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Background: This study aims to investigate the clinical outcome between high-
flow nasal cannula (HFNC) and non-invasive ventilation (NIV) therapy in mild to 
moderate hypoxemic patients on the first ICU day and to develop a predictive 
model of 48-h intubation.

Methods: The study included adult patients from the MIMIC III and IV databases 
who first initiated HFNC or NIV therapy due to mild to moderate hypoxemia 
(100  <  PaO2/FiO2  ≤  300). The 48-h and 30-day intubation rates were compared 
using cross-sectional and survival analysis. Nine machine learning and six 
ensemble algorithms were deployed to construct the 48-h intubation predictive 
models, of which the optimal model was determined by its prediction accuracy. 
The top  10 risk and protective factors were identified using the Shapley 
interpretation algorithm.

Result: A total of 123,042 patients were screened, of which, 673 were from 
the MIMIC IV database for ventilation therapy comparison (HFNC n  =  363, 
NIV n  =  310) and 48-h intubation predictive model construction (training 
dataset n  =  471, internal validation set n  =  202) and 408 were from the MIMIC 
III database for external validation. The NIV group had a lower intubation rate 
(23.1% vs. 16.1%, p  =  0.001), ICU 28-day mortality (18.5% vs. 11.6%, p  =  0.014), 
and in-hospital mortality (19.6% vs. 11.9%, p  =  0.007) compared to the HFNC 
group. Survival analysis showed that the total and 48-h intubation rates were 
not significantly different. The ensemble AdaBoost decision tree model (internal 
and external validation set AUROC 0.878, 0.726) had the best predictive 
accuracy performance. The model Shapley algorithm showed Sequential Organ 
Failure Assessment (SOFA), acute physiology scores (APSIII), the minimum and 
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maximum lactate value as risk factors for early failure and age, the maximum 
PaCO2 and PH value, Glasgow Coma Scale (GCS), the minimum PaO2/FiO2 ratio, 
and PaO2 value as protective factors.

Conclusion: NIV was associated with lower intubation rate and ICU 28-day and 
in-hospital mortality. Further survival analysis reinforced that the effect of NIV 
on the intubation rate might partly be attributed to the other impact factors. The 
ensemble AdaBoost decision tree model may assist clinicians in making clinical 
decisions, and early organ function support to improve patients’ SOFA, APSIII, 
GCS, PaCO2, PaO2, PH, PaO2/FiO2 ratio, and lactate values can reduce the early 
failure rate and improve patient prognosis.

KEYWORDS

high flow nasal cannula, non-invasive ventilation, ICU 28-day mortality, 48-h 
intubation risk predictive model, maching learning

Introduction

Acute hypoxemia is a common phenomenon in intensive care 
unit (ICU) daily clinical practice and is caused by a wide range of 
etiologies, including acute respiratory distress syndrome, pulmonary 
infection, sepsis, multiple organ dysfunction syndrome, and 
exacerbation of chronic pulmonary and heart disease. In the 
SPECTRUM study, the incidence of hypoxemia was 54% among all 
ICU patients with all types of oxygenation devices (1). The presence 
of hypoxemia has been widely demonstrated to be associated with 
higher mortality (2–5), ICU length of stay (6), and longer mechanical 
ventilation duration (7).

High-flow nasal cannula (HFNC) and non-invasive ventilation 
(NIV) are two widely accepted non-invasive methods of respiratory 
support used in ICU daily clinical practice for improvement in gas 
exchange and ventilation and even play an important role in resource-
constrained COVID-19 (8, 9). Recent guidelines have recommended 
HFNC as the optimal first-line therapy for acute hypoxemia 
respiratory failure based on the physiological and clinical effects and 
better patient compliance (10). However, the evidence for this 
suggestion is inconsistent and imprecise due to different experimental 
conditions and evaluation criteria in existing studies (10). Therefore, 
the superior non-invasive respiratory support therapy is still under 
debate. It remains difficult and confusing for clinicians, especially in 
the emergency room and ICUs, to determine optimal strategies for 
acute hypoxemia without a clear cause.

