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Introduction: Acute heart failure (AHF) is a serious medical problem that 
necessitates hospitalization and often results in death. Patients hospitalized in the 
emergency department (ED) should therefore receive an immediate diagnosis 
and treatment. Unfortunately, there is not yet a fast and accurate laboratory test 
for identifying AHF. The purpose of this research is to apply the principles of 
explainable artificial intelligence (XAI) to the analysis of hematological indicators 
for the diagnosis of AHF.

Methods: In this retrospective analysis, 425 patients with AHF and 430 
healthy individuals served as assessments. Patients’ demographic and 
hematological information was analyzed to diagnose AHF. Important 
risk variables for AHF diagnosis were identified using the Least Absolute 
Shrinkage and Selection Operator (LASSO) feature selection. To test the 
efficacy of the suggested prediction model, Extreme Gradient Boosting 
(XGBoost), a 10-fold cross-validation procedure was implemented. The 
area under the receiver operating characteristic curve (AUC), F1 score, Brier 
score, Positive Predictive Value (PPV), and Negative Predictive Value (NPV) 
were all computed to evaluate the model’s efficacy. Permutation-based 
analysis and SHAP were used to assess the importance and influence of the 
model’s incorporated risk factors.

Results: White blood cell (WBC), monocytes, neutrophils, neutrophil-lymphocyte 
ratio (NLR), red cell distribution width-standard deviation (RDW-SD), RDW-
coefficient of variation (RDW-CV), and platelet distribution width (PDW) values 
were significantly higher than the healthy group (p  <  0.05). On the other hand, 
erythrocyte, hemoglobin, basophil, lymphocyte, mean platelet volume (MPV), 
platelet, hematocrit, mean erythrocyte hemoglobin (MCH), and procalcitonin 
(PCT) values were found to be significantly lower in AHF patients compared to 
healthy controls (p  <  0.05). When XGBoost was used in conjunction with LASSO 
to diagnose AHF, the resulting model had an AUC of 87.9%, an F1 score of 87.4%, 
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a Brier score of 0.036, and an F1 score of 87.4%. PDW, age, RDW-SD, and PLT 
were identified as the most crucial risk factors in differentiating AHF.

Conclusion: The results of this study showed that XAI combined with ML 
could successfully diagnose AHF. SHAP descriptions show that advanced age, 
low platelet count, high RDW-SD, and PDW are the primary hematological 
parameters for the diagnosis of AHF.

KEYWORDS

acute heart failure, XGBoost, explainable artificial intelligence, SHAP, hematological 
parameters

1 Introduction

Heart failure (HF) is a significant global health concern, leading 
to substantial rates of illness and death. The prevalence of heart failure 
(HF) is on the rise in both developed and developing nations, 
primarily attributed to the extension of life expectancy. The leading 
factors contributing to this phenomenon are the escalating incidence 
of chronic ischemic heart diseases and hypertension. Therefore, 
healthcare costs are increasing day by day (1) and this situation 
negatively affects the quality of life of individuals. In the European 
Society of Cardiology (ESC) 2021 HF guidelines, HF is classified as 
preserved ejection fraction HF (HFpEF) (Left Ventricular Ejection 
Fraction (LVEF) > 50%), mildly reduced ejection fraction HF 
(HFmrEF) (LVEF <41–49%) and reduced ejection fraction HF 
(HFrEF) (LVEF <40%), respectively (2).

Acute heart failure (AHF) is characterized by the sudden or 
gradual signs of symptoms and indications associated with heart 
failure. The prevailing etiology of this condition is the abrupt 
deterioration of chronic heart failure. This clinical condition holds 
significant importance in the medical field as it necessitates 
hospitalization and has the potential to result in mortality. Hence, 
prompt initiation of diagnosis and treatment for patients admitted to 
the emergency department is imperative (3). In the diagnosis of AHF, 
brain natriuretic peptide (BNP) and N-terminal proBNP 
(NT-proBNP) are employed alongside electrocardiography (ECG), 
echocardiography (ECO), blood tests, as well as clinical signs and 
complaints. When the B-type natriuretic peptide (BNP) is not 
available, a chest X-ray of the pulmonary fields can be utilized. In the 
diagnosis of acute heart failure; NT-proBNP values are >450 pg./mL 
for <55 years old, >900 pg./mL for 55–75 years old, and > 1800 pg./mL 
for>75 years old, while BNP level below 100 pg./mL, and NT-proBNP 
level below 300 pg./mL are indication of the absence of acute heart 
failure (4–6). However, BNP and NT-proBNP values may be low in 
end-stage heart failure, acute pulmonary edema, and acute right heart 
failure. On the contrary, elevated levels of certain markers may not 
necessarily be indicative of the presence of acute heart failure. The 
prevalence of this condition is notably elevated in individuals 
diagnosed with chronic renal failure and atrial fibrillation (7).

