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Skin cancer mortality rates continue to rise, and survival analysis is increasingly 
needed to understand who is at risk and what interventions improve outcomes. 
However, current statistical methods are limited by inability to synthesize multiple 
data types, such as patient genetics, clinical history, demographics, and pathology 
and reveal significant multimodal relationships through predictive algorithms. 
Advances in computing power and data science enabled the rise of artificial 
intelligence (AI), which synthesizes vast amounts of data and applies algorithms 
that enable personalized diagnostic approaches. Here, we analyze AI methods 
used in skin cancer survival analysis, focusing on supervised learning, unsupervised 
learning, deep learning, and natural language processing. We illustrate strengths 
and weaknesses of these approaches with examples. Our PubMed search yielded 
14 publications meeting inclusion criteria for this scoping review. Most publications 
focused on melanoma, particularly histopathologic interpretation with deep 
learning. Such concentration on a single type of skin cancer amid increasing 
focus on deep learning highlight growing areas for innovation; however, it also 
demonstrates opportunity for additional analysis that addresses other types of 
cutaneous malignancies and expands the scope of prognostication to combine 
both genetic, histopathologic, and clinical data. Moreover, researchers may 
leverage multiple AI methods for enhanced benefit in analyses. Expanding AI 
to this arena may enable improved survival analysis, targeted treatments, and 
outcomes.
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Introduction

Skin cancer is the most common cancer among patients in the 
United States (1). Over 9,500 people are diagnosed daily, and two 
people die hourly (2–4). Melanoma, the deadliest skin cancer, (3) 
accounts for most patient mortality. Epidemiological and clinical 
investigations improved documentation of skin cancer incidence and 
prevalence, increasing discussion on prevention and detection. 
Literature has recognized the paramount importance of early 
detection and management for skin cancer and the potential for 
assistance by artificial intelligence (AI) tools at this stage (5). However, 
monitoring with survival analysis, along with discovery of survival 
markers are greatly needed for clinical prognostication.

Survival analysis assesses the outcome of time prior to an event of 
interest (e.g., death, treatment response, disease recurrence, or relapse) 
and may identify survival markers. Survival analysis in skin cancer 
research has leveraged univariate and multivariate analyses of national 
survey databases (6–8). While these analyses elucidated clinical and 
demographic associations, they are limited by patient reporting and 
cannot feasibly include multimodal (genetic, histopathologic, and clinical) 
data. Despite the benefits of focused multimodal cohort survival analyses, 
significant methodological barriers exist to revealing new insights beyond 
those via standard statistical methods. For example, innovative 
multimodal survival analysis time frames pose significant logistical 
barriers. Leveraging branches of AI may facilitate such research on 
survival. AI systems possess potential to assist in all stages of research to 
clinical care: from genomic alteration identification to even clinician-
focused workflow tools (9).

Supervised and unsupervised machine learning (ML), deep learning, 
and natural language processing are AI methods transforming survival 
analysis. ML automates and scales statistical processes to discover 
relationships that humans alone cannot find. Four major areas within ML 
are discussed in this review. Supervised ML makes use of labeled data (i.e., 
cases where an outcome of interest is known) to find patterns that predict 
outcomes. Unsupervised ML is used for unlabeled data (i.e., no known 
outcome of interest) to find structure within data (e.g., to find similar 
groups or clusters) and previously unknown associations (10). Deep 
learning is comparatively newer and finds its own data representations, 
removing much of the need for feature engineering (11). Lastly, natural 
language processing (NLP) may operate as a form of deep learning built 
on text data by using neural networks (e.g., human ways of thinking) to 
find representations of text that form basic, quantifiable 
understandings of it.

Introduction of AI methods in oncologic research may 
transform the field, possibly enhancing mechanistic underpinnings 
of disease, therapeutic target discovery, synergistic treatment 
regimens, and guidance for clinical decision-making (12–14). With 
skin cancer rates rising, innovative research leveraging AI is 
essential (1). Use of AI within cutaneous oncology research has 
flourished, with studies investigating classification, detection, 
medical record extraction, risk identification, prediction, and 
prognosis (12). Applications include tools diagnosing skin cancer 
using clinical photographs and patient phone applications to track 
and manage their cancer care (15, 16). AI may augment existing 
understanding of cutaneous oncology pathogenesis, clinical 
classification, and prognostication.