The prominent advantage of both oxygen therapies is their effect 
on avoiding invasive ventilation-related complications associated with 
unnecessary endotracheal intubation and sedation. However, recent 
research has demonstrated that excess spontaneous inspiratory effort 
could result in high transpulmonary pressure fluctuation (11) and 
large total lung strain (12, 13) and finally lead to additional lung injury 
associated with treatment failure (14), especially when NIV therapy is 
coupled with high tidal volume (15) and rapid respiratory rate (16). 
Therefore, identifying predictive risk factors and modeling treatment 
failure may facilitate the early identification of high-risk patients and 
improve clinical decision-making and outcomes.

To investigate whether NIV therapy in mild to moderate 
hypoxemia of the whole clinical spectrum is associated with lower 

mortality and intubation rate compared with HFNC, we performed a 
retrospective research study based on the Medical Information Mart 
for Intensive Care III and IV (MIMIC-III, IV) (17, 18). We  also 
performed survival analysis to compare the 48-h and 30-day 
intubation rates between two groups and constructed a 48-h 
intubation risk model to assist professional clinicians in making 
clinical decisions on ventilation therapy options for acute 
hypoxemic patients.

Materials and methods

General information and ethics

This retrospective study was conducted based on the MIMIC 
database, a large and single-center database comprising information 
relating to patients admitted to critical care units at Beth Israel 
Deaconess Medical Center (BIDMC), Boston, Massachusetts 
United  States. One author (WF) finished the training course and 
signed the data use agreement to obtain access to the database for data 
extraction. The use of the MIMIC-III database was approved by the 
Institutional Review Boards of BIDMC and MIT, and a waiver of 
informed consent was granted.

Study population

All patients admitted to an ICU from 2008 to 2019 in the MIMIC 
IV database were screened to explore the prognostic analysis between 
HFNC and NIV therapy and 48-h intubation predictive model 
construction. The eligible patients extracted from the MIMIC III 
database from 2001 to 2008 were established as the validation cohort 
for the predictive model external validation (Figure 1). The detailed 
inclusion criteria were as follows: over 18 years old; with mild or 
moderate hypoxemia (100 < PaO2/FiO2 ≤ 300) during the first ICU 
day; initiated HFNC or NIV on the first ICU day. The exclusion 
criteria were as follows: not the first time admitted to the ICU for the 
same hospitalization; intubation time preceded HFNC or NIV start 
time; received both HFNC and NIV on the first day.
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FIGURE 1

Flow charts of the data extraction, model construction and validation of Patients with mild to moderate hypoxemia at the first ICU admission day.
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Data extraction

The following data of the study subjects were extracted from the 
MIMIC database: gender, age, body mass index (BMI), chronic 
comorbidities, ethnicity, Charlson Comorbidity Index, Sequential 
Organ Failure Assessment (SOFA), Acute Physiology Score III (APS 
III), Simplified Acute Physiology Score II (SAPS II), the minimum 
Glasgow Coma Scale (GCS) at ICU admission, the mean vital sign and 
arterial blood gas values obtained between 6 h preceding and 24 h 
within the ICU admission, as well as outcome measures including 
intubation rate, 48-h intubation rate, 30-day intubation rate, 
in-hospital mortality, hospital 28-day mortality, ICU 28-day mortality 
and the length of stay (LOS) in hospital and ICU.

Baseline characteristics and clinical 
outcomes of patients between the HFNC 
and NIV group

Baseline characteristics and clinical outcomes of the HFNC and 
NIV therapy groups from MIMIC IV were used as the dataset for the 
cross-sectional analysis. The detailed comparisons included the 
variables of the general materials, physiological parameters for the first 
ICU day, and clinical outcomes (mortality, ntubation rate, and LOS in 
hospital and ICU).

Survival analysis of the 48-h and 30-day 
intubation rate

After cross-sectional analysis, we performed the Kaplan–Meier 
curves for further survival analysis of the 48-h and 30-day intubation 
rate between the two groups.