Anemia is the most significant and independent driver of HF 
mortality, according to numerous studies that have used hematological 
markers to predict HF prognosis (8, 9). Furthermore, it has been 
observed that red-cell distribution width (RDW) is correlated with 
mortality, regardless of the presence of anemia (10–12). Previous 
research has indicated that elevated leukocyte levels and decreased 
lymphocyte counts are indicative of increased mortality risk in AHF (13). 
At present, there is a lack of a prompt and conclusive laboratory assay for 

the diagnosis of acute heart failure. The existing literature primarily 
focuses on the prognostic implications of hematological parameters.

Artificial intelligence (AI) plays a crucial role in numerous clinical 
decision support systems, facilitating the use of computational 
methods to make inferences that are comparable to human reasoning 
processes (14). The strategies presented in this context are founded 
upon medical information that has been either explicitly encoded or 
automatically generated from medical data using machine learning 
techniques. Explainable AI (XAI) has the potential to facilitate the 
prioritization of patients’ well-being and enable them to make 
independent and well-informed choices regarding their healthcare in 
conjunction with medical professionals (15). Building on the valuable 
information emphasized in various medical studies, the current 
research aims to analyze hematological markers to diagnose acute 
heart failure based on the implications of XAI. This study contributes 
to the state of the art by the following:

 • Introducing a hybrid ML prediction model compromising 
LASSO, and XGBoost for rapid and accurate diagnosing AHF 
using hematological markers, offering a potential alternative to 
traditional diagnostic methods.

 • Creating a dataset of 425 AHF patients and 430 healthy persons 
from Turkey to assess the feasibility and efficiency of the 
suggested model in a clinical environment.

 • Utilizing XAI, particularly SHAP analysis, to evaluate the ML 
model’s predictions and emphasize key diagnostic parameters, 
improving transparency and interpretability.

 • Identifying key risk variables for AHF diagnosis, such as platelet 
distribution width, age, and red cell distribution width-standard 
deviation, offers vital insights for clinicians and researchers.

The current work is organized as follows: Section 1 provides an 
overview of the subject, discusses previous studies, and summarizes 
the contributions. Section 2 covers the study design, dataset, and 
proposed technique. The results are presented in Section 3. Section 4 
will discuss the attained results. Section 5 pertains to limitations, 
whereas section 6 provides the conclusion.

2 Materials and methods

2.1 Study design and dataset

In this observational study, patients who applied to our hospital 
due to acute heart failure between January 2020 and April 2023 were 
retrospectively analyzed. Patients with AHF were divided into three 
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groups according to their left ventricular ejection fraction: HFpEF 
(LVEF >50%), HFmrEF (LVEF <41–49%), and HFrEF (LVEF <40%) 
as specified by transthoracic echocardiography. The inclusion criteria 
in the current study were as follows: 425 patients older than 18 years 
hospitalized for worsening HF with two or more signs or symptoms 
of fluid retention (e.g., dyspnea, paroxysmal nocturnal dyspnea, 
orthopnea, ankle edema, or jugular venous distension) and 430 
healthy control group, individuals without HF (normal cardiac 
examination and echocardiography findings) who applied to the 
cardiology department due to nonspecific cardiac complaints such as 
weakness, fatigue, and palpitations. With G*Power software 
(University of Dusseldorf, Dusseldorf, Germany, version 3.0.1), the 
independent sample t-test was used to calculate sample size and actual 
power (α = 0.05, power = 0.80, effect size = 0.35). The results revealed 
that with a sample size of 260 participants, the actual power was 
80.2% (16).

The exclusion criteria from the study were as follows: Patients with 
hematological malignancies; those who use drugs known to affect the 
complete blood count (e.g., chemotherapy drugs that suppress the 
bone marrow, overdose of warfarin); those with a hemoglobin value 
of less than 10 g/dL, those with active bleeding, those with acute 
infections, those with acute myocardial infarction, severe renal 
impairment (estimated glomerular filtration rate (eGFR) <15 mL/
min/1.73 m2), severe liver impairment or with chronic obstructive 
pulmonary disease; those with chronic inflammatory diseases (in case 
of acute exacerbation of the disease). The study was conducted by the 
Declaration of Helsinki, and approved by the Samsun University 
Clinical Research Ethics Committee (protocol code 2023/10/10 and 
24.05.2023).