In this scoping review, we  present publications exemplifying 
possibilities for AI to innovate skin cancer research, particularly in 

survival analysis. An advanced search of PubMed was conducted to 
survey the primary literature from inception to June 11, 2023, using 
terms related to survival analysis, skin cancer, and AI 
(Supplemental material), yielding 16 publications. Publications were 
screened with inclusion and exclusion criteria by multiple investigators 
(CS, EG, GR), resolving conflicts by discussion and following the 
guidelines set by the Preferred Reporting Items for Systematic reviews 
and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). 
Criteria for inclusion involved articles incorporating AI in survival 
analysis for skin cancer patients; original investigations (not reviews); 
English articles; accessible articles online; no repeated articles. Criteria 
for exclusion encompassed articles not being original AI investigations 
on the topic of skin cancer survival analysis; review articles; articles 
not in English; non-accessible articles online; repeated articles. Two 
publications were excluded for not utilizing AI methods. Publications 
were then subject to critical review, with results contextualized within 
the AI method matrix for skin cancer survival analysis (Table 1). 
We discuss various types of AI, examples of their application within 
the field of oncology, and highlight methodology from 
each publication.

Supervised machine learning

Supervised ML is a subfield of AI that utilizes existing data for 
future dataset predictions. Following training with known 
independent variables (i.e., gene expression level) “labeled” with 
outcomes of interest (e.g., survival time), supervised models can 
identify patterns and predict outcomes. Ramsdale et  al. applied 
supervised modeling to assess fall risk in older adults with advanced 
cancer starting chemotherapy (31). After assessing 73 initial features, 
including number of prior falls and cognitive impairment, the model 
effectively classified patients as “non-faller” or “faller.” Our search 
yielded skin cancer publications using similar approaches with 
RNA-level and tumor architecture data.

A 2016 study by Trincado et al. applied supervised ML to predict 
clinical outcomes across 12 solid tumor types (17). The study assessed 
relative abundance of transcripts and applied a multivariate feature 
selection method on isoforms to generate logistic models for each 
tumor type and stage, with mean classification performance area 
under the curve (AUC) of 0.783. The authors applied their model to 
predict patient survival, analyzing significance with Cox proportional 
hazards model– a regression assessing effect of several quantitative 
and categorical risk factors on survival time. Wang et al. similarly used 
Cox proportional hazards in 2019 to investigate pathogenesis of 
metastatic melanoma (18). Using bioinformatics data from TCGA 
(The Cancer Genome Atlas) and other databases, the authors 
identified differential expression of seven mRNAs, five microRNAs 
(miRNAs), and six long noncoding RNAs (lncRNAs) correlated with 
survival in metastatic melanoma patients.

In 2021, Su et al. similarly stratified melanoma patients, though 
according to expression levels of the serine/threonine kinase PLK1 
and transmembrane protein NOTCH1 (19). Cox regression analysis 
found high expression of both PLK1 and NOTCH1 associated with 
worse overall survival. They suggested that dual targeting may provide 
novel means for melanoma treatment. They identified downregulation 
of multiple melanoma-related pathways and found their top five 
downregulated genes associated with cancer metastasis.
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TABLE 1 Summary of included literature on artificial intelligence applied to skin cancer survival analysis.

