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Pelvic organ prolapse (POP) is a significant contributor to hysterectomy among 
middle-aged and elderly women. However, there are challenges in terms of 
dedicated pharmaceutical solutions and targeted interventions for POP. The 
primary characteristics of POP include compromised mechanical properties 
of uterine ligaments and dysfunction within the vaginal support structure, 
often resulting from delivery-related injuries. Fibroblasts secrete extracellular 
matrix, which, along with the cytoskeleton, forms the structural foundation 
that ensures proper biomechanical function of the fascial system. This system 
is crucial for maintaining the anatomical position of each pelvic floor organ. 
By systematically exploring the roles and mechanisms of biomechanical-
biochemical transformations in POP, we can understand the impact of forces on 
the injury and repair of these organs. A comprehensive analysis of the literature 
revealed that the extracellular matrix produced by fibroblasts, as well as their 
cytoskeleton, undergoes alterations in patient tissues and cellular models of POP. 
Additionally, various signaling pathways, including TGF-β1/Smad, Gpx1, PI3K/
AKT, p38/MAPK, and Nr4a1, are implicated in the biomechanical-biochemical 
interplay of fibroblasts. This systematic review of the biomechanical-biochemical 
interplay in fibroblasts in POP not only enhances our understanding of its 
underlying causes but also establishes a theoretical foundation for future clinical 
interventions.
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1 Introduction

Pelvic organ prolapse (POP) is a health problem for women in which the pelvic organs are 
displaced inside or outside the vagina. This condition is caused by weakness of the pelvic floor 
muscles or ligaments that results in herniation of the vagina and uterus and prolapse (1), 
leading to bladder and sexual dysfunction (2). POP seriously affects women’s physical and 
mental well-being and quality of life. Global burden of disease is relatively high, there were 13 
million incident cases of POP in 2019, with an age-standardized incidence rate of 316.19 per 
100,000 population at the global level (3). A large-scale population-based cross-sectional study 
of adult women in China found that the symptomatic prevalence of POP was 9.6% (4) and the 
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incidence approached 50% in middle-aged women, making POP one 
of the leading causes of hysterectomy in middle-aged women. The 
latest start of attention and research on POP has resulted in a lack of 
understanding of its pathogenesis and a lack of development of 
effective targeted drugs. Although many surgical treatments can 
achieve ideal anatomical repositioning at the cost of uterine resection, 
they still do not ensure functional recovery and symptomatic 
improvements. Thus, the lifetime risk of undergoing surgery for 
prolapse is 20% (5) and the rate of reoperation was 26.9% of Danish 
women aged between 18 and 49 years of age at primary surgery (6). 
The age groups with the highest incidence rates are also on a 
downward trend (3).

The strongest risk factors for POP are pregnancy and vaginal 
delivery (4, 7–9). A systematic review (7) showed that the incidence 
of the first vaginal and forceps delivery contributed the most to POP. A 
complete cesarean section protected against POP symptoms and 
clinical symptoms, and there was no risk compared to that in 
nulliparous women (9). Moreover, women with 1 child were 4 times 
more likely and women with 2 children were 8.4 times more likely to 
experience POP that required hospital admission (10). For these 
reasons, vaginal delivery has been shown to be the most important 
independent predisposing factor for POP. There have been some 
theories suggesting that the processes of pregnancy and childbirth 
releases tremendous abdominal pressure on the pelvic floor. 
Additionally, it has been proposed that this force is amplified in cases 
of multiple births and that persistent obesity can increase pressure on 
the abdomen (11). Impaired mechanics of the uterosacral ligament 
(USL) due to long-term forces is a key tissue in the pathogenesis of 
POP (12). Level I support includes the USL complex, which extends 
from the cervix to the sides of the uterus where it connects to the 
sacral surface; the USL plays a crucial role in supporting the uterus 
and vagina (13, 14). However, the structural integrity of the USL can 
be  compromised over time due to repeated stretching caused by 
factors such as pregnancy and standing postures. This weakening of 
the ligament can ultimately result in clinical prolapse. In addition, the 
vagina is extremely important to the pelvic floor and serves as an 
important support structure for the pelvic floor. Overall, numerous 
studies have shown that the USL and anterior vaginal wall undergo 
biomechanical stimuli, which activat signal pathways through a series 
of biochemical reactions, induce structural damage of connective 
tissues, leading to dysfunction. The ultimate expression is a decrease 
in the quality of mechanical rigidity and stiffness as well as pelvic floor 
dysfunction, leading to the occurrence of POP. Thus, understanding 
the molecular mechanisms of biomechanical and biochemical 
coupling in fibroblasts, which are the basic components of POP, is 
important for the prevention and treatment of POP.