The 48-h intubation predictive model 
construction and validation

After randomization, 70% of all eligible patients in the MIMIC IV 
database were used as the dataset for model construction and 30% as 
the internal validation set. All eligible patients in the MIMIC III 
database serve as an external validation of the model. After baseline 
information comparison for the assessment of distribution 
consistency, nine machine learning (Support Vector Machine, Neural 
Network, K nearest neighbor, Decision tree, quadratic discriminant 
analysis, naive Bayes, Linear discriminant analysis, kernel, logistic 
regression) and six ensemble algorithms (subspace KNN, Bootstrap 
Random Forest, AdaBooost Tree, GentleBoost Tree, LogitBoost Tree, 
RUSBooost Tree) were used to train the training dataset using the 
features illustrated in the previous studies as well as suggested by 
professional clinicians. The parameters with a missing rate above 40% 
were not accepted in the final model due to the bias of predictive 
accuracy (19). After establishing the prediction model through various 
machine learning methods, we  plotted the receiver operating 
characteristic curve (ROC) of the constructed models. The model with 
the highest predictive accuracy, as assessed by the area under the 
curve (AUROC), threshold, sensitivity, specificity, and Youden index 
was selected as the best model.

Model interpretability

Based on the optimal predictive model of AUROC, we calculated the 
Shapley value of the optimal model and drew the Shapley Explanation 
plot (12). We  used the Shapley additive interpretation algorithm to 
identify the five characteristic variables of promoting or inhibiting 
outcomes to determine the risk factors for 48-h intubation.

Statistical analysis

In the data preprocessing stage, the original data outliers and missing 
values were filled and interpolated using Matlab dataCleaner APP. The 
outliers were determined and processed using the Tukey’s test and clinical 
experts’ advice. Linear interpolation was then used to fill in the identified 
outliers. The missing values were filled using the nearest neighbor 
method, and the data of different dimensions were normalized using the 
extreme value method (left limit is 0 and right limit is 1). To address the 
class imbalance issue in the test set, the Synthetic Minority Over-Sampling 
Technique (SMOTE) was applied to improve model generalization.

Following the Kolmogorov–Smirnoff test results, continuous 
variables were expressed as means and standard deviation when 
normally distributed and compared using an independent samples 
t-test or as medians and interquartile range compared using the 
Mann–Whitney test otherwise. Categorical variables were described 
as frequencies and percentages and were compared using the 
Chi-squared test or Fisher’s exact test to compare proportions. The 
prognostic analysis between the two therapy groups was performed 
by Kaplan-Meier curves using log-rank test. All tests were two-tailed, 
and differences were considered statistically significant when p < 0.05.

During the model construction stage, nine machine learning and 
six ensemble algorithms were used to model the training dataset, with 
10-fold cross-validation to enhance prediction accuracy. The 
constructed models were evaluated by AUROC, threshold, sensitivity, 
specificity, and Youden index in both internal and external validation 
sets. Finally, the model with the best performance was selected based 
on the above evaluation criteria. Shapley values were calculated and a 
Shapley explanation plot was produced to quantify the contribution 
of the 10 most important features and the explainability of an 
individual observation in the optimal model.

The data processing, statistical analyses, and predictive 
construction were performed using R (version 4.2.2) and Matlab 
software (R2022b Version, MathWorks Corporation, United States).

Results

Patient inclusion and characteristics of 
general materials

A total of 123,042 distinct hospital admissions (n = 53423 for 
MIMIC III, n = 69619 for MIMIC IV) were screened of which, 673 
from the MIMIC IV database and 408 from the MIMIC III 
database were finally included. A total of 363 patients who received 
HFNC and 310 who received NIV as initial therapy were included 
in the MIMIC-IV for prognostic analysis. There were no significant 
differences in patient gender and age between the HFNC and NIV 
groups. The BMI (27.4 vs. 33.8, p < 0.001); the SAPS II scores (37 
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vs. 39, p = 0.005); and the proportion of chronic complications such 
as coronary artery disease (23.7% vs. 42.6%, p < 0.001), chronic 
obstructive pulmonary disease (COPD, 16.0% vs. 26.5%, p = 0.001), 
and diabetes (30.0% vs. 46.8%, p < 0.001) were higher in the NIV 
group, which indicated a more complex clinical situation compared 
with the HFNC group. More characteristics of general materials in 
the test dataset and validation datasets are shown in Tables 1, 2.

