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Introduction: Single-cell multi-omics studies, such as multidimensional 
transcriptomics (whole transcriptomic analysis, WTA), and surface marker 
analysis (antibody sequencing, AbSeq), have turned out to be valuable techniques 
that offer inaccessible possibilities for single-cell profiling of mRNA, lncRNA, 
and proteins.

Methods: We used this technique to understand the dynamics of mRNA 
and protein-level differences in healthy, COVID-19-infected and recovered 
individuals using peripheral blood mononuclear cells (PBMCs). Our results 
demonstrate that compared to mRNA expression, protein abundance is a better 
indicator of the disease state.

Results: We demonstrate that compared to mRNA expression, protein abundance 
is a better indicator of the disease state. We observed high levels of cell identity and 
regulatory markers, CD3E, CD4, CD8A, CD5, CD7, GITR, and KLRB1 in healthy 
individuals, whereas markers related to cell activation, CD38, CD28, CD69, CD62L, 
CD14, and CD16 elevated in the SARS-CoV-2 infected patients at both WTA and 
AbSeq levels. Curiously, in recovered individuals, there was a high expression of 
cytokine and chemokine receptors (CCR5, CCR7, CCR4, CXCR3, and PTGRD2). We 
also observed variations in the expression of markers within cell populations under 
different states.

Discussion: Furthermore, our study emphasizes the significance of employing 
an oligo-based method (AbSeq) that can help in diagnosis, prognosis, and 
protection from disease/s by identifying cell surface markers that are unique to 
different cell types or states. It also allows simultaneous study of a vast array of 
markers, surpassing the constraints of techniques like FACS to query the vast 
repertoire of proteins.
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Introduction

Infectious diseases such as Flu, tuberculosis (TB), Dengue, and 
respiratory infections like SARS-CoV-2 pose a serious threat to 
world health. They account for between 25 and 33% of all deaths, 
making a significant contribution to the global mortality rate (1). 
In addition to mortality, they stretch healthcare support globally 
and locally as well. The SARS-CoV-2 outbreak, which led to the 
COVID-19 pandemic, stands as one of the most significant global 
pandemics in recent times, with its enduring repercussions 
potentially yet to unfold (2). Exploring the complex landscape of 
gene expression is essential for improving our knowledge of these 
diseases at the molecular level and facilitating the creation of useful 
diagnostics and targeted therapeutics. Gaining important insights 
and addressing the issues posed by these infectious diseases requires 
extensive research in this area. Gene expression encompasses two 
fundamental stages: transcription and translation, where the genetic 
information encoded in DNA is converted into functional proteins. 
RNA and protein levels are believed to be  strongly correlated 
although empirical studies have shown that this link is not always 
unidirectional (3, 4). According to Schwanhäusser et al., mRNA 
levels explain only 40% of the variability in protein levels, leaving 
60% of the variability unaccountable (5). The observed discrepancies 
in RNA and protein levels can be traced back to a complex interplay 
that has numerous complex and dynamic components (6). Post-
transcriptional regulation including capping, RNA editing, and 
alternative splicing plays a requisite role in shaping protein 
expression and contributes to the differences between mRNA and 
protein levels (7). These regulatory processes impact RNA stability 
and quantity, ultimately influencing protein synthesis. The accurate 
measurement of both RNA and protein expression within different 
tissues and cells is essential for a comprehensive understanding of 
disease mechanisms. While significant attention has been given to 
RNA measurements thus far, it is noteworthy that protein levels 
frequently exhibit limited correlation with transcript levels (8). 
Apart from post-transcriptional-and post-translational processes, 
several other factors can contribute to discordance between mRNA 
and protein levels. These include long non-coding RNAs, protein 
and mRNA half-lives and receptor internalization, which can 
indirectly affect the mRNA and protein levels (9, 10). According to 
Benoit P. Nicolet, the correlation between mRNA and protein levels 
is dependent on the specific class of genes and is influenced by 
factors such as sequence conservation, structure sequences found 
in the untranslated region of these genes (11). Highly conserved 
genes tend to show stronger similarities between mRNA and 
protein expression. On the other hand, less conserved genes may 
exhibit relatively more discordance between mRNA and protein 
levels, suggesting additional regulatory mechanisms beyond 
transcription and translation may impact protein abundance (11). 

The mRNAs that exhibit differential expression are more likely to 
exhibit concordance in protein expression than mRNAs that do not 
exhibit differential expression. In other words, if there is an increase 
or decrease in mRNA expression, it is more probable that a similar 
change will be observed in protein expression (12). The precise 
regulation of these processes is critical for controlling the levels of 
mRNA and protein in cells and ensuring proper cellular function. 
Untangling the dynamics between RNA and protein expression in 
response to infections such as COVID-19, dengue, and tuberculosis 
is crucial for unraveling the complex mechanisms governing gene 
expression and protein synthesis. Bridging this gap can lead to the 
identification of new biomarkers, therapeutic targets, and efficient 
methods to understand these infectious diseases (8).