2 POP and biomechanics

2.1 POP biomechanical features

The pelvic floor consists of highly supportive connective tissues, 
all of which are viscoelastic materials and whose mechanical 
properties are critical to the pelvic floor as a whole. In 2002 (15), a 
study reported an increase in the modulus of elasticity of the anterior 
vaginal wall in postmenopausal compared to premenopausal POP 
patients for the first time, identifying an increase in strain and a 

decrease in stiffness in response to the same force in menopausal 
POP. This finding indicates decreased vaginal elasticity, which is 
possibly related to aging. However, a case–control study showed that 
the vaginal wall elastic modulus increased significantly in 
postmenopausal women, which affirmed that vaginal tissue is less 
elastic, and stiffness increased in POP group. Ultimately, decreased 
elasticity leads to decreased mechanical properties of the vaginal wall 
even though controlling for confounders such as age, body mass index 
and parity (16). These studies suggest that a reduction in pelvic 
biomechanical performance is a direct cause of POP. Additionally, the 
normal USL has been shown to support more than 17 kg (17) in 
mechanical experiments in vitro. In contrast, the flexibility of the USL 
was significantly reduced by a factor of 4 in patients with POP (18), 
and there was significant thinning during transvaginal delivery, 
weakened tissue mechanics, and reduced elasticity leading to the 
development of POP. The decrease in tissue biomechanical properties 
and dysfunction are closely related to the fate of the pelvic floor, and 
histological observations indicate that prolapse induces atrophy of the 
muscularis. Pathologic findings show that prolapse induces a decrease 
in each layer of the vaginal wall and atrophy of the muscularis propria 
(19). Fibroblasts produce extracellular matrix (ECM) and are the 
major cells in the pelvic floor. The ECM is a complex structure 
primarily composed of collagen and elastin fibers. It plays a crucial 
role in providing the pelvic floor with the necessary tensile strength 
and resistance against external forces. Additionally, the ECM connects 
the supportive tissues, facilitating the transmission and distribution of 
these external forces throughout the pelvic floor (20). Proteomics and 
transcriptomics show that the USL is continuously remodeled through 
a decrease in collagen synthesis and an increase in collagen type 
I (COL1) and type III (COL3) degradation in POP patients, which 
changes the microenvironment of tissue mechanics (21). Current 
research indicates that dysfunction of ECM in vaginal wall and USL 
decreases biomechanics, which is a major factor in POP.

2.2 Structural basis of biomechanics in POP

The phenotypic alterations observed in prolapsed tissue at the 
macroscopic level in vivo are indicative of underlying cellular changes, 
which can be  attributed to increased mechanical stretching. 
Fibroblasts, the primary cellular component of the pelvic floor, exhibit 
modified cellular attributes in vitro, which influences their dynamic 
response to external mechanical stimuli. The ECM is critical for 
matrix mechanics and sensing cell stiffness. Lysyl oxidase (LOX), lysyl 
oxidase-like 1–4 (LOXL 1–4), a disintegrin-like and metalloproteinase 
with thrombospondin type 1 motifs 2 (ADAMTS2), and bone 
morphogenetic protein 1 (BMP1) play crucial roles in maintaining 
collagen stability and facilitating the formation of procollagen (22). 
Studies have demonstrated that human vaginal fibroblasts (HVFs) 
obtained from POP patients exhibit upregulated matrix 
metalloproteinases 3 and 7 (MMP3, MMP7), which facilitate collagen 
degradation and downregulate the genes responsible for collagen and 
elastin fiber synthesis and maturation (LOX, LOXL1-LOXL3, BMP1, 
and ADAMTS2) (23). Consequently, this leads to a reduction in 
collagen synthesis and production within the pelvic floor tissue of 
women with POP. Furthermore, significant differences were observed 
in the cell-matrix adhesion molecules LAMB1 and LAMB3 (basement 
membrane) (23). The adhesion of POP-HVFs to the ECM was 
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decreased, resulting in impaired tissue morphology at the 
microstructural level. In terms of cellular morphology, a separate 
study revealed severe disruption of fibroblast cytoskeletal actin 
filaments in fibroblasts from POP patients, suggesting a close 
association between abnormalities in this cellular support protein and 
external mechanical stretching (24). Besides, increasing evidence 
suggests that the vaginal microbiome and the immune system are 
closely linked to maintain a healthy vaginal environment and lower 
genitourinary health (25). That equally worthy of researchers’ 
attention.