Age, gender, underlying diseases, LVEF percentage, and clinical 
and echocardiographic characteristics were obtained from the medical 
records of the patients and the control group at the first admission to 
the hospital. At the same time, the hematological and biochemical 
laboratory results obtained from the venous blood taken at the first 
application to the cardiology department of both groups; urea, 
creatinine, c-reactive protein (CRP), aspartate transaminase (AST), 
alkaline phosphatase (ALT), hemoglobin (Hbg) values, hematocrit 
(Hct) values, mean corpuscular volume (MCV) values, mean 
corpuscular hemoglobin (MCH) values, MCH concentration 
(MCHC) values, red-cell distribution width-standard deviation 
(RDW-SD) values, RDW-coefficient of variation (RDW-CV) values, 
mean platelet volume (MPV) values, platelet width of distribution 
(PDW) values, procalcitonin (PCT) values, erythrocyte (RBC) platelet 
(PLT) counts and white blood cell (WBC), neutrophil (NEU), 
lymphocyte (LY), neutrophil-lymphocyte ratio (NLR), basophil (BA), 
monocytes (MO), and eosinophil (EO) counts were reached (The 
dataset is available from Supplementary materials).

2.2 Statistical analysis

The conformity of the variables to the normal distribution was 
examined by visual (histogram and probability graphs) and analytical 
(Shapiro–Wilk Test) methods. The assumption of homogeneity of 
variances was examined with the Levene test. Descriptive statistics are 
expressed as median, interquartile range for non-normally distributed 
variables, and mean ± standard deviation for normally distributed 
variables. Independent Samples t-test was used in the comparison of 

the variables that met the parametric test assumptions of the two 
groups. The Mann–Whitney U test was used to compare the two 
groups in terms of variables that did not meet the parametric test 
assumptions. Frequency (n) and percentage (%) values were calculated 
for the qualitative variables, and the relationships between the two 
qualitative variables were examined using the Chi-square test. A 
p-value of <0.05 was considered statistically significant in all results. 
Statistical analyses were performed using the SPSS 28.0 (IBM Corp., 
Armonk, NY, United States) package program.

2.3 ML and XAI approach

The LASSO feature selection algorithm was employed in the 
research to ascertain the primary risk factors associated with Acute 
Heart Failure. Following the implementation of LASSO, a predictive 
model was constructed utilizing the variables that were chosen during 
the selection process (17). The utilization of the XGBoost algorithm, 
renowned for its good performance, scalability, and adaptability, was 
employed in the diagnosis of Acute Heart Failure. XGBoost is widely 
acknowledged as a robust algorithm for handling structured data and 
employs a boosting technique that progressively incorporates new 
models derived from the collective knowledge of the community. 
During each iteration, the algorithm assesses the performance of the 
current models and proceeds to train a new model with the objective 
of minimizing errors made by the ensemble (18, 19). The XGBoost 
algorithm’s capacity to be  scalable in all circumstances and quick 
processing execution are its key accomplishments. The XGBoost 
eliminates overfitting concerns and takes into account the bias-
variance trade-off by offering bagging-bootstrap aggregation and 
feature randomness (20–23).

The rationale behind selecting XGBoost and SHAP for diagnosing 
acute heart failure based on hematological indicators is as follows:

 1. XGBoost: XGBoost is a powerful and widely used machine 
learning algorithm known for its efficiency and effectiveness in 
classification tasks, such as diagnosing medical conditions, due 
to its ability to handle complex relationships between input 
variables and predict outcomes accurately. Lately, the XGBoost 
has been employed in the diagnosis of heart diseases and 
achieved excellent performance (24–27). Doki et  al. have 
introduced a straightforward and efficient diagnostic method 
that utilizes XGBoost with a feature selection algorithm for 
predicting heart disease in datasets with limited records. 
Budholiya et  al. have introduced a diagnostic system that 
utilizes the XGBoost classifier to predict heart disease and it 
has been shown to outperform other classical ML methods 
such as the Random Forest and Extra Tree classifiers. Tian et al. 
introduced the “All-in” XGBoost model for diagnosing heart 
failure and it attained the best performance (24–27).

 2. SHAP: SHAP is a method for explaining individual predictions 
of machine learning models. It provides insights into the 
contribution of each input variable to the model’s predictions, 
allowing for a better understanding of the model’s decision-
making process. In the context of medical diagnosis, SHAP can 
help identify which hematological indicators are most 
influential in predicting acute heart failure such as the work 
recently done in (28–30).
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By leveraging the strengths of XGBoost for predictive modeling 
and SHAP for interpretability, this study aims to develop a robust and 
explainable diagnostic model for acute heart failure based on 
hematological parameters. This combination allows for accurate 
predictions while also providing insights into the underlying biological 
mechanisms and clinical relevance of the predictive features.