Single-cell sequencing studies offer a comprehensive overview of 
the genes that are actively expressed within a cell. The whole 
Transcriptome Analysis (WTA) technique, which captures cellular 
mRNA by its poly-A tail, is the empirical way to study the gene 
expression at the single cell level, while oligonucleotide-labeled 
antibody-based techniques, such as AbSeq (Antibody sequencing) and 
CITE-seq (cellular indexing of transcriptomes and epitopes) enables 
the simultaneous profiling of transcriptome and cell surface proteins 
using different barcoding and sequencing approaches (13, 14). 
Integration of the WTA and AbSeq techniques offers a more 
comprehensive view of the cellular states which, otherwise could not 
be investigated using any one of them only. Despite the fact that both 
mRNA and protein expression are produced by the same cell, most 
studies consider the differences between mRNA and protein 
expression, yet the deeper investigation of their disparities remains 
relatively unexplored (3, 5).

Previously, for assessing the gene/protein expression, researchers 
used methods including western blotting, transcriptomics, and 
fluorescence-activated cell sorting (FACS). However, these techniques 
were limited in their technical abilities and capacity for investigating 
individual cells. As a result, the development of single-cell technology 
revolutionized the research field by making it possible to do both 
surface marker and transcriptome study at single-cell level. This 
integration of WTA and AbSeq allows for a more comprehensive and 
detailed understanding of gene expression profiles and protein 
abundance in individual cell types, facilitating a deeper exploration of 
cellular heterogeneity and its functional characterization. Single-cell 
technologies have overcome the limitations of population-level 
analysis, revealing previously unseen variations and highlighting the 
significance of mRNA-protein disparities within the cellular 
systems (15).

In our study, which included healthy, COVID-19 patients as well 
as recovered, we employed transcriptomics and targeted proteomics 
to explore the immune cell dynamics, underlying gene expression 
patterns, and mechanisms of this infectious disease. This enabled us 
to analyze and compare the gene expression profiles and protein levels 
in healthy, infected and recovered groups. The findings emphasize 
immunological aspects of COVID-19 by mapping genes related to 
immune cell activation, immune system components, and protective 
immunity. This enhances our understanding of disease-related 
genomic patterns and helps identify potential modulator genes or 
proteins. We reported on the differences in cumulative average WTA 
and AbSeq when studied at the single level and their contribution to 
cell-to-cell variabilities. We highlighted the functional significance of 
discordance and concordance between WTA and AbSeq. We observed 

Abbreviations: BD, Becton, Dickinson and Company; WTA, Whole transcriptome 

analysis; AbSeq, Antibody Sequencing; FACS, Fluorescence-activated cell sorting; 

PBMC, Peripheral blood mononuclear cells; CITE Seq, Cellular Indexing of 

Transcriptomes and Epitopes Sequencing; scRNA Seq, Single-cell RNA Sequencing; 

RT-PCR, Real-time reverse transcription – polymerase chain reaction; PBS, 

Phosphate-buffered saline; FBS, Fetal bovine serum; dsDNA, Double-stranded 

DNA; CRP, C-Reactive Protein; MHC, Major histocompatibility complex.
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more discordance within the immune markers at the AbSeq level 
compared to WTA, which was highly expressed and cell type-specific 
dynamics. We further clarified the functional relevance associated 
with these observed discrepancies, which highlighted their 
importance. Finally, we highlighted the distinct regulation of immune 
genes and their expression patterns in both normal and infected states, 
particularly emphasizing the heightened and consistent expression of 
cell activation markers during infection.

Materials and methods

Sample collection and PBMCs isolation

A total of 33 individuals, including healthy, confirmed SARS-
CoV-2-infected and recovered, were provided whole blood 
samples at Dr. D. Y. Patil Medical College, Hospital and Research 
Institute, Kolhapur, Maharashtra, India (Supplementary Table S1; 
Supplementary Figures S1A,B). The study cohort was recruited 
between November and December 2020. All the recovered 
samples were collected within 1 month after recovery, confirmed 
by negative real-time reverse transcription–polymerase chain 
reaction (RT-PCR, Ct value >35) using TRUPCR® SARS-CoV-2 
RT qPCR Kit (3B BlackBio Biotech, India, Catalog no: 3B307). 
Blood samples were collected using BD Vacutainer CPT cell 
preparation tubes (Becton, Dickinson and Company, 
United  States, Catalog no: 362753), that contained sodium 
heparin. This method takes advantage of the differential 
migration of blood cells through polyester gel and a density 
gradient liquid media during centrifugation. The centrifugation 
step was performed at room temperature (RT) with a speed of 
1800 RCF for 20 min. Following centrifugation, the isolated 
PBMCs were washed twice with PBS (phosphate-buffered saline, 
Gibco, United  States, Catalog no: 70013032) at 300 RCF for 
15 min at room temperature and preserved for future use by 
cryopreservation in a media composed of 90% Fetal bovine 
serum-FBS (Gibco, United  States, Catalog no: 10082147) and 
10% dimethyl sulfoxide (Sigma Aldrich, USA, Catalog no: 
D8414) (16). This preservation method maintains the long-term 
viability and integrity of the PBMCs for subsequent analyses.