3 Biomechanical-biochemical 
coupling of fibroblasts in POP

3.1 Cell-mediated biochemical remodeling 
of the ECM

Li et al. (19) demonstrated that fibroblasts were the most abundant 
cells in the vaginal wall, and these cells make up an impressive 55.49% 
of the vaginal wall. Consistent with previous studies, fibroblasts 
secrete and synthesize ECM and are regulated by several factors to 
maintain the structural integrity and functionality of the pelvic organ. 
(1) ECM homeostasis is dependent on the expression level of MMPs, 
a highly conserved family of endonuclease hydrolases that degrade 
ECM proteins and the pericellular microenvironment, including 
collagen, elastin, and laminin. Notably, vaginal wall ECM is enriched 
in COL1 and COL3 to support the vaginal wall; collagen type 
I  provides strength to the tissue, while COL3 provides elasticity. 
Multiple studies have shown that MMPs (MMP1-2, MMP8-10) are 
significantly increase in the HVFs of patients or healthy vaginas after 
stress stretching (26–29). This increase leads to a noticeable reduction 
in the levels of COL1 and COL3, which are essential components of 
the ECM. Notably, MMP2 and MMP9 have been extensively studied 
and consistently found to be highly expressed in pelvic floor tissues 
due to their pivotal role as primary proteases that negatively regulate 
the ECM. (2) Additionally, ECM homeostasis is dependent on the 
expression of metalloproteinase inhibitors. Tissue inhibitors of 
metalloproteinases (TIMPs) are endogenous inhibitors of MMPs, 
which are enzymes that play central roles in the degradation of ECM 
components. Among them, TIMP2 can directly bind to MMP2 and is 
expressed at 10-fold higher levels than TIMP1 and TIMP3 (30, 31). 
Intriguingly, in the context of mechanical stretching, the expression of 
MMPs and the enzymatic activity of MMP2 were significantly 
increased in the HVFs of patients with POP. Conversely, the expression 
of TIMP2, which is a collagen inhibitor, was downregulated in 
comparison to that in healthy individuals with normal vaginal 
function (28). This downregulation of TIMP2 can have profound 
consequences on the anterior vaginal wall. When TIMP2 is inhibited, 
the degradation of ECM becomes less restrained. Consequently, 
collagen and adhesion proteins secreted by fibroblasts undergo rapid 
degradation, leading to the disruption of the delicate balance between 
the ECM and subsequent remodeling. The findings suggest a potential 
mechanism by which the excessive degradation of ECM components 
contributes to the development and progression of POP. It was also 
interesting that POP fibroblasts were more sensitive to mechanical 
forces and expressed higher levels of ECM-related regulatory proteins. 
The implication is that abnormal mechanical stress leads to the 

dysregulation of ECM homeostasis and promotes ECM 
reprogramming, leading to pelvic floor laxity. (3) Estrogen regulates 
ECM expression and components. A study by Zong et al. confirmed 
the increased mechanical sensitivity of POP-HVFs to 1 Hz cyclic 
loading for 72 h, increased induction of collagenase activity, and 
increased collagen degradation with increasing mechanical stretch 
force. Interestingly, estrogen only had a minimal inhibitory effect on 
mechanical damage (32). Thus, a decrease in estrogen accelerates 
mechanical damage, which may explain the clinical prevalence of POP 
in postmenopausal women. In 2018, poststretch estrogen intervention 
upregulated COLI in normal and POP cells, and the mechanical 
properties were consistent with the transcription of COL1, while 
COL3 remained unchanged, indicating an increase in tensile strength, 
which in turn affected the structure and function of COL1 in response 
to tensile loading, ultimately leading to abnormalities in the 
composition of the pelvic support connective tissue (29). (4) Other 
molecules, such as small proteoglycans are involved in POP. Decorin 
(DCN) and fibromodulin (FMO) are members of the small leucine-
rich proteoglycan (SLRP) family that bind to different cell surface 
receptors and other ECM components to regulate the assembly of 
cellular collagen microfibrils. Recent studies have shown that the 
expression of DCN and FMO is downregulated in stretched 
POP-HVFs (29). According to Kufaishi et  al. (29), the reduced 
expression of the enzymes LOX, LOXL1-2, and BMP1 was a result of 
exposure to mechanical stretch. This exposure led to a decrease in the 
cross-linking of collagen and elastin polymers, ultimately resulting in 
the weakening of connective tissue (28). However, it has been found 
that the ECM also influences cellular behavior, and the interaction 
between the two factors is complex (27). Dynamic reciprocity between 
the cell and its associated matrix is essential for maintaining tissue 
homeostasis and the dysregulation of ECM mechanical signaling. 
POP-HVFs were seeded in 6-well plates covered with type 1 collagen 
and cellular mechanical stimulation is subsequently loaded. The 
results found that with the increase of mechanical force, the effect of 
cellular mechanical response weakened. Then, HVFs delayed collagen 
contraction and downregulated MMP2 expression. Inversely, in 
noncoated collagen POP-HVFs, the gene expression of MMP2 and 
TIMP2 was upregulated, and the ECM was reduced. The functional 
characteristics of noncoated collagen POP-HVFs are mainly 
determined by the cellular surface matrix, indicating that the 
interaction between POP-HVFs and the matrix is compromised, 
leading to the inability of fibroblasts to respond promptly to 
mechanical stress signals.

Second, integrins (ITGs) are adhesion molecules that mediate the 
connection between the intracellular and extracellular matrix (28). 
These factors are crucial signaling molecules associated with 
mechanical and biological signal transduction. The extracellular 
domain of ITGs can recognize peptides containing the RGD 
(Arg-Gly-Asp) sequence within the ECM and bind to them, while the 
cytoplasmic domain of ITGs can connect to the cellular cytoskeleton 
through linker proteins. The signals generated by the ECM are 
received by ITGs, and ITG clustering occurs in response to binding to 
the ECM, thereby initiating intracellular signaling. In mechanically 
stretched healthy HVFs, the transcription levels of ITGs (ITGA1, 
ITGA4, ITGAV, and ITGB1) and matrix metalloproteinases (MMP2, 
MMP8, MMP13) are downregulated, leading to reduced ECM 
degradation. In stretched POP- HVFs, MMP1, MMP3, MMP10, 
ADAMTS8, ADAMTS13, TIMP1-3, ITGs (ITGA2, ITGA4, ITGA6, 
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ITGB1), contactin 1 (CNTN1), cadherin A1, cadherin B1, and laminin 
(LN) were significantly upregulated, while COLs (1, 4–6, 11, 12) and 
LOXL1 were downregulated. The downregulation of LOX inhibits the 
promoter activity of COL3A1, leading to impaired collagen synthesis.