The validation method employed in this study was 10-fold cross-
validation. The model’s performance was assessed using several 
evaluation metrics, including Accuracy, PPV, NPV, F1-score, Area 
Under the Curve (AUC), and the Receiver Operating Characteristic 
(ROC) curve was plotted. The Brier score was computed in order to 
assess the calibration of the model. The Brier score is a metric that 
quantifies the calibration of a model, with values ranging from 0 to 1. 
A lower Brier score indicates a higher level of calibration, indicating a 
better performance of the model (31). The importance of the variables 
incorporated in the model was assessed using both permutation-based 
importance and SHAP, which is an explainable artificial intelligence 
(XAI) technique (32). SHAP is a method that can work effectively with 
both model-independent and model-specific annotations. SHAP 
calculates the Shapley values for each feature and uses them to 
determine the importance of the feature. SHAP is an excellent tool for 
evaluating fidelity, reliable, and detailed descriptions for classification 
and prediction models (33). Individual aggregated local SHAP values 
can be used for general explanations due to their additive properties. 
For deeper ML approaches such as fairness, pattern tracking, and 
cohort analysis, SHAP can provide a better interpretation (34).

3 Results

In this section, a comprehensive evaluation of the statistical 
significance of the collected dataset, ensuring the reliability and 
validity of the data used in the study. The performance metrics of the 
developed prediction model for diagnosing AHF. Key performance 
indicators such as accuracy, sensitivity, specificity, area under the 
receiver operating characteristic curve (AUC-ROC), and F1 score 
have been listed to quantify the model’s effectiveness in distinguishing 
between AHF patients and healthy individuals. An interpretation of 
the decision of the introduced ML model is presented by explaining 
the shapely graphs. The SHAP values for each feature are visualized, 
which allows us to shed light on the underlying mechanisms and 
relationships within the data. This allows us to highlight how 
particular attributes contribute to the predictions made by the model.

A total of 855 people were retrospectively included in the study, 
of which 430 (50.3%) were healthy controls and 425 (49.7%) were 
patients with Acute Heart Failure between January 2020 and April 
2023. Of the patients with AHF, 392 (92.2%) had an HFrEF, 18 (4.3%) 
had an HFmrEF, and 15 (3.5%) had an HFpEF. All of the healthy 
group, 430 (100) had an LVEF of 50% and above. Of the participants, 
369 (43.2%) were female and 486 (56.8%) were male.

Table 1 presents the descriptive statistics of the sociodemographic 
data of the patients. Males had more Acute Heart Failure than females 
(p < 0.001) and patients were significantly older than controls 
(p < 0.001).

Descriptive statistics for complete blood count parameters in 
acute heart failure patients and healthy controls are presented in 
Table 2. According to Table 2, the results of WBC, MO, NEU, NLR, 
RDW-SD, RDW-CV and PDW increased significantly in patients with 

acute heart failure (p < 0.05). RBC, HGB, BA, LY, MPV, PLT, HCT, 
MCH, and PCT results were found to be significantly lower in the 
patient group compared to healthy controls (p < 0.05).

The XGBoost model that was proposed demonstrated a high level 
of success in accurately predicting instances of Acute Heart Failure. 
The XGBoost prediction model achieved an accuracy of 87.5%, an 
F1-score of 87.4%, and an AUC value of 87.9%. The Brier score was 
computed to assess the calibration of the model. A model is considered 
to be well-calibrated when its Brier score approaches zero. Based on 
the Brier score, the XGBoost model demonstrated a high level of 
quality, with a value of 0.036 (refer to Table 3; Figure 1).

TABLE 1 Descriptive statistics of the variables with respect to the study 
groups.

Variable

Group

p-value
Control

Acute 
heart 
failure

Sex*
Female 220 (51.16%) 149 (35.06%)

<0.001
Male 210 (48.84%) 276 (64.94%)

Age** 58.35 ± 11.28 64.21 ± 9.96 <0.001

*The variable was summarized as n (%); **The variable is summarized as mean ± standard 
deviation.

TABLE 2 Statistics on complete blood count parameters.