Baseline physiological characteristics and 
clinical outcomes between the HFNC and 
NIV groups

As per the physiological parameters illustrated in Table 1A, the 
mean heart rate (HRmean, 91.2 vs. 85.8, p < 0.001) and respiratory rate 
(RRmean, 22.4 vs. 19.6, p < 0.001) were higher for the first ICU day and 

TABLE 1 Baseline characteristics of general materials between the HFNC and NIV group.

MIMIC IV Z/χ2 p

HFNC (n  =  363) NIV (n  =  310)

Demographic information

Male, n(%) 217 (59.8) 190 (61.3) 0.160 0.689

Age, median [IQR], year 68.5 [58.2,80.1] 67.4 [60,1,77.0] −0.957 0.339

BMI, median [IQR], kg/m2 27.4 [23.9,31.9] 33.8 [28.2,40.1] 7.600 <0.001

Ethnicity, n(%) 8.160 0.086

White 247 (68.0) 221 (71.3)

Black 27 (7.4) 34 (11.0)

Hispanic/Latino 20 (5.5) 7 (2.3)

Asian 9 (2.5) 6 (1.9)

Other 60 (16.5) 42 (13.6)

Insurance, n(%) 1.260 0.533

Medicaid 25 (6.9) 15 (4.8)

Medicare 187 (51.5) 164 (52.9)

Other 151 (41.6) 131 (42.3)

First ICU, n(%) 35.932 <0.001

CVICU 52 (14.3) 100 (32.3)

CCU 36 (9.9) 34 (11.0)

MICU 93 (25.6) 66 (21.3)

M/SICU 89 (24.5) 52 (16.8)

SICU 47 (13.0) 22 (7.1)

TSICU 43 (11.9) 33 (10.7)

Comorbidity, n(%)

CAD 86 (23.7) 132 (42.6) 27.242 <0.001

CHF 32 (8.8) 37 (11.9) 1.769 0.184

HBP 80 (22.0) 58 (18.7) 1.137 0.286

COPD 58 (16.0) 82 (26.5) 11.133 0.001

Diabetes 109 (30.0) 145 (46.8) 19.957 <0.001

Stroke 21 (5.8) 8 (2.6) 4.164 0.041

CKD 36 (9.9) 24 (7.7) 0.974 0.324

Scores, median [IQR]

SOFA 6 [4,8] 6 [4,8] 0.607 0.544

APS III 51 [38,67] 49 [37,64] −1.440 0.150

SAPS II 37 [29,45] 39 [31,47] 2.833 0.005

Charlson Comorbidity Index 6 [4,8] 6 [4,9] 0.176 0.860

GCS 14 [10,15] 14 [11,14] −0.208 0.835

IQR, interquartile range. BMI, body mass index; ICU, intensive care unit; CVICU, cardiovascular intensive care unit; CCU, coronary heart disease intensive care unit; MICU, medical intensive 
care unit; M/SICU, medical/surgical intensive care unit; SICU, surgical intensive care unit; TSICU, trauma surgical intensive care unit; CAD, coronary artery disease; CHF, chronic heart 
failure; HBP, hypertension blood pressure; COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease; SOFA, Sequential Organ Failure Assessment; APS III, Acute 
Physiology Score III; SAPS II, Simplified Acute Physiology Score II; GCS, Glasgow Coma Scale.
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the minimum and maximum PaO2/FiO2 ratio was lower in the HFNC 
group, which implied that the oxygenation dysfunction was the 
prominent problem in the HFNC group. The maximum of PaCO2 
(PaCO2max, 45 vs. 54, p < 0.001) and the minimum of PaCO2 (PaCO2min, 
38 vs. 41, p < 0.001) were higher and the maximum PH (PHmax) and the 
minimum PH value during the first day were lower in the NIV group, 
which indicated a more serious respiratory failure of both oxygenation 
impairment and ventilation dysfunction in the NIV group.

For outcome comparison, the NIV group intubation rate (23.1% 
vs. 16.1%, p = 0.023), in-hospital mortality (19.6% vs. 11.9%, p = 0.007), 
and ICU 28-day mortality (18.5% vs. 11.6%, p = 0.014) were 
significantly lower and the ICU LOS (3.7 vs. 2.9, p < 0.001) and 
hospital LOS (11.0 vs. 8.8, p = 0.004) were shorter in the NIV group 
using initial Chi-squared and Mann–Whitney U tests (Table 1B).