These factors lead to an increase in ECM degradation and a 
decrease in collagen synthesis (see Table 1 and Figure 1). Clearly, 
biomechanical forces, which are risk factors, disrupt the mechanical–
chemical microenvironment of POP-HVFs, particularly ECM 
components and cell-ECM interactions, ultimately resulting in the 
differential responses of fibroblasts to exogenous mechanical 
stretching. This weakens the support of pelvic organs and leads to the 
subsequent development of POP. Fibroblast mechanoreceptor damage 
promotes POP. Moreover, other studies have demonstrated that cells 
sense the physical properties of the ECM and activate a mitochondrial 
stress response (44).

3.2 Mechanobiology mediates cellular 
remodeling

Mechanical forces activate proteins associated with reconstructing 
the cytoskeleton in fibroblasts (see Table  1 and Figure  1). The 
cytoskeleton, which is the largest cellular mechanosensor, serves as the 
primary mechanism for transmitting mechanical stimuli from the 
extracellular space to the intracellular compartment. Ruiz-Zapata 
showed that the cytoskeleton aligns perpendicularly to the force after 
mechanical stimulation and that the cell reacts to mechanical 
stimulation by rearranging its F-actin cytoskeleton (26). F-actin is the 
main skeletal structure that plays an important role in helping the cell 
withstand external tension and stress. The changes in F-actin in 
POP-related fibroblasts are evident. Wang et al. showed that under 
static culture conditions, POP-HVFs exhibited less cell roundness and 
higher relative fluorescence intensities (RFIs) of cytoskeletal proteins 
(F-actin, α-tubulin, and waveform protein). However, after stretching, 
the RFI of the cytoskeleton increased in the normal group, whereas 
the POP group exhibited a decrease in the RFI of F-actin (33). Thus, 
the cytoskeleton is remodeled in response to mechanical forces. 
Similarly, human USL fibroblasts (hUSLFs) not only regulate cellular 
morphology but also modulate cellular mechanical functions in 
response to mechanical forces. Among hUSLFs, POP-hUSLFs exhibit 
larger and longer morphologies, and mechanical stretching results in 
the dissolution of cytoskeletal proteins. The cytoskeleton undergoes 
continuous deconstruction and remodeling, which is the first step in 
mechanical signaling (38). Another study provided the opposite 
evidence: the mechanical force applied to healthy hUSLFs induces a 
POP-like change in morphology (43). In the second step, mechanical 
stretching upregulates genes related to cytoskeletal proteins to regulate 
cell morphology, including signal-induced proliferation-associated 
protein 1 (SIPA-1), tumor necrosis factor receptor-associated death 
domain protein (TRADD), and DNase 1-L1 protein, thereby 
inhibiting cytoskeletal remodeling, preventing adhesion, and 
inhibiting actin polymerization. Moreover, MMP20 transcription is 
upregulated (34). Furthermore, biomechanical force mediates the 
functional defects in fibroblast through the cellular cytoskeleton, 
leading to a reduction in mechanical tolerance (33). After the 
application of mechanical forces, transmission electron microscopy 
revealed that the polymers in POP-HVFs were stretched strips and 
fractured mesh. Compared with that of healthy HVFs, the mechanical 

tolerance of cells was severely degraded (29). Contrary to Wang et al., 
Zhu et al. discovered that other POP fibroblasts have thicker F-actin 
stress fibers (43). However, these thickened F-actin stress fibers may 
put cells in a subtension state, resulting in reduced cell contractility 
and decreased responsiveness to external stimuli. Additionally, in 
comparison to those in the normal group, the mRNA levels of type 
I and III collagen were reduced in stretched POP-HVFs, indicating 
weakened tissue stiffness and elasticity, decreased biological resilience, 
and functional defects in fibroblasts. Finally, the cytoskeleton interacts 
with intracellular proteins and mediates the expression of chemical 
signals that regulate the ECM response and participate in the 
functional remodeling of the cell. After excessive mechanical 
stretching, POP fibroblasts showed downregulated mRNA and protein 
expression of COL1, COL3, TIMP, elastin and upregulated expression 
of MMPs, leading to reduced ECM synthesis and a decrease in tissue 
mechanical properties (40, 41). Similar results have been found in 
other studies, including the downregulated expression of COL1 and 
COL3 and upregulated expression of MMPs (43). However, 
mechanical forces are not just about collagen destruction. In a study 
of the USL, moderate stress could contribute to pelvic floor collagen 
synthesis, and too much or too little stress is not conducive to the 
synthesis of collagen. For example, hUSLFs upregulated COL1 and 
COL3 expression in response to 8% stress. Interestingly, the effects of 
COL1 and COL3 on the stress response may be different; the former 
has a faster reaction than the latter (36). This means that there is still 
much research to be done on the mechanistic effects on fibroblasts 
and tissues.