Article short 
citation (Author, 
Year, Journal)

Form of 
AI

Type of 
skin 
cancer(s) 
Studied

Type of AI data 
inputs

Source of data Primary survival 
outcome(s) 
investigated

Name of 
performance 
metric

Final reported 
performance metric 
(numerical)

Limitations 
discussed

Trincado et al. 2016 (17), 

Genome Medicine

Supervised 

learning

Melanoma RNA sequencing and 

clinical data; breast tumors 

according to estrogen 

receptor (ER) status and 

melanoma tumors with 

proliferative and invasive 

phenotypes

The Cancer Genome Atlas Tumor staging and 

clinical outcome

AUC Logistic model trees (LMT) for 

each tumor type and stage class 

– the mean accuracy of the 

models in terms of AUC is 

0.783

Lack of validation on 

independent cohorts

Wang et al. 2019 (18), 

Medical Science Monitor

Supervised 

learning

Melanoma Long noncoding RNA 

(lncRNA), microRNA 

(miRNA) and mRNA

The Cancer Genome Atlas, Gene 

Ontology database, Kyoto Encyclopedia 

of Genes and Genomes pathway

Survival Cox Regression – Not discussed

Su et al. 2021 (19), 

Molecular Cancer 

Therapeutics

Supervised 

learning

Melanoma mRNA expression The Cancer Genome Atlas Overall and disease-free 

survival

Median mRNA 

expression

Higher expressions of PLK1 

and NOTCH1 correlated with 

worse survival (p < 0.001)

Lack of validation in 

in vivo models

Failmezger et al. 2020 

(20), Cancer Research

Supervised 

learning

Melanoma Topological tumor graphs 

(TTG)

The Cancer Genome Atlas Degree of lymphocytic 

infiltration and overall 

survival

Cox Regression – Lack of access to 

independent clinical 

cohorts

Wilson et al. 2021 (21), 

Artificial Intelligence 

Medicine

Supervised 

learning

Melanoma Gene expression and 

miRNA expression

University of California at Santa Cruz 

(UCSC) Xena

Survival status (Dead or 

Alive)

C-index MKCox = 0.640 Not discussed

Yang et al. 2018 (22), 

International Journal of 

Oncology

Unsupervised 

learning

Melanoma Long-coding RNAs 

(lncRNAs)

The Cancer Genome Atlas Kaplan-Meiei survival 

analysis

AUROC AUROC = 0.816 Limited sample size; 

sample heterogeneity

Jonckheere and Van 

Seuningen 2018 (23), 

Journal of Translational 

Medicine

Unsupervised 

learning

Skin cancer 

(and other 

cancers)

MUC4 expression The Cancer Genome Atlas, Cancer Cell 

Line Encyclopedia

Overall survival and 

hazard ratio

AUROC AUROC MUC4/16/20 = 0.8272 Inadequate statistical 

power

Yang et al. 2021 (24), 

PLOS One

Unsupervised 

learning

Melanoma Primary tumor (T), 

regional lymph nodes (N), 

distant metastasis (M), age 

(A), and sex (S)

Surveillance, Epidemiology, and End 

Results Program (SEER) of the National 

Cancer Institute

Survival time (in months), 

SEER cause-specific death 

classification variable, 

compared to AJCC 

staging

C-index C-index = 0.7865 Bias secondary to 

death certificate 

errors; the need for a 

large dataset to obtain 

robust estimates of 

survival (Continued)
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TABLE 1 (Continued)

Article short 
citation (Author, 
Year, Journal)

Form of 
AI

Type of 
skin 
cancer(s) 
Studied

Type of AI data 
inputs

Source of data Primary survival 
outcome(s) 
investigated

Name of 
performance 
metric

Final reported 
performance metric 
(numerical)

Limitations 
discussed

Comes et al. 2022 (25), 

Scientific Reports

Deep 

learning

Melanoma Whole-slide histological 

images (WSIs)

Clinical Proteomic Tumor Analysis 

Consortium Cutaneous Melanoma 

(CPTAC-CM) public database then 

validated on Istituto Tumori “Giovanni 

Paolo II” in Bari, Italy

1-year disease free 

survival

AUC Best predictive classification 

performances were obtained in 

terms of median AUC and 

accuracy with values of 0.695 

and 0.727%, respectively

Relatively small size 

of the analyzed 

datasets

Johannet et al. 2021 (26), 

Clinical Cancer Research

Deep 

learning

Melanoma Whole slide image (WSI) 

analysis of metastatic 

melanoma tissue

Interdisciplinary Melanoma Cooperative 

Group (IMCG) database at NYU 

Langone Health; Vanderbilt University 

Ingram Cancer Center

Progression free survival AUC AUC 0.800 on images from the 

Aperio AT2 and AUC 0.805 on 

images from the Leica SCN400

Small sample size

Moore et al. 2021 (27), 

Scientific Reports

Deep 

learning

Melanoma H&E whole slide images The Cancer Genome Atlas Disease-specific survival Automated Digital 