Survival analysis of the 48-h and 30-day 
intubation rate

The survival analysis of the 48-h and 30-day intubation rate (all 
p > 0.05) was not significantly different between the HFNC and NIV 
groups using the Kaplan–Meier curves test (Figure 2).

The 48-h intubation predictive model 
construction and validation

Among the tests, the internal and external validation dataset, 
the proportion of chronic comorbid coronary artery disease (31% 
vs. 36.1% vs. 26.5%, p = 0.045), hypertension (26.1% vs. 26.2% vs. 
36.8%, p < 0.01), SOFA (6 vs. 6 vs. 5, p < 0.001), APS III (50 vs. 55 
vs. 46.5, p < 0.001), GCS (14 vs. 14 vs. 14, p < 0.001), and the ICU 
LOS (3.7 vs. 3.4 vs. 3.1, p = 0.027) were significantly different 
(Table 3). All the feathers used to train the training dataset were 
marked as * in (Table 3).

The AUROC of nine machine learning (Support vector machine, 
Neural network, K nearest neighbor, Decision tree, quadratic 
discriminant analysis, Naive Bayes, Linear discriminant analysis, 
kernel, logistic regression) and six ensemble algorithms (subspace 
KNN, Bootstrap Random Forest, AdaBooost Tree, GentleBoost Tree, 
LogitBoost Tree, RUSBooost Tree) in the internal validation set were 
0.820, 0.766, 0.687, 0.611, 0.755, 0.619, 0.726, 0.648, 0.724, 0.783, 
0.811, 0.878, 0.863, 0.855, and 0.758, respectively. The AUROC in the 
external validation set was 0.707, 0.658, 0.569, 0.548, 0.623, 0.617, 
0.683, 0.549, 0.686, 0.693, 0.710, 0.726，0.742，0.716， and 0.691, 
respectively (Table 4; Figure 3).

TABLE 2 Baseline characteristics of physiological and clinical outcomes between the HFNC and NIV group.

MIMIC IV Z/χ2 p

HFNC (n  =  363) NIV (n  =  310)

Panel A Baseline physiological parameters on ICU first day

HRmean, median [IQR], (bmp) 91.2 [81.5,102.9] 85.8 [77.1,97.6] −3.991 <0.001

RRmean, median [IQR], (breath/min) 22.4 [19.3,25.6] 19.6 [17.2,22.5] −7.067 <0.001