4 Impact of 
biomechanical-biochemical coupling 
on fibroblast function

4.1 Biomechanical induction leads to 
alterations in the mitochondrial function of 
fibroblasts

Previous studies have shown that caspase 3 and 9 expression is 
significantly elevated in the USLs of POP patients, and cytochrome C 
is released from mitochondria as an upstream activator of caspase 3, 
which triggers a cellular cascade that leads to cell death, confirming 
that mitochondrial function is altered and associated with POP (45). 
Mitochondria play a crucial role in maintaining cellular homeostasis 
and energy metabolism but are susceptible to damage due to 
mechanical forces. A normal mitochondrial membrane potential 
(ΔΨm) indicates mitochondrial health, and a decrease in potential is 
a hallmark of early apoptosis in cells. HONG et al. demonstrated that 
when healthy hUSLFs were subjected to 5,333 μ of mechanical 
stretching, mechanical stress decreased the ΔΨm and induced 
significant levels of apoptosis in the cells (46). The decrease in ΔΨm 
activates the mitochondrial apoptotic pathway, leading to cell death. 
Additionally, mitochondria play a crucial role as regulators of 
metabolism and are vital for maintaining cell growth and survival. Hu 
et al. (38) observed that after 4 h of mechanical stress on hUSLFs, cell 
proliferation decreased significantly, and mitochondrial vacuolization 
and altered mitochondrial morphology were observed. Furthermore, 
as mechanical stress increased to a certain level, the cellular structure 
was disrupted (38). Moreover, mitochondrial dysfunction may initiate 
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TABLE 1 Association between mechanical stretch and ECM expression in pelvic fibroblasts.

No Years Cell Stretch Parameter Method Control POP

N Results N Grade Results

1 2010 (32) HVF
Cyclically biaxially 

stretched
72 h at 8% or 16% and 1 Hz

Collagenase 

activity assay
1 ↑:Collagenase activity 2 II, III ↑:Collagenase activity

2 2013 (26) HVF Cyclic mechanical 48 h at 10% and 0.2 Hz WB；RT-qPCR 1 ↑:MMP (2, 9)/COL1 2 II, IV ↓:COLs (1, 3)

3 2014 (27) HVF Cyclic mechanical 48 h at 10% and 0.2 Hz WB；RT-qPCR 8 ↑:MMP14/TIMP1 10 II, III, IV ↑:MMP (2, 14)/TIMP (1, 2)

4 2015 (33) HVF Cyclic mechanical 12 h at 10% and 0.1 Hz IF 5 ↑:F-actin 10 III, IV ↓:F-actin

5 2016 (28) HVF Mechanical 24 h at 10%

Human ECM and 

Adhesion 

Molecules PCR 

array; WB; RT-

qPCR

7 ↓:ITGs1 (A1, A4, AV, B1)/MMP (2, 8, 13) 8 III, IV

↑:MMP (1, 3, 10)/ ADAMTS (8, 13)/TIMP (1, 2, 

3)/ITGs (A2, A4, A6, B1)/ CNTN1/ catenins (A1, 

B1)/LNs (A3, C1)；↓: COLs (1, 4, 5, 6, 11, 12)/ 

LOXL1

6 2018 (29) HVF Cyclic mechanical 10% and 0.1 Hz RT-qPCR 6 ↑:COL1/BGN 6 III, IV ↓:DCN/ FMO

7 2008 (34) hUSLF Mechanical 96 h at 20%
cDNA 

microarrays
/

↑:F-actin/ TRADD/ DNase 1-L1/ SIPA-1/

MMP20
None None None

8 2019 (35) HVF Cyclic mechanical 24 h or 72 h at 10% and 0.2 Hz RT-qPCR / / 1 II
↑:COLs (1, 3, 5)/ Elastin /a-SMA/TGF-b1/

MMP2/COX-2/TNF-a/IL- 8/IL- 1b

9 2011 (36) hUSLF Mechanical 24 h at 4% or 8% or12% RT-qPCR 8 ↑:COLs (1, 3)/ PH/MMP1 None None None

10 2016 (37) hUSLF Mechanical 0.3 Hz and 5,333 μ WB 20 ↓:COL1 None None None

11 2017 (38) hUSLF Mechanical
4 h at 0 μ, 1,333 μ, 2,666 μ, 5,333 μ, 

and 0.1 Hz
IF 10 ↑:F-actin None None None

12 2017 (39) hUSLF Cyclic mechanical 4 h at 5333 μ and 0.3 Hz WB; RT-qPCR / ↑:MMP (2, 9);↓:COLs (1, 3)/Elastin /TIMP2 None None None

13 2017 (40) hUSLF Cyclic mechanical 4 h at 0 μ, 5,333 μ and 0.1 Hz WB; RT-qPCR 10
↑:MMP (2, 9);↓: TIMP2/COLs (1, 3)/ 