Sample processing, single-cell library 
preparation and sequencing

After thawing and reviving the PBMCs, 2 × 105 cells per sample 
were used for downstream processing. The cells were labeled with the 
BD single cell multiplexing kit-human (Becton, Dickinson and 
Company, United  States, Catalog no: 633781) and 40 BD AbSeq 
antibody oligonucleotides (cell surface marker tagging). Following the 
manufacturer’s instructions during the labeling procedure ensured 
precise and effective labeling of the cells with antibodies. The 
supplementary file contains a list of specific antibodies targeting 
surface markers, along with their corresponding attached oligos 
(Supplementary Table S2). Around 30,000 cells were loaded into the 
cartridge for each experiment. Cell capture beads were loaded onto 
the cartridge and was followed by the cell lysis step. The poly-
adenylated RNA, along with sample multiplexing antibody and AbSeq 

oligos bind on the oligo-coated beads. Post lysis, the beads were 
retrieved from the cartridge, and washed before processing to the 
on-bead cDNA generation. The cDNA was prepared according to the 
manufacturer’s instructions, and the entire library was generated using 
the BD Rhapsody WTA amplification kit (Catalog no: 633801, Doc 
ID: 23–21,752-00). Post cDNA generation, the WTA and the AbSeq 
and SM (sample multiplexing) products were separated for 
amplification using specific primers. Post amplification, forward and 
reverse index were added to the amplified WTA and AbSeq + SM 
product. Quality and quantity check for libraries were done using 
Qubit 4 fluorometer (Invitrogen, United States, Catalog no: Q33238) 
with Qubit High sensitivity double stranded DNA assay (Invitrogen, 
United States, Catalog no: Q32854), and the Agilent Bioanalyzer 2,100 
(Agilent Technologies, United  States, Catalog no: G2939BA) with 
Agilent high sensitivity DNA kit (Agilent Technologies, United States, 
Catalog no: 5067–4,626). The library was sequenced on a 
NovaSeq 6,000 sequencing system (Illumina, United States, Catalog 
no: 20012850) using S2 sequencing reagent kit (Illumina, 
United  States, Catalog no: 20028315) with 101 paired end cycles, 
achieving a sequencing depth of approximately 30,000 reads per cell 
for WTA and 500 reads per AbSeq per cell.

Single-cell RNA seq data processing and 
clustering

The raw sequencing data was demultiplexed using bcl2fastq.1 
The sequencing data (FASTQ format) was uploaded to SevenBridges 
platform for further analysis using BD Rhapsody™ WTA Analysis 
Pipeline (Figure 1). The pipeline takes the FASTQ files, a reference 
genome file, and a transcriptome annotation file for gene alignment. 
The pipeline generates molecular counts per cell, read counts per 
cell, metrics, and an alignment file. The count matrix was then 
processed using Seurat v4.0  in R v4.2 for quality check (QC), 
normalization, clustering, and cell type annotation. For AbSeq 
analysis an AbSeq reference (FASTA format) was generated using 
BD AbSeq reference generator.2 This was used along with the 
FASTQ file, the genome reference and transcript annotation in BD 
Rhapsody™ WTA Analysis Pipeline to generate a combined count 
matrix for WTA and AbSeq. The expression of the AbSeq and the 
corresponding genes were fetched from the annotated Seurat Object 
for targeted statistical analysis and visualization. The AbSeq count 
matrix was separated from WTA count matrix and was integrated 
to the SeuratObject of WTA data following the Seurat multimodal 
integration guide.3

At the outset of the study, 163,197 cells were included, and the 
count matrices derived from both WTA and AbSeq experiments were 
integrated. To enhance the overall quality of the dataset, reduce 
technical noise, maintain data integrity, and ensure that downstream 
analyses, cells with a Unique Molecular Index (UMI) count exceeding 
>2,500 and below <20 were excluded, while batch effects were rectified 
through normalization procedures (17, 18). The data were further 

1 https://sapac.support.illumina.com/sequencing/sequencing_software/

bcl2fastq-conversion-software.html

2 http://abseq-ref-gen.genomics.bd.com/

3 https://satijalab.org/seurat/articles/multimodal_vignette.html
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normalized using Seurat scTransform V2. Unsupervised clustering 
was performed with a resolution of 0.4 to group cells, and the results 
were visualized using the t-SNE algorithm. The cluster-specific 
differential expression DE genes were identified using the 
FindAllMarker function of the Seurat package. Clusters were 
comprehensively annotated by employing a range of tools, such as 
CellMarker DB (19), PangloDB (20), Azimuth (21), and scPred, using 
both manual and automatic methods. Genes and markers list used to 
identify specific cell types are mentioned in Supplementary Table S3. 
The previous publication provides a comprehensive methodology 
description (18). All the codes used in the study are available at 
Zenodo.4

4 https://zenodo.org/records/10443214

Statistical analysis

Wilcoxon signed rank test was performed in R studio (version 
4.2.1) to calculate significance (Sample wise count matrix mentioned 
in Supplementary Tables S4A,B) within WTA and AbSeq normalized 
counts across healthy, infected, and recovered individuals which is 
highlighted in Supplementary Tables S5A,C for WTA and 
Supplementary Tables S6A,C for AbSeq.