Tumor-infiltrating 

lymphocyte 

Analysis (ADTA) 

score

ADTA contributed to disease-

specific survival prediction 

(p = 0.006)

Reliance of model on 

pathologists; lack of 

sentinel lymph node 

biopsies performed in 

the cohorts

Chou et al. 2021 (28), 

Modern Pathology

Deep 

learning

Melanoma Whole slide images, % TIF NYU melanoma database Recurrence-free survival 

(RFS) and overall survival 

(OS)

C-index % TIL was associated with 

significantly longer RFS 

(adjusted HR = 0.92 [0.84–

1.00] per 10% increase in % 

TIL) and OS (adjusted 

HR = 0.90 [0.83–0.99] per 10% 

increase in % TIL)

Use of a singular data 

set

Chiu et al. 2021 (29), 

Annual International 

Conference of the IEEE 

Engineering in Medicine 

and Biology Society 

(EMBC)

Deep 

learning

NMSC (SCC 

and BCC)

Incidence rate of SCC and 

BCC

Database from the United Network for 

Organ Sharing (UNOS)

Risk factors highly 

associated with skin 

cancer events

AUC, compared 

CoxTime, 

DeepSurv, and Cox 

proportional 

hazards models

DeepSurv, CoxTime, and Cox 

proportional hazards model 

AUCs are 0.772 ± 0.0084, 

0.775 ± 0.0105, and 

0.756 ± 0.0092

Not discussed

Liestøl et al. 1994 (30), 

Statistics in Medicine

Deep 

learning

Melanoma Surgically-resected samples University Hospital of Odense, Denmark 

during 1962–1977

Survival time following 

radical surgical resection 

of tumor

Cox Proportional 

Hazards Model

– Inclusion of too many 

parameters

This table summarizes the publications included from our PubMed Advanced search query following critical review with inclusion/exclusion criteria. Publications are summarized, featuring specific details on skin cancer investigated and performance.
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Beyond RNA expression and protein analysis, supervised ML 
has also shown promise in mapping the tumor microenvironment 
architecture. In 2020, Failmezger et al. investigated properties of 
the tumor microenvironment that may affect melanoma cancer 
cell targeting (20). Using a novel graph-based algorithm to 
understand the stromal network, the authors utilized a 
quantitative morphologic classifier with supervised ML to 
identify melanoma cancer cells, lymphocytes, and stromal cells. 
After representing spatial relationships of the three cell types, 
Cox regression analysis found high stromal clustering and 
barriers to cancer-infiltrating lymphocytes significantly 
associated with poor survival.

Supervised ML expands upon previous statistical methods. 
Wilson et  al. (21) exemplified this through application of an 
alternative Cox loss function for melanoma survival prediction 
(21). The authors preprocessed gene and miRNA expression data, 
then training models on training datasets and assessing 
performance with test sets. Their novel supervised ML approach 
outperformed other models, highlighting efficiency and flexibility 
of different supervised algorithms for survival prediction– 
particularly when integration of various high-throughput data 
sources is needed.

Overall, these studies show promise for supervised ML in uncovering 
the genetic basis of melanoma pathogenesis, risk-classifying patients, and 
predicting tumor behavior based on structure and composition. Current 
limitations are scarcity of sufficiently populated RNA-sequencing 
databases and need for validating in vivo models. Moreover, a supervised 
approach requires selection of data and targets with known associations, 
such that classifying big data can pose a challenge in supervised learning 
(particularly when compared to unsupervised learning). However, 
progress in the field shows its value for improved medical decision-
making and precision medicine.