Variable*

Group

p-value
Control

Acute 
heart 
failure

WBC (109/L) 7.49 (2.325) 8.19 (2.79) <0.001

RBC (1012/L) 4.695 (0.68) 4.59 (0.75) 0.008

HGB (g/dL) 13.65 (2.1) 13.2 (2.2) <0.001

BA (109/L) 0.04 (0.04) 0.03 (0.08) 0.041

EO (109/L) 0.14 (0.13) 0.13 (0.15) 0.766

LY (109/L) 2.29 (0.92) 1.87 (1.13) <0.001

MO (109/L) 0.56 (0.22) 0.64 (0.3) <0.001

NEU (109/L) 4.295 (1.758) 5.13 (2.5) <0.001

NLR 1.802 (0.941) 2.7 (2.288) <0.001

MPV (fL) 10.05 (1.3) 9.69 (2.2) <0.001

PLT (109/L) 256 (84) 241 (78) <0.001

HCT (%) 40.9 (5.6) 39.79 (7) <0.001

RDW-SD 41 (4.8) 43.9 (6.4) <0.001

RDW-CV 13.2 (1.3) 14.6 (2.69) <0.001

MCH (pg) 29.1 (2.475) 28.8 (2.9) 0.029

MCHC (g/dL) 33.2 (2) 33.29 (1.9) 0.525

PDW (fL) 12 (3.475) 16.39 (3.1) <0.001

PCT (%) 0.25 (0.07) 0.22 (0.08) <0.001

Variables were summarized as median (interquartile range); WBC, leukocyte; RBC, 
erythrocyte; HGB, hemoglobin; BA, basophil; EO, eosinophil; LY, lymphocyte; MO, 
monocyte; NEU, neutrophil; NLR, neutrophil/lymphocyte; MPV, mean platelet volume; PLT, 
platelet; HCT, hematocrit; RDW-SD, red cell distribution width-standard deviation; RDW-
CV, Red cell distribution width-coefficient of variation; MCH, mean erythrocyte 
hemoglobin; MCHC, mean corpuscular hemoglobin concentration; PDW, platelet 
distribution width; PCT, procalcitonin test. *Mann Whitney U test.
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Figure  2 displays the importance graphs of the variables 
incorporated in the XGBoost model, which have been identified as 
important risk factors through the utilization of the Lasso feature 
selection method. The Lasso method successfully identified several 
key risk factors, including PDW, age, RDW-SD, and PLT, that play a 
significant role in distinguishing cases of Acute Heart Failure. The 
findings particularly demonstrated the significance of platelet 
distribution width (PDW) in distinguishing the disease.

Figure 3 employs global SHAP values, which depict the positive 
or negative impact of biomarker candidates on the XGBoost 
model’s prediction. This visual representation serves to highlight 

the importance of biomarker candidates in influencing model 
decisions. A positive SHAP value indicates a positive contribution 
to the target variable, while a negative SHAP value indicates a 
negative contribution. Furthermore, the data points on the graph 
are shaded based on the normalized values of the variables. The 
value of the variable increases as it approaches the color pink and 
decreases as it approaches the color blue. Consequently, it was 
found that older age is associated with an elevated risk of Acute 
Heart Failure, as well as higher values of Platelet Distribution 
Width (PDW) and Red Cell Distribution Width-Standard 
Deviation (RDW-SD).

4 Discussion

With an emphasis on the use of artificial intelligence (AI) for the 
precise and quick diagnosis of AHF, this section provides a critical 
evaluation of our study’s results and places them in the context of the 
current literature. The importance, relevance, and possible directions 
for further study in this field are our goals. We explore the mechanics, 
clinical relevance, and wider implications of our study’s findings 
through a thorough evaluation and synthesis of the results. The 
purpose of this study is to shed light on how AI can improve healthcare 
practices and patient outcomes by investigating the link between AI 
and AHF diagnosis. We  also go over the study’s limitations and 

TABLE 3 Performance measures for the prediction of acute heart failure 
of the XGBoost model.

Metrics Value

Accuracy 0.875

PPV 0.877

NPV 0.873

F1-score 0.874

AUC 0.879

Brier-score 0.036

PPV, positive predictive value; NPV, negative predictive value; AUC, Area under the ROC 
curve.

FIGURE 1

ROC curve for the XGBoost model.
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provide some ideas for where the field could go from here in terms of 
research to help overcome them and move it forward.

Artificial intelligence enhances the quality of healthcare services 
by enabling more precise, rapid, and personalized diagnosis, 
treatment, and patient care in the medical field. The utilization of 
artificial intelligence in analyzing vast medical data and predicting 
diseases improves early diagnosis and subsequently facilitates more 
effective management of treatment processes, leading to an 
enhancement in patients’ quality of life. Furthermore, artificial 
intelligence plays a significant role in accelerating scientific discoveries 
and advancing the medical field in areas such as medical image 
analysis, genetic research, and drug development.

This study used biostatistical analysis and an ML model combined 
with XAI to investigate potential hematological indicators for the 
diagnosis of AHF. The observed results indicated that the WBC, MO, 
NEU, NLR, RDW-SD, RDW-CV, and PDW values of patients with 
AHF were statistically higher than those of the healthy group (p < 0.05). 
However, compared to healthy controls, AHF patients had significantly 
reduced RBC, HGB, BA, LY, MPV, PLT, HCT, MCH, and PCT levels 
(p < 0.05). PDW, age, RDW-SD, and PLT were found to be the most 
relevant hematological indicators for differentiating AHF by one of the 
machine learning models using the Lasso approach. The results 
revealed that especially PDW may be important in differentiating the 
disease in question. In this study, the proposed XGBoost model 
performed quite successfully for the diagnosis of AHF. With the 
XGBoost prediction model, 87.5% accuracy, 87.4% F1-score, and 
87.9% AUC value were obtained. The XGBoost model as important 
risk factors by the Lasso feature selection method are presented.