Results

Differential expression of immune cell 
markers at WTA and AbSeq levels

Previous studies have highlighted the discrepancy between mRNA 
and protein levels across various tissues and cells (22, 23). In our single 

FIGURE 1

Flowchart depicting methodology steps for understanding WTA/AbSeq concordance and discordance using single cell RNA Seq technology.
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cell-based investigation, we  observed differences between protein 
markers and their corresponding mRNA levels. Using PBMCs from 
SARS-CoV-2-infected (n = 16), Recovered (n = 13), and Healthy (n = 4) 
individuals, we performed single-cell multi-omics study (WTA and 
AbSeq) using the BD Rhapsody express single cell analysis to 
understand the immune response dynamics during and post SARS-
CoV-2 infection (Figure 2A). The clinical and demographic details of 
the individuals are available at Supplementary Table S1. The age and 
gender matched patients recruited in our study were chosen to 
minimize inter-individual differences (Supplementary Figures S1A,B). 
We further focused on two key subsets of information about their 
disease state: HRCT score and C-reactive protein (CRP) levels. Both 
CRP and HRCT scores were used to categorize the patients into 
different disease states. To ensure a more homogeneous group, 
we employed a statistical method called a Student’s t-test to analyze 
and represent the data using a box plot. We have also checked for the 
immunological response within the Infected group. We  used 
C-reactive protein (CRP) expression as a marker for immunological 
response and found no significant difference between the different 
severity and age groups among the infected individuals. Initially, 
163,197 cells were identified post-sequencing from all 33 samples. 
Following QC and the removal of low-quality cells, 124,726 cells were 
retained. Batch correction and normalization were done using Seurat 
SCTransform v2; followed by dimension reduction and unsupervised 
clustering (using the Louvain algorithm). The clusters were annotated 
both manually (canonical markers from CellMarker, PangloDB, and 
Azimuth) and Support Vector Machine based tools (scPred).

Our study revealed the presence of 17 distinct clusters across the 
Healthy, Infected, and Recovered, indicating variations in the abundance 
of different cell types (Figures 2B,C). We subsequently looked for the 
WTA and AbSeq profiles to gain insight into gene expression patterns 
and protein abundance across different cell types. Through this analysis, 
we explored the expression patterns of these markers to understand the 
molecular diversity and functional characteristics of the individual cells, 
across the groups and examined the variations within each group. The 
significance of expression difference (both WTA and AbSeq) across 
groups are available at Supplementary Tables S5, S6. We performed an 
expression pattern analysis on the WTA and AbSeq, dividing them into 
two main categories: similar and dissimilar. In the similar category, 
we observed parallel expression trajectories between WTA and protein 
levels. For example, if the WTA expression level was moderate in the 
healthy group, the corresponding AbSeq expression level was also 
moderate. Similarly, if the WTA expression level was high in the SARS-
CoV-2-infected group, the AbSeq expression level was also high 
(Supplementary Figure S2). On the other hand, in the dissimilar 
category, we found that the WTA and AbSeq patterns did not follow the 
same trajectory between the groups. Interestingly, we noticed that the 
WTA expression pattern remained unchanged for all 39 genes within a 
given group. However, we observed four different patterns at the surface 
marker level, indicating variations in protein expression despite the 
stable WTA expression pattern. A group of surface markers (CD38, 
CD28, CD69, CD14, FCGR3A, ENTPD1, SELL, FAS, CXCR4, ITGA4, 
and CD19) exhibited expression pattern similar to the corresponding 
mRNA expression (Figure 2D). Another set of surface markers (CD4, 
CD8A, CD5, HAVCR2, CD40LG, CD27, CD7, GITR, and CD40) 
exhibited an expression pattern opposite to their WTA counterparts in 
the Healthy group but had a similar expression in other groups 
(Figure 2E). A third group of surface markers (TRDC, CCR7, PTPRC, 

LAG3, IL2RA, CCR5, PDCD1, PTGDR2, CXCR3, CCR4, and IL7R) 
exhibited expression pattern opposite to their WTA counterparts in the 
Recovered group but had similar expression pattern in the other groups 
(Figure 2F). Finally, 8 surface markers (CXCR5, CR2, NCAM1, KLRB1, 
CD3E, CTLA4, TRAC, and CD74) had expression pattern completely 
opposite to their WTA counterparts across the three groups (Figure 2G). 
Overall, about 72% of the surface markers showed discordance, while 
remaining 28% exhibited concordance with their corresponding mRNA 
expression (Figure 2H). The specific expression patterns for the surface 
markers as well as the expression profile of AbSeq and WTA are 
available as Supplementary Figures S3–S6 and Supplementary Table S7.

Functional relatedness of WTA and AbSeq 
resulting in differential expression patterns

Subsequently, we investigated the functional implications of genes 
across healthy, infected, and recovered individuals, driven by the 
hypothesis that the presence or absence of correlation between mRNA 
and protein levels for a gene may be indicative of its functional role 
(Figure 3). We made an intriguing observation that genes exhibiting 
similar expression patterns also displayed functional relatedness. 
Notably, certain cell surface markers (CD38, CD28, CD14, ENTPD1, 
and SELL) showed concordance between their mRNA and protein 
levels. These markers are known as cell activation markers, and their 
elevated expression in SARS-CoV-2-infected individuals signifies their 
upregulation during infection (24–26). During SARS-CoV-2 infection, 
an observed increase in the abundance of specific immune cell subsets, 
including subsets of T cells, B cells, NK cells, and monocytes, that 
express these markers has been noted (Figure  2C). This suggests a 
potential involvement of these cell populations in the immune response 
and highlights their relevance in the context of infection.