Unsupervised machine learning

Unsupervised ML uses algorithms to cluster and analyze 
unlabeled datasets, relying on the machine to find previously 
unknown associations. An unsupervised approach may generate 
multiple clusters and risk-stratify accordingly. Eckardt and 
colleagues recently developed a large-scale model with 
unsupervised ML to isolate four patient clusters using clinical and 
genetic acute myeloid leukemia data; statistical analysis 
demonstrated significant differences across various clusters (32). 
Review of the literature reveals various applications of 
unsupervised ML to cutaneous oncology survival analysis. These 
studies identified genetic clusters or introduced patient survival-
stratifying attributes.

Several studies applied unsupervised ML to genomic 
signatures. Yang et al. (22) leveraged a TCGA dataset to identify 
lncRNAs from samples with melanoma stages I-IV, then using 
hierarchical clustering and support vector machine analyses to 
classify the lncRNAs (22). Survival methods included standard 
Kaplan–Meier analysis (33) yielding a predictive signature of six 
lncRNAs tested with a validation set. This signature encompassed 
720 target genes, corresponding to numerous pathways that may 
affect melanoma prognosis. The method’s accuracy in 

risk-stratification of melanoma samples was >80%. This prognostic 
marker for melanoma risk-classification set the groundwork for 
further studies to assess the signature’s predictive potential.

Jonckheere and Van Seuningen (23) used unsupervised ML 
to correlate gene expression with derived prognostic information 
of MUC4, a membrane-bound mucin implicated in multiple 
cancers (23). This study leveraged online tools to extract MUC4 
Z-score expressions and use hazard ratios and other statistics to 
generate a list of 187 genes correlated with MUC4 expression. 
Two were associated with worse survival in combination with 
MUC4. The large-scale genomic approach enabled authors to 
overcome prior study limitations of inadequate statistical power, 
offering potential new biomarkers for targeted treatment. These 
studies’ prognostic signatures offer promising potential for 
future applications.

Yang et al. (24) utilized an unsupervised ML approach beyond 
genetic signatures, leveraging the Ensemble Algorithm for 
Clustering Cancer Data (EACCD) to integrate additional factors 
into the traditional TNM (tumor, nodes, metastases) staging 
system for improved melanoma prognostication (24). Prior studies 
attempted to augment TNM with Cox regression and tree 
modeling, but these methods had not clearly risk-stratified patients 
or led to low prediction accuracy. The authors investigated the 
clinical meaningfulness of their new clusters via supervised 
learning, finding that using them as input variables increased 
prognostic prediction accuracy.

These studies show unsupervised ML’s many applications to 
skin cancer and survival analysis. Importantly, there are limitations 
to these analyses, especially related to clinical interpretability of 
found groups. For instance, there is a possibility that structure may 
not be  found when leveraging unsupervised learning. Still, 
unsupervised learning has revealed important structures and key 
associations that aid in understanding of survival and prognostic 
outcomes. Figure 1 delineates differences between supervised and 
unsupervised learning.

Deep learning

Deep learning is a class of multi-layered ML algorithms 
inspired by the human brain’s structure and function to improve 
accuracy. Early models were explored by Liestøl et al. (30), who 
applied neural network– a set of algorithms based on 
interconnected nodes, or artificial neurons in a layered structure– 
to commonly used regression models to strengthen survival 
prediction in melanoma patients (30). The authors found these 
models moderately improved predictions on survival time for 
melanoma patients following radical surgical resection, providing 
the groundwork for modern deep learning and survival methods.

Subsequently, deep learning has been used to better 
prognosticate and identify genomic alterations in melanoma. 
Comes et  al. (25) aimed to predict 1-year disease-free survival 
(DFS) in melanoma patients using deep learning applied to 
hematoxylin and eosin-stained whole slide images (WSIs). The 
study was limited by a cohort of 43 patients from a public database, 
though annotations provided by expert pathologists. Still, the 
authors’ proposed deep learning model extracted quantitative 
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imaging biomarkers from WSIs and demonstrated prognostic 
power in predicting 1-year DFS, contributing to the investigation 
of deep learning for prognostication in melanoma patients.