MAPmean, median [IQR], (mmHg) 77.5 [70.8,84.9] 76.1 [70.7,82.5] −1.361 0.174

SpO2mean, median [IQR], (%) 95.4 [94.3,96.9] 96.0 [94.3,97.1] 1.753 0.080

PFratiomin, median [IQR], (mmHg) 142.9 [117.1,180] 170.5 [134,222] 6.067 <0.001

PFratiomax, median [IQR], (mmHg) 174 [134,241] 243.1 [187.5,306.7] 8.716 <0.001

PaCO2max, median [IQR], (mmHg) 45 [37,54] 54 [46,74] 9.424 <0.001

PaCO2min, median [IQR], (mmHg) 38 [32,45] 41 [35,54] 5.552 <0.001

PHmin, median [IQR] 7.37 [7.29,7.43] 7.30 [7.23,7.35] −9.095 <0.001

PHmax, median [IQR] 7.42 [7.38,7.47] 7.41 [7.36,7.45] −4.125 <0.001

Lactatemin, median [IQR], (mmol/L) 1.3 [1.0,1.8] 1.2 [0.9,1.6] −2.936 0.003

Lactatemax, median [IQR], (mmol/L) 1.7 [1.2,2.6] 1.8 [1.2,2.6] 0.162 0.871

SO2min, median [IQR], (%) 95 [92,97] 94 [91,97] −1.867 0.062

Panel B Clinical outcome

Intubation rate, n(%) 84 (23.1) 50 (16.1) 5.155 0.023

Intubation rate in 48 h, n(%) 58 (16.0) 41 (13.2) 1.009 0.315

Intubation rate in 30 days, n(%) 70 (21.7) 87 (24.9) 0.953 0.329

Mortality at hospital 28 days, n(%) 59 (16.3) 35 (11.3) 3.428 0.064

Mortality at ICU 28 days, n(%) 67 (18.5) 36 (11.6) 6.043 0.014

Mortality in hospital, n(%) 71 (19.6) 37 (11.9) 7.214 0.007

Hospital LOS, median [IQR], (days) 11.0 [6.3,20.4] 8.8 [5.8,15.0] −2.907 0.004

ICU LOS, median [IQR], (days) 3.7 [2.3,6.0] 2.9 [1.5,5.1] −4.565 <0.001

IQR, interquartile range. HRmean, RRmean, MAPmean, SpO2mean represent the average heart rate, respiratory rate, mean arterial pressure, peripheral capillary oxygen saturation of the first ICU day; 
PFratiomin, PaCO2min, PHmin, Lactatemin, SO2min represent the minimum value of the PaO2/FiO2 ratio, PH, lactate, arterial oxygen saturation of the first ICU day; PFratiomax, PaCO2max, PHmax, 
Lactatemax represent the maximum value of the PaO2/FiO2 ratio, PaCO2, PH, lactate of the first ICU day; LOS represents the length of stay.
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The confusion matrix of the best AdaBoost decision tree model 
based on the best AUROC (the optimal hyperparameter is maximum 

split 54, number of learners 413, learning rate 0.9194) is shown in 
Figure 4.

FIGURE 2

The survival analysis of the 48-hour and 30-day intubation rate between the HFNC and NIV group.
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TABLE 3 Baseline characteristics of general materials, physiological, and clinical outcomes between the training, internal, and external validation 
datasets.

Datasets Z/χ2 p

Training dataset 
(n  =  471)

Internal dataset 
(n = 202)

External dataset 
(n  =  408)

Demographic information

Male, n(%)* 265(0.6) 125(0.5) 223(0.5) 4.645 0.098

Age, median [IQR], year* 68.4 [59.8,79.3] 69.5 [60.3,78.7] 68.4[59.8,78.1] 0.265 0.876

BMI, median [IQR], kg/m2 29.0 [24.5,37.0] 30.1 [24.8,35.7] 29.5[26.0,35.3] 0.543 0.762

Ventilation Status, n (%) 1.723 0.422

HFNC 219 (46.5) 104 (51.5) 203(49.8)

NIV 252 (53.9) 98 (48.5) 205(50.2)

Comorbidity, n(%)*

CAD 146 (31.0) 73 (36.1) 108 (26.5) 6.207 0.045

CHF 51 (10.8) 20 (9.9) 55 (13.5) 2.237 0.327

HBP 123 (26.1) 53 (26.2) 150 (36.8) 13.585 <0.01

COPD 98 (20.8) 35 (17.3) 67 (16.4) 3.016 0.221

Diabetes 188 (39.9) 72 (35.6) 142 (34.8) 2.699 0.259

Stroke 25 (5.3) 7 (3.5) 9 (2.2) 5.838 0.054

CKD 38(8.1) 17 (8.4) 28(6.9) 0.727 0.639

Scores, median [IQR]

SOFA* 6 [4,8] 6 [4,9] 5 [4,7] 22.995 <0.001

APS III* 50 [39,65.8] 55 [40,70] 46.5 [36,58] 21.089 <0.001

SAPS II* 38 [30,48] 41 [33,49] 39 [31,48] 2.062 0.357

Charlson Comorbidity Index* 6 [4,9] 7 [4,9] 6 [4.5,8] 0.761 0.684

GCS* 14 [10,15] 14 [10,15] 14 [12,15] 14.608 <0.001

Panel A Baseline physiological parameters on ICU first day

HRmean*, median [IQR], (bmp) 88.0 [79.2,99.0] 90.9 [79.3,100.8] 88.8 [79.2,101.4] 1.191 0.551

RRmean*, median [IQR], (breath/min) 21.3 [18.1,24.9] 21.1 [18.6,24.2] 21.2 [18.4,24,2] 0.121 0.941