In a study conducted in the literature, hemoglobin, serum 
creatinine, LDL (Low-density lipoprotein) cholesterol, HDL (High-
density lipoprotein) cholesterol, triglycerides, ALT, AST, high-sensitive 
cardiac troponin I, and C-reactive protein (CRP) results of 59 patients 
with heart failure and 108 patients with chronic ischemic heart disease 
were evaluated. A predictive model based on logistic regression was 
created in the study, which aimed to identify important independent 

markers of the outcome of heart failure versus chronic-ischemic heart 
disease. The authors obtained 80.5% AUC with the model (Hb + serum 
creatinine + AST + hs-cTnI + CRP) created to differentiate between 
heart failure and chronic ischemic heart disease (35). In our current 
study, we differentiated AHF with an AUC of 87.9% using a larger 
sample based on hematological parameters. Ahmad et al. investigated 
the strong link between several parameters and the incidence of heart 
failure in the field of heart failure (36). Only serum creatinine and left 
ventricular ejection fraction (LVEF), according to Chicco and Jurman, 
may be used to predict the survival rate of patients with heart failure 
(37). To save the standard of care in the hospital system, Sohrabi et al. 
used classification algorithms (i.e., DT, Artificial Neural Networks 
(ANN), SVM, and LR) and employed AUC and accuracy as 
assessment indicators (38). To predict a patient’s risk of developing 
heart failure, Lafta et al. built a neural network classifier using the 
global weight of attribute contribution (39). The findings demonstrated 
that the technique was capable of precisely predicting the clinical risk 
of heart failure. Yang et  al. (33) presented an SVM-based scoring 
model for the HF diagnosis. They used it on 289 different samples of 
clinical data that were gathered from Zhejiang Hospital. Three groups 
were created from the sample: the HF group, the HF-prone group, and 
the healthy group. The accuracy of their HF diagnosis was 74.44% 
overall, which was a significant increase over earlier studies which 
they matched their findings. Accuracy reaches 87.5%, especially in the 
HF-prone group, which suggests that the suggested methodology is 
workable for HF early detection (40). Although the AHF classification 
performance was partially good in most of these studies, XAI was not 
examined with model calibration. In addition to the successful 
estimation of AHF in the current study, calibrating the model and 
interpreting the results with XAI led to more reliable clinical results 
for AHF and the creation of an explainable model.

Platelets are cellular fragments that serve a crucial function in the 
processes of blood coagulation and wound healing (41–43). Prior 
research has indicated that an unexplained decrease in platelet count 
is linked to mortality in acute heart failure, particularly among 

FIGURE 2

Permutation-based importance plot of the most important risk factors for diagnosing acute heart failure.
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individuals with advanced-stage cardiac dysfunction (44–46). The 
etiology of thrombocytopenia in individuals with heart failure remains 
elusive. Several theories have been proposed about this matter. 
Examples of physiological conditions that can occur include 
dysfunction of bone marrow, reduced blood flow, and programmed 
cell death (47). In the present investigation, the descriptive statistics 
findings indicate a statistically significant decrease in platelet count 
among patients diagnosed with AHF compared to the control group 
of individuals in good health (p < 0.05). Furthermore, the artificial 
intelligence models employed in our present investigation have 
demonstrated that a diminished count of platelets serves as a 

significant hematological parameter for the diagnosis of acute heart 
failure. The potential cause of the decreased platelet count observed in 
patients with AHF in comparison to the healthy control group could 
be attributed to two factors: the reduction in platelet lifespan resulting 
from hypervolemia, and the impairment of platelet structure due to 
compromised blood oxygenation, potentially leading to apoptosis. 
This can potentially lead to hemorrhage and result in the development 
of anemia. The presence of this condition may lead to unfavorable 
outcomes in individuals affected by it. Nevertheless, the available 
information on this subject is insufficient. Further research and 
investigation are required to address this topic.