A recent study by Johannet et al. also explored deep learning’s 
role, correlating melanoma tissue histology with immune 
checkpoint inhibitor (ICI) response (26). This study investigated 
whether neural networks could combine important features of 
melanoma tissue with clinical and demographic data to predict 
immunotherapy response. A multivariable classifier demonstrated 
success in separating high and low-risk patients and predicting 
treatment response, displaying promise for future integration of 
deep learning tissue digital pathology analysis and clinical/
demographic data.

Moore et  al. (27) used a different approach of automated 
digital analysis (ADTA) to study tumor-infiltrating lymphocytes, 
or TILs, to augment current staging of primary early-stage (i.e., 
stage II-III) melanomas (27). The authors utilized previously 
developed deep learning algorithms to tile WSIs and estimate 
likelihood of TILs in each tile. ADTA score was calculated as the 
median of “positive” tiles: the likelihood of at least 77.5% TILs in 
that tile, over the total number of tiles, of all the patient’s images. 
The authors found that ADTA score correlated with disease-
specific survival (DSS) in melanoma and that this approach 
strengthened predictive value of standard pathology 
characteristics such as depth and ulceration. Although susceptible 
to user and cohort variability, this strongly suggests ADTA may 
exceed performance of standard qualitative TIL assessment for 
melanoma risk evaluation.

Similarly, a recent study by Chou et al. explored percent of TILs 
as a predictive measure for melanoma prognosis while offering 
deep learning as a method to standardize clinician approaches 
(28). In this retrospective analysis, a neural networks classifier used 
WSIs to calculate the percentage of TILs in melanoma tissue, which 
was compared to the manually derived Clark’s grading. This study 
confirmed the previously established percent TIL threshold of 
16.6% and the use of TILs as a prognostic marker, as higher 
percentages of TILs were associated with both longer recurrence-
free survival (RFS) and overall survival. These results demonstrate 
the value of deep learning in improving TIL counting for 
melanoma prognosis.

Deep learning methods have been instrumental in predicting 
risk for other skin cancers. Chiu and colleagues in 2021 utilized 
two deep neural network-based models (DeepSurv and CoxTime) 
to predict basal and squamous cell carcinoma risk in heart 
transplant recipients, comparing their performance to Cox 
proportional hazards models (29). The authors assessed prediction 
performance post-heart transplantation, finding DeepSurv and 
CoxTime models significantly exceeded performance 
comparatively at every time point. They demonstrated superiority 
of neural networks in providing improved risk predictions in this 
patient population.

Overall, these deep learning studies illustrate how ML may 
solve complex problems, from interpreting images with TILs to 
integrating various data types into a single model. Deep learning 
models can be criticized for limitations such as requirement for 
vast amounts of data and lack of applicability to new data. However, 

FIGURE 1

Supervised vs. unsupervised learning. This figure depicts the differences between the artificial intelligence methods of supervised and unsupervised 
learning (39, 40).

https://doi.org/10.3389/fmed.2024.1243659
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Schreidah et al. 10.3389/fmed.2024.1243659

Frontiers in Medicine 07 frontiersin.org

they provide promise in rapidly analyzing various data types and 
greatly improving current survival methods.

Natural language processing

Natural language processing (NLP) encompasses computer-
based algorithms that transform natural language, such as blocks 
of text, into usable information for research (34). For example, it 
may integrate contextual nuances, or word clues, to define 
necessary words to extract for analysis. GPT-4 is a large language 
model (LLM) that performs tasks from solving advanced 
mathematical problems to writing personal essays. NLP may 
utilize a “rules” approach: user instructing the computer on 
information to extract; another approach is with machine 
learning: inputting training data, letting the computer practice/
learn, and identifying or extracting learned words or phrases of 
interest. Amidst an increase in availability of accessible biological 
and medical population databases, NLP holds promise in 
potentially eliminating the need for manual review among 
clinicians and researchers (34).