We further observed that cell migration and cell exhaustion-related 
surface markers (CCR4, CCR5, CCR7 (CD197), IL7R (CD127), IL2RA 
(CD25), CXCR3, LAG3, PDCD1 (PD-1)) exhibited high expression 
levels in recovered individuals. Chemokines are essential in the 
immune response to viral infections as they play an important role in 
facilitating both innate and adaptive immune cells to the sites of 
infection. They also enhance these cells’ capacity to synthesize antiviral 
compounds and exert cytotoxicity, which strengthens the body’s 
general resistance to viral infections. The level of concordance or 
discordance can provide insights into the regulation and functional 
relevance of specific genes in various biological processes.

Conversely, markers related to cell identity and cell regulation such 
as CD8A, CD3E, CD5, CD7, CXCR5, NCAM1 (CD56), TRAC and 
GITR, HAVCR2 (TIM-3), CR2, CTLA4, KLRB1, CD74 (27) displayed 
higher expression in healthy individuals compared to the infected and 
recovered patients. While the overall abundance of cells expressing 
these markers was decreased in the recovered individuals, it is likely 
that the remaining cells have upregulated the expression of these 
markers as a means of promoting robust recovery. Higher expression 
of these markers in healthy individuals suggests a responsive immune 
system with regulated immune response. Conversely, decreased 
expression or altered patterns of these markers can indicate immune 
dysregulation or dysfunction associated with various diseases or 
conditions. We have reviewed the specific function of the surface 
markers, their role during infection and cell type specific expression 
in Supplementary Table S8. This suggests that the different AbSeq 

https://doi.org/10.3389/fmed.2024.1297001
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Soni et al. 10.3389/fmed.2024.1297001

Frontiers in Medicine 06 frontiersin.org

FIGURE 2

Correlation of WTA/AbSeq across healthy, SARS-CoV-2-infected and recovered individuals. (A) Sample distribution across the three groups of Healthy, 
SARS CoV-2 Infected and Recovered, schematic workflow followed by library preparation and scRNA sequencing for WTA and AbSeq. (B) tSNE 
visualization of the 124,726 cells across the three groups. (C) The stacked bar plot shows the relative abundance of the cell types across the three 
groups. (D–G) Four different patterns were observed across the 39 genes. (H) Distribution of all 39 immune genes with their expression patterns and 
comparison groups WTA/AbSeq.
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expression patterns observed are associated with specific biological 
functions rather than any sporadic burst.

Immune cells with a particular function 
have different patterns between WTA and 
AbSeq

Within cell types, we looked at the WTA and AbSeq expression 
patterns through integrative analyses. We could detect heterogeneity 
in the expression of markers within the cell populations under various 
circumstances. It is interesting to note that when we looked at the 
cumulative average at the WTA level, most cells displayed comparable 
expression patterns (28). However, contrasting expression has been 
observed at AbSeq level (Supplementary Figure S7). To elucidate the 
underlying mechanisms responsible for the discordance observed in 
the AbSeq data, we analyzed the variability in both cell type-specific 
marker expression and cell type abundance across the three groups. 
Based on our observations, it can be inferred that the discordance 

detected in the AbSeq data can be  predominantly attributed to 
individual cell types including activated CD4+ T cells, CD4+ TCM, 
CD8+TCM, CD8+TEM, Classical Switch Memory B cells (CSMB), 
Classical Monocytes, Dendritic Cells, Intermediate Monocytes, Naive 
B, Naive CD4+/CD8+ T cells, NK cells, NK T cells, Plasmablasts, 
Platelets, T helper1 and T helper 2 cells.

Consistency of immune cell identities in healthy 
individuals

Our study revealed a decrease in the expression of cell identity 
markers and co-receptors in individuals who were either infected for 
SARS-CoV-2 or recovered when compared to the healthy individuals. 
This decrease was observed primarily in specific cell types, such as 
dendritic, natural killer, natural killer T, classical monocytes, and T 
helper 1 and T helper 2 cells (Figure 4A). Our results suggest that 
healthy individuals maintain a state of balanced innate and adaptive 
immunity, which is clear in the high expression of cell identity markers 
and co-receptors. These markers may play a critical role in immune 
cell activation and subsequent immune response.

FIGURE 3

Functional role of surface markers. These markers were mainly involved in cell activation, cell identification, cell migration, antigen recognition, cell 
development and proliferation, cell exhaustion, and regulation markers. The color represents their comparatively higher abundance across the three 
groups. Green color markers represent abundant markers within healthy individuals. Red color represents markers high in SARS-CoV-2 infected 
individuals, whereas blue markers indicate abundance in the recovered. The cell activation markers were high in infected, exhaustion markers were 
high in recovered, and cell identification and development markers were high in healthy.
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The concordance of cell activation markers in 
SARS-CoV-2-infected individuals

Our data revealed a significant high expression of CD14, 
FCGR3A, CD38, CD28, CD69, and CD62L in the SARS-CoV-2-
infected patients. Studies have reported that these markers are 
commonly associated with cell activation (29–31). Upon further 
investigation of the cell types expressing these markers, we observed 
that Classical Switched Memory B (CSMB) cells, Dendritic cells 
(DC), Naive B cells, Plasmablasts, Natural killer T (NK T) cells, 
CD4+ T cells, Naive CD4+/CD8+ T cells, as well as T helper 1 and T 
helper 2 cells were predominantly involved (Figure 4B). They are 

essential for eliciting immunological responses such as antibody 
formation, cytotoxicity, and cytokine release, to configure infections 
and safeguard the host.

