of these WSIs is not homogenous. We

observed that generally the object detection result was better on

newer WSIs that are purple color, where the cell images appear

to be slightly clearer than older slides with pink color. To boost

the performance of the object detection algorithm, we decided that

the best approach was to improve the clarity of the input patch

images by removing the non-cell background as much as possible.

To this end, we introduced preprocessing steps that can be outlined

generally as follows:

1. Given an input patch image, perform histogram equalization.

2. Convert the histogram-equalized image to grayscale.

3. Calculate binary image from the grayscale image using Otsu’s

method (24).

4. Perform contour detection on the binary image.

5. Calculate the average area of the rectangular bounding box of

the contour of each cell

6. Perform the dilation operation on the binary image.

7. For each contour whose area is less than half of the average area,

“fill in” the binary image by drawing solid lines over the contour

lines.

8. Use the processes binary image as a mask to select the

foreground pixel from the original patch image, and fill all the

unselected pixel with white (pixel value 255, 255, 255) color. This

final image becomes the input to the object detection algorithm.

This process is described in more details in Algorithm 1.

3 Results

3.1 Demographic data of FL patients

Most of the patients were <62 years of age, and half of them

were male and half were female (Table 1). Based on the WHO

criteria, grade 1 has 0–5 CB/HPF, grade 2 has 6–15 CB/HPF, and
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grade 3 has more than 15 CB/HPF (3a-centrocytes present, 3b-

solid sheets of CBs); most cases (70/87, 80.5%) were classified

with grades 1 and 2; and only 17 cases (19.5%) were in grade 3

(either 3a or 3b) with grade 3B as around 3.4% of the total cases

(Table 1). Grades 1, 2, and 3a are generally thought to be low-

grade or slow growing, whereas grade 3b is likely to be treated as

a high grade with a fast-growing phenotype. Notably, no significant

correlation of clinicopathological parameters was observed (data

not shown). Twelve patients with non-cancer-related death were

excluded from the survival analysis. Hence, cumulative survival

Data: image I

Result: processed Image P

P = equalizeHist(I) ; /* apply standard histogram

equalization */

G = cvtColor(P) ; /* convert to grayscale image */

T = threshold(G) ; /* thresholding on the grayscale

image using Otsu’s method */

cnts = findContours(T) ; /* list of all contours in

the image */

avg_area = empty list;

for each c in cnts do

w, h = boundingRect(c) ; /* get the width and height

of a rectangular bounding box for this

contour */

a← w ∗ h;

/* append a to avg_area */

end

avg_area←
∑

(avg_area)/len(avg_area);

D = image_dilation(T);

/* draw solid black line over for each contour

in D where the area < avg_area/2 */

P = use D as a mask to select pixels of P, where D is white;

for pixels whereD is black, fill the corresponding pixel ofP

with solid white color;

return P;

Algorithm 1. Background removal.

analysis of only 66, 63, and 66 cases were analyzed with grading,

numbers of involved nodes, and serum lactate dehydrogenase level,

respectively (Figure 5). High numbers of involving lymph nodes

and high serum lactate dehydrogenase levels exhibited the trend

of patient-short survival time correlation but without statistical

significance.

3.2 The impact of preprocessing and
background removal

The WSIs that we obtained come in two color variations: the

first is the characteristic purple hue of the H&E stain and the second

is pink. The pink color is from old glass slides that had been left

in storage for a long time before getting digitized. Hematoxylin

(the H in H&E) is less durable in the eosin, which has a pink

color. Thus, glass slides that had been stored for a long time had

mostly eosin and hence had a pink color. It is well-known from

image processing that color variation as well as the brightness and

contrast has a significant impact on any algorithm. Thus, histogram

normalization (25) was considered as the preprocessing step. The

model size was fixed at m for this experiment to minimize the

training time. The result is shown in Table 3, where set 1 consisted

of 445 patches obtained from the first round of labeling without any

preprocessing. Set 2 consists of the entire dataset of 1,119 images

and set 3 was the entire dataset with histogram normalization

applied to the images before they enter model training. The result

shows that the benefit of applying histogram normalization is

inconclusive, and it slightly increases the value of mAP@0.5 and

slightly decreases the value of mAP. Regardless of preprocessing,

all three cases demonstrate relatively high value for mAP.