Elastin/ TGF-β1
None None None

14 2017 (41) hUSLF Mechanical 4 h at 0 μ, 1,333 μ, 5,333 μ and 0.5 Hz WB; RT-qPCR 15
↑:MMP (2, 9); ↓:COLs (1, 3)/Elastin /

TGF-β1
None None None

15 2017 (42) hUSLF Mechanical 4 h at 0 μ, 1,333 μ, 5,333 μ and 0.5 Hz WB; RT-qPCR 15
↑:MMP2/TIMP2;↓: COLs (1, 3)/ Elastin /

TGF-β1
None None None

16 2022 (43) hUSLF Uniaxial cyclic stress 4 h at 10% and 0.1 Hz RT-qPCR 8 ↑: MMP1; ↓: COLs (1, 3) 10 III, IV ↑: F-actin

POP, pelvic organ prolapse; HVF, human vaginal fibroblast; hUSLF, human uterosacral ligament fibroblasts; IF, Immunofluorescent staining; COL, Collagen type; a-SMA, α-smooth muscle actin; TGF-β1, transforming growth factor-β1; MMP, matrix metalloproteinase; 
COX, Cyclooxygenase; TNF-a, Tumor Necrosis Factor α; IL, interleukin; TIMP, tissue inhibitors of metalloproteinases; ITG, Integrin; ADAMTS8, a disintegrin like and metalloproteinase with thrombospondin type; CNTN, contactin; LOXL, lysyl oxidase like; BGN, 
Recombinant Biglycan; DCN, Decorin; FMO, fibromodulin; TRADD, tumor necrosis factor receptor-associated death domain protein; SIPA-1, signal-induced proliferation-associated protein 1; LN, Laminin; /, Not reported.
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senescence. Mechanical force promotes the expression of senescence-
associated β-galactosidase (SA β-gal), a marker of cellular aging, 
thereby accelerating fibroblast senescence (37, 38). As the body ages, 
mitochondrial biogenesis continues to decline and may affect the 
transcriptional activity and replication of mitochondrial DNA (47).

4.2 Biomechanically induced oxidative 
stress in fibroblasts

It is suggested that mechanical force can activate the oxidative 
stress signaling pathway (46). In a study conducted in 2017, it was 
demonstrated that overexpression of the antioxidant molecule 
glutathione peroxidase 1 (GPX1) in healthy hUSLFs reversed 
oxidative stress and restored ΔΨm in response to stretching (40). As 
a result, the expression of oxidative stress markers such as 8-hydroxy-
2-deoxyguanosine (8-OHdG) and 4-hydroxynonenal (4-HNE) 
decreased, and cell viability remained normal (40). However, in 
HVFs-induced H2O2-treated cells, oxidative stress led to ECM 
degradation and a decrease in biomechanical properties (48). 
Reactive oxygen species (ROS) are the main sources of oxidative 
stress. ROS accumulation occurs in hUSLFs after mechanical force 
application, leading to increased apoptosis and cellular senescence in 
fibroblasts (37, 46). Furthermore, mechanical stress activates the 
transforming growth factor-β1 (TGF-β1)/Smad signaling pathway, 
causing an imbalance in the production and degradation of 
mechanical tissue proteins, which contributes to POP. HONG et al. 
hypothesized that excessive mechanical stress and H2O2 treatment 
stimulated oxidative stress, inhibited the phosphorylation of Smad2, 
activated the TGF-β1/Smad2 signaling pathway, inhibited cell 

proliferation and remodeled the ECM by downregulating TGF-β1 
levels (42). Liu et  al. verified a negative correlation between the 
transcription levels of TGF-β1 and the severity of POP in sacrospinal 
ligament tissue (39). Conversely, pretreatment of healthy hUSLFs 
with TGF-β1, followed by cyclic mechanical stretching, improved the 
phosphorylation of Smad3, activated the TGF-β1/Smad3 signaling 
pathway, stimulated the synthesis of TIMP-2, inhibited MMP-2/9 
activity, reduced ECM loss, and increased ECM synthesis. Notably, 
the expression of Homeobox11 and TGF-β1  in the sacrospinal 
ligament of POP patients mediates ECM dysregulation through the 
regulation of collagen and MMP expression (49), and different types 
of collagen have been extensively reported to be  crucial for 
maintaining tissue structure and biomechanical function (50), but 
their effects at the cellular level have not been reported or validated. 
On the other hand, other studies have shown that activating 
transcription factor 3 (ATF3) can downregulate ROS through the 
p38/Nrf2 signaling pathway, protecting vaginal fibroblasts from 
injury and reducing cell apoptosis. However, oxidative stress is not 
always harmful; low levels of oxidative stress are beneficial for 
fibroblasts. In pulmonary fibroblasts, low levels of ROS activate 
fibroblast proliferation by suppressing antioxidant enzyme 
stimulation (51). Additionally, TGF-β1 may counteract oxidative 
stress and promote normal metabolism in normal fibroblasts (42).