Elevated cytokine and chemokine receptor 
expression in recovered individuals: 
consequences for cytokine storm response

The expression of markers associated with cell migration and 
exhaustion, namely CXCR3, CCR7, CCR5, CCR4, LAG-3, and PDCD1, 
was observed to be elevated in individuals who had recovered from 
SARS-CoV-2 infection (32). Notably, these markers were 

FIGURE 4

Highlights the specific cell types contributing to the distinct expression patterns observed at the AbSeq level. (A) High expression of specific markers in 
Dendritic cells (DCs), Classical Monocytes (CMs), Natural Killer (NK) cells, Natural Killer T cells (NKT), T helper 1 cells, and T helper 2 cells are primarily 
responsible for the elevated expression of cell identity markers and co-receptor surface markers in healthy individuals, as highlighted on the right side 
of figure. (B) Cell types including CD4+ T Effector Memory cells, Classical Switch Memory B (CSMB) cells, Dendritic cells (DCs), Naive B cells, Naive 
CD4+/CD8+ T cells, Plasmablasts, Natural Killer cells, and T helper 1 and T helper 2 cells. These cell populations collectively contribute to the elevated 
expression of cell activation markers and exhibit a concordance between mRNA and protein levels. (C) Activated CD4+ cells, CD4+ T Central Memory 
cells, CD8+ T Central Memory cells, and Classical Monocytes exhibit heightened cytokine and chemokine receptor expression in recovered individuals.
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predominantly expressed in activated CD4+ and CD4+ TCM cells, 
CD8+ TCM cells, and classical monocytes (Figure 4C). These cell types 
contribute to the immune memory and defense mechanisms in 
recovered individuals, helping to prevent possible reinfection and 
fostering a quicker and more efficient response to pathogens 
(Supplementary Table S9). The observed variations in marker 
expression collectively suggest the presence of a robust and efficient 
immune response marked by the persistence of long-lasting memory 
T cells, indicating recovery of patients. This finding highlights the 
critical role of an effective immune response in providing immunity 
against infectious agents.

Discussion

Despite extensive research on the relationship between mRNA 
and protein expression, the underlying mechanisms that lead to their 
concordance or discordance remain incompletely understood. 
Understanding the intricate relationship between mRNA and protein 
levels is of utmost importance for addressing crucial biological states, 
especially during infections. This encompasses unraveling the 
complexities of immune responses in steady-state conditions, diseased 
states, and during the process of recovery, while also considering the 
inherent heterogeneity within immune cell populations. Such 
investigations hold great promise in advancing our comprehension of 
immune system dynamics and its implications in health and disease 
toward future pandemic preparedness.

In response to infections, protein level undergoes dynamic 
variations that are primarily fueled by changes in mRNA abundance, 
especially for genes involved in immune responses (4). Our study 
employed the WTA and AbSeq techniques using BD Rhapsody to 
investigate a range of physiological conditions: healthy, infected and 
recovered. The mRNA and protein levels are often averaged across 
several cells when analyzing in bulk level and in steady-state 
conditions, ignoring any differences that may exist between individual 
cells. Our dataset brings attention to a collection of genes that 
demonstrate clear discordance between mRNA and protein expression 
levels at the individual cellular level in PBMCs. While the baseline of 
surface marker and their corresponding RNA expression are different 
because they are two measurements at two different levels but at the 
same time: one within a cell, and the other on the cell surface. Given 
the different biological regulation during transcription and translation, 
their baseline of expression is expected to be different. It is also true 
that RNA within a cell have multiple regulators as compared to a 
relatively stable surface protein which in turn can lead to more 
variations in the RNA counts as compared to the surface markers. The 
fact that the AbSeq expression was not so different at the 
group level (Supplementary Table S7) but at cell type level 
(Supplementary Table S4), it reiterates our findings that the discordant 
expression of WTA and AbSeq are plausibly cell type specific. A study 
by Zerdes et al. also found discordance in protein and RNA expression 
levels of PD-L1 in breast tumor samples (33). Furthermore, our results 
align with previous studies by Liu et al. and Buccitelli et al., which 
employed high-throughput sequencing methods, including bulk 
RNA-seq (8, 34). These studies also identified substantial gene groups 
demonstrating disparities in mRNA and protein expressions in their 
respective datasets. This accumulation compromises the fundamental 
distinctions between cells and their functional importance. In other 

words, tissues in general are made up of various cell types that 
communicate with one another. Because of this, heterogeneity within 
a single tissue will have radically different transcriptome and proteome 
compositions, both qualitatively and statistically (35). This 
phenomenon may be  attributed to the intermittent nature of 
transcription, where RNA synthesis occurs in sporadic bursts with 
relatively shorter lifespan of RNA molecules. In contrast, proteins tend 
to be more stable and play vital roles in carrying out cellular functions 
(36, 37). Several factors, such as post-transcriptional and translational 
modifications, RNA and protein half-life, alternative splicing, and 
cellular states, may influence this regulation.