3.3 The impact of di�erent input and
model sizes

In this section, we experimented with different input image and

model sizes to find the best configuration. Generally, deep learning

tends to perform better with larger sized models. The biggest size

available for YOLOv5 is x6. We tested the performance of this

FIGURE 5

Kaplan–Meier analysis of FL patients. (A) Grading, (B) nodal areas involvement, and (C) serum lactate dehydrogenase.
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model size with different input image sizes: 512, 640, and 1,280

(the common practice is to resize input images to be squares). We

also consider the m size model since smaller model are faster to

run so if the performance gap is not too large, smaller models are

TABLE 3 Results of varying the preprocessing (histogram normalization

or not), where the model size was fixed at YOLOv5m.

Dataset Precision Recall mAP@0.5 mAP

Set 1 (445 images) 0.706 0.537 0.635 0.377

Set 2 (1,119 images) 0.623 0.585 0.643 0.381

Set 3 (1,119 images

with histogram

normalization)

0.698 0.619 0.659 0.377

preferred in practice. The result is shown in Table 4. Out of all

the configurations, model size x6 with input size 512 has the best

performance across all values. Larger input sizes did not perform

TABLE 4 The result of varying the model and input image sizes.

Model size,
input size

Precision Recall mAP@0.5 mAP

YOLOv5m, 512 0.6234 0.5851 0.6425 0.3809

YOLOv5x6, 512 0.6755 0.6098 0.6708 0.3812

YOLOv5x6, 640 0.6617 0.5976 0.6445 0.3868

YOLOv5x6, 1,280 0.5387 0.5854 0.5698 0.3230

The bold font indicates the row with the best overall result.

FIGURE 6

Detection results of all experiments on YOLOv5x6. (A, B) Detection results on purple-tinted WSI (newer slides), without and with background

subtraction. (C, D) Detection results on pink-tinted WSI (older slides where discoloration had occurred), without and with background subtraction.
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TABLE 5 CB detection results using experiment 1.

Model Method Precision Recall mAP@0.5 mAP

YOLOv5m Exp1-1 0.623 0.585 0.643 0.381

YOLOv5m Exp1-2 0.347 0.523 0.408 0.284

YOLOv5x6 Exp1-1 0.662 0.598 0.645 0.387

YOLOv5x6 Exp1-2 0.345 0.507 0.394 0.291

The bold font indicates the row with the best overall result.

TABLE 6 CB detection results using experiment 2.

Model Method Precision Recall mAP@0.5 mAP

YOLOv5m Exp2-1 0.758 0.788 0.809 0.653

YOLOv5m Exp2-2 0.801 0.722 0.739 0.618

YOLOv5x6 Exp2-1 0.808 0.776 0.800 0.647

YOLOv5x6 Exp2-2 0.837 0.740 0.747 0.633

The bold font indicates the row with the best overall result.

very well, most likely because the HPF patches were originally

obtained from WSIs at this resolution. Images for sizes 640 and

1,280 were obtained by up-sampling, which impacted the clarity

of the images. The best possible values for mAP@0.5 achieved was

0.6708, which is a relatively high value for object detection. Figure 6

shows some examples of detection result. It can be seen that the dye

has two tones: the purple ones on the top row and the pink ones on

the bottom. This is because some of the WSIs were stored as glass

slide for a long time and had only recently been digitized, leading

to color change from purple to pink. In general, the model seems to

perform better on purple-colored patches.

From Table 5, the CB detection result on Experiment 1,

the default CB dataset gives the highest evaluation result from

YOLOv5x6 from using model achieved from Exp1-1, default CB

dataset training. The best model achieved precision at 0.662, recall

at 0.598, mAP at 0.5, IoU at 0.645, and overall mAP at 0.387.Where

the CB and non-CB datasets show decrease values of evaluation

metrics, the non-CBs instance may cause confusion to the model

as it is very similar.

Comparing to the CB detection result on Experiment 2, from

Table 6, the preprocess CB dataset gives the highest evaluation

result from YOLOv5m using model achieved from Exp2-1,

preprocess CB dataset training. The best model achieved precision

at 0.758, recall at 0.788, mAP at 0.5, IoU at 0.809, and overall mAP

at 0.653. YOLOv5x6 evaluation is more average in all metrics as

it achieved precision at 0.808, recall at 0.776, mAP at 0.5, IoU at

0.800, and overall mAP at 0.647. The CB and non-CB datasets

show slightly decreased values to the non-CBs instance, which may

cause confusion to the model as it is very similar. Moreover, the

preprocessing CB dataset can greatly enhance the evaluation value

though they are trained in the same manner. The background

removal of other fluid other than cells can immensely impact

detection training.