FIGURE 3

An illustration of the interpretability of the XGBoost model. The four most significant risk factors are presented in a descending order of importance 
based on their respective SHAP values. A higher SHAP value indicates a greater probability of a patient experiencing acute heart failure.
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In developed as well as developing countries, where there has been a 
notable rise in average life expectancy, heart failure has emerged as a 
significant factor contributing to hospitalizations. Heart failure is a 
condition that is influenced by various factors, including hypertension, 
chronic ischemic heart disease, diabetes mellitus, and obesity. These 
causative factors have been observed to exhibit an increased prevalence 
with advancing age, thereby contributing to the higher incidence of heart 
failure. This phenomenon results in significant rates of both mortality 
and morbidity (1). In the present investigation, it was observed that the 
average age of individuals who sought medical attention from the 
cardiology department for acute heart failure was significantly greater 
compared to the control group (p < 0.05). Furthermore, within the 
context of artificial intelligence modeling, age has been identified as a 
significant parameter in the diagnosis of acute heart failure (AHF). The 
incidence of heart failure with preserved ejection fraction, a condition 
that is more prevalent among females, demonstrates an upward trend as 
individuals advance in age (48, 49). When kidney functions decline due 
to the natural aging process, there is a potential for acute heart failure to 
occur as a result of both increased mortality related to heart failure and 
reduced urinary excretion. This phenomenon has the potential to result 
in a higher incidence of hospital emergency department admissions for 
acute heart failure.

Red-cell Distribution Width (RDW) is a laboratory test that 
measures the heterogeneity of the size distribution of erythrocytes. 
Previous research has demonstrated that elevated RDW values serve 
as a significant predictor of mortality in individuals diagnosed with 
heart failure (11). In another study, patients with HF may have 
elevated RDW due to secondary causes. The main secondary causes 
are renal failure, malnutrition, chronic inflammation, and inadequate 
erythropoiesis. In patients with HF, causes such as renal hypoperfusion 
due to low cardiac output, the effect of diuretics used, and 
comorbidities (for example, diabetes mellitus, hypertension, 
atherosclerotic vascular diseases) may cause chronic renal failure. This 
can cause both anemia and high RDW by reducing erythropoietin 
production. In addition, malnutrition in heart failure patients can 
cause iron deficiency anemia. In this case, it can indirectly increase the 
RDW value (50, 51). In our current study, according to the descriptive 
statistics results, RDW-SD was found to be significantly higher in 
patients with AHF than in the healthy control group (p < 0.05). In 
addition, artificial intelligence models used in our current study 
showed that RDW-SD is one of the important hematological 
parameter in diagnosing AHF. In our study, patients with a 
hemoglobin value of less than 10 g/dL, a high CRP, and a creatinine 
value above 2 mg/dL were not included in the study. AHF patients may 
have dilutional anemia due to hypervolemia. Intravascular volume 
increase may indirectly cause RDW-SD elevation. However, there is 
not enough information on this subject. More work needs to be done 
on this.

The Platelet Distribution Width is a laboratory assay utilized to 
quantify the degree of variability in platelet size distribution (52). 
Several studies have indicated an increased presence of PDW in 
individuals diagnosed with malignancies, cardiovascular disease, 
diabetes mellitus, and respiratory diseases (53–60). Furthermore, 
certain studies have demonstrated a positive correlation between 
elevated platelet distribution width and heightened rates of mortality 
and morbidity among individuals diagnosed with ischemic heart 
diseases, pulmonary thromboembolism, and advanced cancer (61–
64). Nevertheless, the precise etiology of elevated PDW in these 

pathological conditions remains unclear. A recent study has revealed 
that oxidative stress has a detrimental effect on platelet functions. 
Furthermore, certain enzymes, such as chemokines and cytokines, 
which are elevated in patients with high platelet distribution width, 
have been found to enhance platelet activation. These enzymes 
promote the release of substances that initiate the process of clot 
formation from platelets. Other studies in the literature have 
established that this particular circumstance is associated with an 
elevated susceptibility to cardiovascular thrombosis, as well as an 
augmented 90-day morbidity and mortality rates (58–70). There is a 
lack of prior research examining the correlation between elevated 
PDW levels and their predictive and prognostic value in patients with 
Acute Heart Failure. Based on the findings of our present investigation, 
the descriptive statistics indicate a statistically significant elevation in 
PDW among individuals diagnosed with AHF compared to the 
healthy control cohort (p < 0.05). Furthermore, the artificial 
intelligence models employed in our present investigation have 
demonstrated that PDW is the most hematological parameter for 
diagnosing acute heart failure. In the context of acute heart failure, the 
hypervolemic condition, particularly observed in cases of total heart 
failure or right heart failure, can lead to spleen congestion. This 
congestion has the potential to disrupt the structure of platelets, 
resulting in an elevation of the Platelet Distribution Width value. 
Furthermore, it is worth noting that the hypervolemic condition has 
the potential to elevate the values of PDW and Red Cell Distribution 
Width due to the induction of intracellular edema in both erythrocytes 
and platelets. Consequently, this leads to a decline in the oxygen-
carrying capability of compromised erythrocytes and an escalation in 
tissue hypoxia, thereby initiating a detrimental cycle. This 
phenomenon has the potential to exacerbate the prognosis in 
individuals diagnosed with heart failure. Similarly, the degradation of 
platelets can lead to both bleeding and thrombosis. Nevertheless, a 
dearth of information on this subject has persisted until the present 
day. Therefore, it is imperative to conduct thorough clinical research 
to gain a deeper understanding of this matter.