4.3 Mechanical induction of the fibroblast 
inflammatory response

Inflammatory responses can generate various soluble 
inflammatory mediators, and interferon γ (IFN-γ) is a potent 

FIGURE 1

Roles and mechanisms of biomechanical-biochemical coupling in POP. POP, pelvic organ prolapse; MMP, matrix metalloproteinase; OS, Oxidative 
Stress; FBLN5, fibulin-5; LOXL1, lysyl oxidase like protein 1; TGF-β1, transforming growth factor-β1; TIMP, tissue inhibitors of metalloproteinases.
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proinflammatory molecule. Previous studies have shown that 
compared to those of non-POP patients, the mRNA levels of IFN-γ 
and its receptor in the vaginal wall in POP patients were higher, and 
the mRNA level of nuclear factor-κB (NF-κB) increased by 5.1-fold 
(52). Miao et al. showed that inflammation in POP is age-related, and 
there is are increases in biological processes associated with chronic 
inflammation in older POP patients, while in younger POP patients, 
these processes are associated with ECM metabolism and possibly 
related to immune regulation (19, 53). Increased inflammatory 
responses have also been observed in the USL of POP patients, leading 
to the definition of inflammatory-type POP at the pathological level 
(54). However, examination at the cellular level is still lacking. 
Moreover, mechanical force-induced mitochondrial dysfunction can 
activate inflammatory responses. When mitochondrial DNA is 
subjected to high-intensity stress, oxidative stress reactions are 
activated, leading to the leakage of mitochondrial ROS into the 
cytoplasm and the excessive activation of inflammatory mediators 
(55), such as NF-κB, tumor necrosis factor α (TNF-α), nucleotide-
binding oligomerization domain-like receptor protein 3 (NLRP3) 
inflammasomes, and activator protein 1 (AP-1), ultimately affecting 
the fate of fibroblasts (55). Unfortunately, relevant studies on POP 
patient cells have not shown crosstalk among the mechanochemical 
signaling pathways.

4.4 Mechanical induction of fibroblast 
apoptosis

Mechanical force is an environmental factor that affects the 
survival of pelvic floor cells. Previous proteomics analysis revealed 
that many differentially expressed proteins in the USLs of POP 
patients are apoptosis-related proteins (56). At the cellular level, the 
POP-hUSLF group showed high expression of proapoptotic proteins 
such as Bad, Bax, and Caspase 3, while the antiapoptotic protein 
Bcl-2 was decreased (43, 57). Consequently, cell apoptosis was 
significantly increased, indicating that mechanical force induces cell 
apoptosis. Overall, these studies suggest that cell apoptosis is a key 
mechanism underlying POP development. The growth rate of 
POP-hUSLFs was slower than that of healthy hUSLFs, and their 
proliferative capacity was impaired (58). Similarly, multiple studies 
have demonstrated that excessive mechanical stress inhibits cell 
proliferation and promotes apoptosis through the PI3K/Akt, p38/
MAPK, and actin cytoskeleton/Nr4a1 signaling pathways, and 
estrogen has a protective effect (36, 43, 46, 57, 59). (1) Akt, which is 
a component of the kinase network, participates in 
mechanotransduction (60). In healthy hUSLFs, mechanical strain 
activates the PI3K/Akt signaling pathway: mechanical stimulation 
rapidly activates Akt, recruiting it from the cytoplasm to the plasma 
membrane, where it is phosphorylated at Thr308 and Ser473. 
Activated Akt phosphorylates downstream FOXO1, causing nuclear 
exclusion of FOXO1 and reducing its ability to regulate target genes, 
including antioxidant enzyme-encoding genes that protect cells from 
oxidative damage (61). This leads to the downregulation of GPX1 and 
manganese superoxide dismutase (Mn-SOD) expression, activation 
of the oxidative stress signaling pathway, an increase in ROS, the 
promotion of hUSLF apoptosis and senescence, a decrease in COL1 
production, and ultimately cellular depletion, pelvic floor laxity, and 