NLP has been utilized in dermatology and oncology, from 
synthesis of biopsy reports to extraction of symptoms from patient 
histories to survival analysis. Yuan in 2021 used NLP to find key 
cancer characteristics from a cohort >40,000 patients with lung 
cancer (35). They used NLP to compile structured data (i.e., 
diagnoses) and unstructured data (narrative notes) to develop a 
prognostic model to estimate lung cancer survival (AUC = 0.82).

Our cutaneous oncology survival analysis search did not yield 
NLP publications. However, upon manual search for “natural 
language processing” and “survival analysis,” we encountered one 
melanoma NLP study. Yang in 2021 investigated if TILs were an 
independent prognostic factor for overall survival in primary 
cutaneous melanoma (36). NLP combed through notes and 
identified clinical and histopathologic data, performing regression 
analyses demonstrating brisk TILs significantly associated with 
improved survival.

The identified lack of NLP survival analysis publications might 
be due to limitations in searching or NLP-oriented tasks. Many 
studies use NLP as a data extraction tool for word frequency or 
isolation. Thus, it is less predominantly featured in survival 
analysis, though has potential to uncover prognostic indicators.

Discussion

We reviewed AI’s application to survival analysis for cutaneous 
malignancies. While AI has expanded its reach within oncology, 
applications to survival analysis and cutaneous oncology remain 
limited. Secondly, types of skin cancer and data analyzed were 
similar. Lastly, several publications leveraged multiple AI branches, 
with increasing focus on deep learning and less on NLP.

Only 16 publications resulted from our query, with several 
excluded for lack of relevance. Survival analysis remains a ripe area 
for multimodal AI application, enabling extraction of pathology 
and clinico-demographic data to generate predictive models. Few 

publications may have resulted due to our search’s limitations; 
we expect an increase as data extraction advances.

Nearly every publication studied melanoma, despite greater 
prevalence of non-melanoma skin cancers, likely due to melanoma’s 
mortality burden. Non-melanoma skin cancers are areas for future 
analysis to elucidate prognostic indicators.

Many publications investigated integrating genetics, clinical 
data, and/or histology. They used data from similar sources (e.g., 
TCGA) and similarly reported AUC or C-index. These similarities 
speak to reliance on large databases and statistical standardization. 
Additionally, several publications analyzed images with a deep 
learning approach deconstructing to components, identifying 
patterns, and mapping results onto current disease understanding. 
Predictive modeling with images has made significant progress, 
owing to ease of machine training on thousands of images versus 
far fewer attributes.

The division between the discussed AI branches is not rigid; 
researchers might utilize “deep learning” methods but also 
integrate supervised learning. A multifaceted approach enables 
researchers to develop more complex algorithms and synthesize 
disparate data. For example, researchers may use NLP to extract 
unstructured data from clinical notes, deep learning for histology, 
and supervised learning for regression toward survival analysis 
and prognostication. Each approach has benefits and limitations, 
but together they may enhance modeling potential.

Several investigations illustrate limitations of AI in healthcare 
(37). LLMs are error-prone, sometimes inconsistently pulling 
information from records and relying on false generalizations. 
Other limitations include smaller datasets (potentially over-
weighing certain features) or even incomplete and biased 
datasets, highlighting a need for quality of data inputs to develop 
algorithms. Disparities in inclusion of skin of color images in 
datasets poses negative implications for model generation and 
subsequent performance, biasing models and yielding inequitable 
results and representation (38). Thus, issues like loss-to-
follow-up, note errors, or hospital transfers provide incomplete 
clinical scenarios; many models had non-excellent performances 
(AUCs <90%). Relying on new models that incompletely capture 
clinical situations may have devastating consequences: patients 
receiving inappropriate treatments or inaccurate prognostication. 
Thus, critical analysis and data synthesis is essential to AI.

Future investigations may engage with a diversity of cutaneous 
malignancies, using multiple AI methodologies to leverage benefits 
and compensate for any weaknesses. Finally, studies may expand 
beyond survival to integrate quality-of-life analyses.

Overall, this review is an important contribution to increasing 
literature on AI applications to survival analysis for patients with 
skin cancer. Innovative applications may reveal unique insights in 
clinical settings to enable physicians to better assess patient 
survival and develop targeted treatment.
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