From the following experiments, the CB object detectionmodel

training using YOLOv5 has been trained with defaults training

hyperparameter in all experiments for 100 epochs. Figures 7–9

shows training evaluation of CB detection in each experiment

setup comparing training on default CB dataset and preprocess

CB dataset. The YOLOv5x6 model using preprocess CB dataset

training demonstrated the best model as its training losses and

evaluation metrics, such as precision, recall, and mAP values, lead

the other setups.

The CB detection models are used for detecting CB on test

dataset; Figure 6 shows four sample of results from each experiment

that effect CB detection. As an image contains four results of each

experiment, where:

• Top left of the image represents detection result from default

CB dataset.

• Top right of the image represents detection result from default

CB and non-CB datasets.

• Bottom left of the image represents detection result from

preprocess CB dataset.

• Bottom right of the image represents detection result from

preprocess CB and non-CB datasets.

The preprocess CB creates a clear cell shape and higher contrast

images as shown in Figure 6, which it can significantly enhance

confidence of detection score. The red boxes indicate prediction of

CB, pink boxes indicate non-CB, and green boxes indicate ground

truth of CBs instances. Moreover, the results show less false positive

detection in preprocess CB and non-CB datasets results. Even

though the preprocess might not perform well in very low contrast

images or low component images, where the method can reduce

the features of CB cell where the inside is too hollow, it leads to

creating true positive results. Thismethodmay also impact on other

cells where it might represent similar characteristics as CB, as the

inside of the cell is also having hollow space, creating false positive

results. Overall, the YOLOv5x6 with preprocess CB and non-CB

datasets training yield the best results, as it can increase confidential

of detection and reduce false positive rate.

4 Discussion

The proposed method works on the level of individual patches.

Specifically, our method cuts a WSI into individual patches of

the same size, at the native resolution, and then applies the

CB detection algorithm to each patch. This approach is not

computationally efficient since aWSI can have tens of thousands of

patches, most of which are not inspected by the pathologist reading

the slide. Typically, a pathologist would inspect the WSI at a lower

magnification, choose some regions of interest (ROIs), and then

perform high power field reading only on patches in the ROIs.

Cells that may have the morphological characteristics of a CB are

not counted if they are not inside one of the ROIs. At present, the

proposed method has to rely on pathologists choosing the ROIs

manually, and then offload the high power field reading to the

detection algorithm. While this helps reduce the workload, it still

requires experienced pathologists to appropriately choose the ROIs.

We plan to address this disadvantage in the future study, where the

currently proposed algorithms would receive the ROIs information

from another algorithm that operates at a lower magnification level

looking at more global features of the WSI. The goal is to make the

reading entirely automated.
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FIGURE 7

CB detection model training: (A) object loss and (B) box losses.

FIGURE 8

CB detection model training: (A) precision and (B) recall.

FIGURE 9

CB detection model training: (A) mAP@0.5 and (B) mAP overall.

5 Limitation

The proposed method needs global ROIs to be

provided by pathologists and it works only for H&E

stain, preferably recent such that no color fading

had not yet occurred. The model was only tested

on WSIs that are digitized in the .mrxs file type

that can be read by the Python Openslide library.

Running the model can be computationally expensive

and requires more resources than a lab may have

available.

6 Conclusion

We present an experimental study for the automatic detection

and counting of centroblast cells in whole slide images. The

method consists of applying a deep-learning based object detection

architecture and algorithm, on top of which we proposed

improvements to detect individual centroblast cells from patches

of WSI images, from which the number of CB cells can be counted

and thus obtain the grading result. We performed ablative studies

of the different configurations of the object detection pipeline. Two

key steps in this proposed pipeline is the hard-negative mining
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steps (Figure 7) and background removal step (Algorithm 1). Using

the hard negative mining but not the background removal step

in the pipeline gave the best result in terms of recall value. Using

both the hard negative mining steps and the background removal

step gave the best overall result in terms of the mAP values. The

proposed improvements boosted the detection result significantly

from the standard application of object detection, as can be seen by

comparing the results in Tables 5, 6.
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