The findings from our study suggest a possible multi-layered 
relationship between mRNA and protein levels by showing that the 
rise in cell activation markers at both the WTA and AbSeq levels 
reflects their critical function in inducing a quick response to 
infections (24). Interestingly, CD38, which is known to confer 
protection against bacterial and parasitic pathogens, was found to 
be upregulated in the study. CD28, a cell surface receptor, has been 
recognized as a significant marker of immune activation due to its 
vital role in promoting the proliferation and maintenance of T helper 
cells during viral infections. T helper cells play a crucial role in 
orchestrating immune responses by activating other immune cells and 
aiding in the clearance of pathogens. CD28 engagement provides 
essential co-stimulatory signals that enhance T cell activation and 
effector functions, leading to an effective immune response against 
viral infections. The identification of CD28 as a potential marker of 
immune activation highlights its importance in providing crucial 
signals for the optimal functioning of T helper cells during infections, 
thereby contributing to the overall immune defense against viral 
pathogens (38, 39). CD39, a cell surface marker expressed on various 
immune cells such as B cells, monocytes, and CD4+ T cells, has 
emerged as a significant activation marker with regulatory properties. 
During infections, CD39 plays a crucial role in modulating immune 
responses and maintaining immune homeostasis. It functions as an 
ectonucleotide, catalyzing the hydrolysis of ATP and ADP into AMP 
and subsequently into adenosine. By converting ATP and ADP, which 
are pro-inflammatory molecules, into adenosine, CD39 helps regulate 
immune activation and dampen excessive inflammation. Similar to 
our findings, a study reported that certain cell surface markers, 
including CD8a, CD11b, FCGR3A (CD16), CD19, CD20, and 
CD25, exhibited a strong correlation between their mRNA and 
protein expression levels, suggesting their potential as cell 
identification markers.

Evidence from a parallel study highlights discrepancies between 
mRNA and protein levels of several markers, such as CD3, CD4, 
CD27, CD34, CD69, and CD80. These findings indicate the likelihood 
of variations in post-transcriptional and translational modifications 
among different genes (40).

These findings shed light on the complex interplay between 
immune cells and the pathogens they encounter, providing new 
insights for developing targeted therapies (41). The downregulation of 
antigen recognition and presentation markers indicates a discrepancy 
between mRNA and protein expression levels (42). Viruses have 
evolved diverse mechanisms to evade or suppress immune responses, 
one of which involves targeting and depleting cell surface major 
histocompatibility complex (MHC) molecules. MHC molecules play 
a critical role in presenting viral antigens to immune cells, enabling 
the recognition and elimination of virus-infected cells by the immune 
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FIGURE 5

Summary of the key findings from the study. The graphical visualization illustrates the differences between WTA and AbSeq within distinct cell types 
across healthy, infected, and recovered groups. The gene expression graph represents various genes (circle color) with diverse expressions (circle size) 
in WTA and AbSeq groups. Notably, our findings highlight the importance of a multi-omics approach in enhancing disease diagnosis and prognosis.

system. By depleting cell surface MHC molecules, viruses impair the 
ability of the immune system to detect infected cells and mount an 
effective immune response (43). This suggests viral suppression of 
mRNA translation, subverting the host’s immune response. These 
observations align with previous reports of downregulation of 
antigen-presenting markers observed in both SARS-CoV-2 and other 
infectious diseases, indicating a novel mechanism employed by the 
virus to evade cellular immunity (44, 45).

Increased expression of chemokine and cytokine receptors 
such as CXCR5, CCR4, CCR5, and CCR7 has been reported in 
both active and recovered COVID-19 individuals (18, 46). In our 
results we observed high expression of cytokine and chemokine 
receptors in the recovered individuals majorly in activated CD4+ T 
cells, CD8+ T central memory, CD4+ T central memory cells 
(Figure  5). The observed elevation in cytokine and chemokine 

activity markers among individuals who have recovered could 
be attributed to a decrease in the expression of CD40 and CD40LG, 
which are essential regulators of the cytokine/chemokine response. 
Additionally, another possible factor contributing to the heightened 
cytokine response is the depletion of a specific subset of Naive 
CD4+ T cells that express genes such as BACH and MALAT1, as 
discussed in our previous study. Notably, the increased cytokine/
chemokine was mainly observed in the Activated CD4+ T cell, 
CD4+ TCM, Classical monocyte and NK cell, despite reduced 
expression of activation markers in the recovered individuals. The 
activation of T cells, dendritic cell migration to lymph nodes for 
antigen presentation, and the development of immune responses 
against pathogens are all influenced by chemokine receptors like 
CCR7. Similarly, CCR5 primarily expressed on T cells, 
macrophages, and dendritic cells. Additionally, CCR5 is involved 
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in immune cell recruitment to inflammatory sites and plays a role 
in immune surveillance and defense against pathogens. CCR4 is 
also associated with Treg migration to tissues and immune 
tolerance, contributing to the regulation of immune reactions and 
prevention of excessive inflammation. IL7R signaling is essential 
for T and B cell proliferation, survival, and differentiation which 
contribute to the adaptive immune response (47, 48). Intriguingly, 
these markers exhibit low expression at the WTA level but high 
expression during AbSeq in recovered group, suggesting that the 
cells may have successfully normalized the transcriptional activity 
of these genes during recovery, while their protein levels remain 
elevated, indicating a sustained need for these receptors. Some 
marker exists in both membrane bound as well as soluble form 
such as IL2RA. The soluble form of IL2RA is generated through 
alternative splicing events and cleavage of the bound receptor, 
leading to the release of its extracellular domain. Soluble IL2RA 
acts as a decoy receptor, competing with the membrane-bound 
form for ligand binding. This competition attenuates signaling, 
stabilizes ligands, and can provide additional signaling through 
interactions with other cell surface proteins (49). Although soluble 
receptors do play an important role in disease outcomes, they 
remained uncaptured using techniques which only captures surface 
markers and hence represents a special challenge for these 
technologies. It emphasizes the importance of integrating 
transcriptomic and proteomic data to gain a comprehensive 
understanding of the immune response by comparing the immune 
profiles of healthy, infected, and recovered persons, the integration 
of both WTA and AbSeq analysis approaches can aid in the 
identification of immunological markers linked to disease 
development and recovery. The dynamics of the immune response, 
such as variations in immune cell populations, activation of 
immunological pathways, and generation of cytokines and other 
immune-related chemicals, are also important to understand. 
Hence, WTA and AbSeq data should be examined together, ideally 
rather than separately.