The findings of our investigation reveal that the integration of XAI 
with ML techniques holds significant promise for the accurate diagnosis 
of AHF. Through the application of SHAP values, we have identified that 
certain hematological parameters, namely advanced age, low platelet 
count, high Red Cell Distribution Width-Standard Deviation, and 
Platelet Distribution Width, play a pivotal role in diagnosing AHF. These 
insights underscore the utility of a Complete Blood Count as not only a 
readily accessible but also a cost-effective diagnostic tool. Given the 
simplicity and affordability of CBC, it stands out as a particularly valuable 
method for early detection and diagnosis in clinical settings.

The implications of our findings suggest that medical practitioners 
and researchers should place a heightened focus on these identified 
hematological parameters when evaluating individuals presenting 
symptoms of AHF. By doing so, it may be possible to enhance diagnostic 
accuracy and facilitate early intervention, potentially improving patient 
outcomes. Furthermore, our study advocates for the broader application 
of XAI within the field of cardiology research. The use of XAI can offer 
deeper insights and a more nuanced understanding of risk factors 
associated with heart diseases, including AHF. By leveraging XAI, 
researchers and clinicians can uncover more precise and individualized 
risk factors, thereby advancing the precision medicine approach in 
cardiology. The integration of XAI and ML presents a novel and effective 
approach to the diagnosis of AHF, highlighting the importance of specific 
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hematological parameters obtained from CBC. Our study not only 
reinforces the value of CBC as a diagnostic tool but also opens new 
avenues for research in cardiology, emphasizing the potential of XAI to 
revolutionize the identification and management of risk factors in heart 
disease. We strongly recommend the adoption of XAI in cardiology 
research to further refine our understanding of AHF and to pave the way 
for more targeted and effective treatment strategies.

5 Comparing the performance with 
existing state of the art

We compared our proposed strategy with the current state of the 
art by analyzing previously published studies that have dealt with 
similar research problems or used similar datasets. We assessed the 
efficacy of our method in diagnosing acute heart failure by analyzing 
important parameters like accuracy, and AUC. The current study 
identified key risk variables for AHF diagnosis, such as platelet 
distribution width, age, and red cell distribution width-standard 
deviation, which offers vital insights for clinicians and researchers. 
Another paper assessed hematological predictors via XAI in the 
prediction of acute myocardial infarction and reported that accessible 
hematological parameters could enable medical personnel to make 
more informed decisions and give better treatment to a wider group of 
patients (71). In the relevant study, 83% accuracy and 91% AUC were 
obtained with the XGBoost model to distinguish AMI patients. When 
the results were examined, the findings of the current study were better.

6 Limitations

The introduced study has some limitations. First, our data source 
included patients from only one geographic region of Turkey, which 
limits generalizability and requires validation in other populations. 
Second, we used only hematological predictive variables in our ML 
approaches. Therefore, there is a need for future studies that present 
ML approaches that can extract different clinical risk factors and 
unstructured information such as clinicians’ free text notes. Third, 
although we examined a relatively large sample in AHF, we did not 
have the external validation set for the prediction model. Finally, 
although XAI and ML techniques provide valuable insights into the 
diagnosis of AHF based on hematological parameters, they may 
overlook important information related to patients’ medical history. 
The comprehension and integration of features that are required to 
be analyzed and to make an accurate and efficient diagnosis of AHF 
and the evaluation of therapeutic regimens are quite challenging and 
complicated tasks (72). Even though there has been significant 
progress in understanding the complex pathophysiology of HF, 
numerous challenges and complications still exist. To assist general 
practitioners in diagnosing heart failure at an earlier stage and in 
providing better follow-up for patients, it is necessary to develop an 
algorithm that incorporates the key features (history, clinical 
parameters, and anamnesis) that can be associated with heart failure 
(73). Incorporating additional human-oriented information, such as 
medical history, could enhance the accuracy and completeness of the 
diagnostic process. Therefore, further exploration of the connection 
between biological indicators and patient-specific medical history can 
enhance the applicability, and reliability of the introduced ML model.

7 Conclusion

The results of this study showed that XAI combined with ML 
could successfully diagnose AHF. SHAP descriptions show that 
advanced age, low platelet count, high RDW-SD, and PDW are the 
primary hematological parameters for the diagnosis of 
AHF. Complete blood count (CBC) is an easily available and cost-
effective diagnostic technique. It may be  advisable to direct 
attention to these parameters in individuals with AHF symptoms. 
In addition, we recommend the use of XAI in research related to 
the cardiology discipline, to distinguish more precise risk  
factors.
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