functional impairment. A study in 2017 (40) demonstrated that 
overexpression of GPX1 in healthy hUSLFs and subsequent stretching 
increased mitochondrial membrane potential, decreased expression 
of oxidative stress markers (8-OHdG and 4-HNE), inhibited 
mitochondrial damage, attenuated cell apoptosis, and reduced 
collagen damage, indicating a protective effect on ECM remodeling 
in response to mechanical stretching in cells. (2) MAPK is a protein 
kinase family and a key signaling pathway through which mechanical 
signals promote cell apoptosis via phosphorylation cascades involving 
ERK, p38, and JNK. In fibroblasts in the periodontal ligament, 
activation of the p38/MAPK pathway by mechanical stress has been 
widely reported (62). Zhu et al. first reported the involvement of the 
p38/MAPK pathway in mechanotransduction in hUSLFs in the 
context of POP development (43, 63). After 24 h of stretching, the 
level of phosphorylated p38 protein was upregulated in healthy 
hUSLFs, and the increase in phosphorylated p38 was associated with 
increased expression of the apoptosis genes Bad and Bax, which 
could induce Bax translocation and increase cell apoptosis. However, 
there were no differences observed in ERK/MAPK or JNK/MAPK, 
suggesting that they may not be involved in POP development. It is 
also possible that the activation of these two pathways is delayed by 
the duration and intensity of mechanical force. Furthermore, role of 
the p38/MAPK signaling pathway can be validated by inhibiting or 
silencing p38. The failure of USL cells to resist excessive mechanical 
damage may also be a mechanism underlying the development of 
POP. (3) The actin cytoskeleton/Nr4a1 signaling pathway is involved 
in mechanical regulation. The actin cytoskeleton determines cell 
morphology and strength and participates in the transmission of 
mechanical signals. Nuclear receptor subfamily 4 group A member 1 
(Nr4a1) induces apoptosis through its interaction with Bcl-2. In 
hUSLFs, mechanical stretching can induce disassembly of the actin 
cytoskeleton. This leads to an increase in Nr4a1 levels through 
activation and induction. Nr4a1 then regulates the expression of the 
proapoptotic proteins Bax and Caspase 3 and downregulates the 
expression of the antiapoptotic protein Bcl-2, thereby promoting cell 
apoptosis. Knocking down Nr4a1 can reverse the proapoptotic effect 
induced by stretching. Therefore, the actin cytoskeleton/Nr4a1 
pathway is an important mechanism that regulates cell apoptosis 
during POP development. (4) Estrogen/poly-ADP-ribose polymerase 
1 PARP1 reverses mechanical transduction damage. PARP1 is a 
multifunctional nuclear enzyme that catalyzes the transfer of 
ADP-ribose units from NAD+ to specific target proteins, which 
controls important physiological processes such as DNA damage and 
gene expression (64). PARP1 is an important member of the 
antiapoptotic protein family. Studies have indicated that mechanical 
stretching induces cell apoptosis and death in patients and healthy 
hUSLFs and that poststretching intervention with estrogen improves 
cell status (58). The estrogen/PARP1 signaling pathway is involved in 
the development of POP. Estrogen upregulates the expression of the 
antiapoptotic protein Bcl-2, downregulates the expression of the 
proapoptotic protein Bax, and enhances expression of the estrogen 
receptor (ERα). ERα targets poly-ADP-ribosylation to upregulate 
PARP1, thereby reducing mechanical strain-induced apoptosis and 
death in hUSLFs. Interestingly, estrogen exhibits this protective effect 
only when mechanical stretching stimulates PARP expression. 
Therefore, further research is needed to elucidate the molecular 
mechanisms underlying this phenomenon.
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4.5 Mechanical strain with other potential 
elements

Firstly, Mechanical strain often directly regulate gene 
expression. When mechanical stretch was applied, normal hUSLs 
exhibited ROS, apoptosis, and senescence (65). In vitro 
experiments had shown that overexpression of FBLN5 could 
alleviate mechanical strain-induced damage in hUSLF cells by 
inhibiting FOSL1 expression. However, knocking out FBLN5 
could promote the occurrence of pelvic organ prolapse in the PFD 
model rats by regulating the FOSL1/miR-222/MEIS1/COL3A1 
axis (65). Secondly, lack of effective mechanical strain modeling 
at present. Using a physiologically relevant 3D in vitro model, 
under static conditions, 3D cultured POP fibroblasts are less 
proliferative, exhibit lower collagen and elastin contents compared 
to non-POP fibroblasts. However, under mechanical loading, the 
differences between POP and non-POP fibroblasts are less 
pronounced (66). This suggests that although mechanical stress 
plays a major role, there is no more comprehensive model that 
accurately simulates the pathophysiology of POP. Meanwhile, in 
vivo, a study first measures whether there is a significant difference 
in viscohyperelastic behavior of the USL between women with and 
without POP with a computer-controlled linear servo-actuator 
and did not differ significantly. Thus, larger sample sizes would 
help improve the precision of intergroup differences. So that, the 
study suggests that expanding larger sample sizes would help 
improve the precision of intergroup differences (67).

5 Conclusion

This study presents a comprehensive overview of the 
biomechanical structure of the anterior vaginal wall and USLs, as well 
as the interaction between fibroblast biomechanics and chemical 
signaling. Although significant progress has been made in 
understanding the biomechanical dysfunction underlying POP, there 
are still unresolved issues. The details of collagen synthesis, assembly, 
maturation, and mechanical signal transduction remain unclear, 
making it challenging to determine whether the observed results are 
the cause or consequence of prolapse. Additionally, the effects of 
appropriate force and oxidative stress on fibroblast proliferation and 
function contradict the findings of earlier studies, calling for further 
investigation. Furthermore, molecular differences between prolapsed 
and nonprolapsed sites within the same patient pose challenges in 
terms of sample collection and research methodologies. Therefore, a 
systematic compilation of existing research is crucial in guiding future 
investigations. Moreover, the use of suitable animal and cell models 
has become increasingly important for gaining deeper insights into 

the pathogenesis of POP. Ultimately, addressing these issues will 
contribute to improving the incidence rate of POP, but it requires 
long-term exploration and research.
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