AbSeq distinguishes itself as a very effective surface marker 
study method, providing multiplexing capabilities, quantitative 
results, high sensitivity, and flexibility in the marker selection. 
AbSeq complements and is even advantageous over the flow 
cytometry, in particular, for single cell-based research, where 
surface marker information plays a crucial role in annotating and 
identifying cell clusters. Compared to the AbSeq approach, FACS 
possesses limitations in identifying various surface markers 
pertinent to disease and host response. FACS is restricted by the 
availability of specific fluorescent-labeled antibodies, limiting the 
simultaneous analysis of markers, especially rare or newly 
discovered ones. To characterize surface markers, AbSeq provides 
a more thorough and high-throughput method. It combines the 
effectiveness of next-generation sequencing with the strength of 
antibody-based profiling, allowing the simultaneous identification 
of several markers at the single-cell level. In the near future, AbSeq 
and FACS will likely complement one another, allowing researchers 
to learn more about the intricate workings of the immune system 
and how it contributes to numerous infectious diseases. While the 
study is based on 33 samples, the findings are derived from 
~1,24,000 cells (~3,800 cells/sample), which is a significant number 
considering other limited research in the similar emerging domain 
of infectious disease understanding (40, 50, 51). However, more 

research must be undertaken to determine, (i) the effectiveness of 
AbSeq in locating the rare and multifaceted surface markers that 
may be  relevant to the disease, and (ii) whether it is helpful to 
understand its effectiveness in assessing disease severity and its 
potential role in providing protection during infection? Empirical 
studies have highlighted the discrepancy between surface marker 
expression and mRNA expression time and again, however, there is 
a lack of information about the reason for the discrepancy between 
surface marker expression and mRNA expression. In this present 
study, we  intend to deconvolute the surface marker and mRNA 
expression profile with respect to the cell type vis-a-vis groups 
(Healthy, Infected, Recovered). While we  have considered the 
potential reasons for the discrepancies based on existing literature, 
our own findings indicate that the observed differences are specific 
to cellular-level variations associated with the various health states 
and their functional relevance. Our findings advocate for AbSeq to 
be  a better alternative to FACS-based understanding of surface 
markers and suggest integrative understanding of the surface 
marker and mRNA expression vis-a-vis cell types and disease status 
for a comprehensive understanding of the cellular events. 
Undertaking a comprehensive analysis of the complex interaction 
between transcriptional and translational processes has the 
immense potential to generate deeper and innovative insights into 
the regulation of cellular events (such as post-transcriptional 
regulation, translation efficiency, and cellular responses to stress, 
alternative splicing, protein turnover, and disease-related pathways). 
Further investigation should be  expanded in order to explore 
possible associations with mechanisms of regulation. Additionally, 
a thorough examination of regulatory components, such as 
modifications occurring after transcription and pathways involving 
protein degradation, could offer a more thorough comprehension 
of the observed variations. By adopting an integrative approach, 
we  can potentially enhance our understanding of the dynamics 
within cells and establish a foundation for focused inquiries into 
therapeutic interventions or strategies of precision medicine.

Conclusion

In conclusion, our single-cell study has yielded significant 
insights into the dynamic nature of gene expression and regulation 
within individual cells. Cell type-specific protein and RNA 
dynamics offer valuable insights into the gene regulation, cellular 
heterogeneity, and disease mechanisms. The generation of proteins, 
the ultimate functional output, is not only dictated by mRNA levels; 
hence it is crucial to acknowledge that relying solely on 
transcriptomics data may lead to biased findings. Therefore, further 
exploration in this field is essential to unravel the functional 
significance of the observed discordance between mRNA and 
protein levels in various physiological states of the body. With 
single-cell-based AbSeq approach, thousands of markers can 
be profiled, circumventing the drawbacks of fluorescence-based 
sorting techniques like FACS. With no restrictions on color, this 
cutting-edge method provides a more thorough and precise 
understanding of cellular markers. Although we only included 39 
surface markers, there is a need to look over this dynamicity in 
mRNA and protein using more surface proteins to gain an insight 
into the exact function of the cells under different conditions. 
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Additionally, such a study would contribute to refining analytical 
pipelines, considering these dynamics, and ultimately improving 
cell type annotation for more accurate inferences derived from 
single cell.
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