MAPmean*, median [IQR], (mmHg) 75.6 [69.9,83.0] 76.1 [70.3,83.3] 77 [70.4,83.6] 1.070 0.586

SpO2mean*, median [IQR], (%) 95.8 [94.2,97.2] 95.9 [94.4,97.1] 95.9 [94.5,97.1] 0.849 0.654

PFratiomin*, median [IQR], (mmHg) 158 [125.7,208] 164.1 [128.0,206.0] 161.8 [122.7,202.9] 0.978 0.613

PaO2min*, median [IQR], (mmHg) 68[52,94] 71[46,96] 69[47,91] 2.370 0.306

PaCO2max*, median [IQR], (mmHg) 50[42,65] 48 [40,64] 50 [41,68.5] 2.941 0.230

PHmin*, median [IQR] 7.32 [7.25,7.39] 7.32 [7.26,7.38] 7.33 [7.26,7.40] 1.041 0.594

PHmax*, median[IQR] 7.41 [7.36,7.46] 7.41 [7.36,7.46] 7.42 [7.36,7.46] 0.086 0.958

Lactatemin*, median [IQR], (mmol/L) 1.2 [0.9,1.6] 1.2 [1.0,1.5] 1.2[0.9,1.7] 0.329 0.848

Lactatemax*, median [IQR], (mmol/L) 1.7 [1.2,2.5] 1.6 [1.1,2.6] 1.7[1.1,2.4] 0.380 0.827

SaO2min, median [IQR], (%)* 95.5 [92,97] 95.7 [91,97] 95.6[92,97] 1.190 0.552

Panel B Clinical outcome

Intubation rate, n (%) 116.0 (24.6) 50.0(24.8) 98.0 (24.0) 0.059 0.971

Intubation rate in 48 h, n (%) 93 (19.7) 41 (20.3) 86 (21.1) 0.240 0.887

Mortality at hospital 28 days, n (%) 69 (14.6) 30 (14.9) 51(12.5) 1.043 0.594

Mortality at ICU 28 days, n (%) 75 (15.9) 33 (16.3) 56(13.7) 1.083 0.582

Mortality in hospital, n (%) 79 (16.8) 35 (17.3) 58(14.2) 1.441 0.487

Hospital LOS, median [IQR], (days) 9.9 [6.3,16.5] 10.3 [6.0,17.1] 9.3 [5.7,15.3] 3.301 0.192

ICU LOS, median [IQR], (days) 3.7 [2.2,6.6] 3.4 [1.9,6.0] 3.1 [1.9,5.21] 7.220 0.027

Data are presented as median [interquartile range] or number (%). BMI represents body mass index; ICU represents intensive care unit; CAD represents coronary artery disease; CHF 
represents chronic heart failure; HBP represents hypertension blood pressure; COPD represents chronic obstructive pulmonary disease; CKD represents chronic kidney disease; SOFA 
represents Sequential Organ Failure Assessment; APSIII represents Acute Physiology Score III; SAPS II represents Simplified Acute Physiology Score II; HRmean, RRmean, MAPmean, SpO2mean 
represent the average heart rate, respiratory rate, mean arterial pressure, peripheral capillary oxygen saturation of the first ICU day; PFratiomin, PHmin, Lactatemin, SO2min represent the minimum 
value of the PaO2/FiO2 ratio, PH, lactate, arterial oxygen saturation of the first ICU day; PaCO2max, PHmax, Lactatemax represent the maximum value of the PaCO2, PH, lactate of the first ICU day; 
LOS represents the length of stay. * marked as parameters for model construction of 48-h intubation.

https://doi.org/10.3389/fmed.2024.1213169
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Fu et al. 10.3389/fmed.2024.1213169

Frontiers in Medicine 09 frontiersin.org

Shapley value

Based on the best model to show the SOFA score, APS II score, 
the maximum and minimum values of lactate as the risk factors of 
48-h intubation, age, maximum PaCO2 value (PaCO2max), GCS, 
PHmax, and the minimum value of PaO2/FiO2 ratio (PaO2/FiO2min) 
and PaO2 (PaO2min) are protective factors for 48-h intubation 
(Figure 5 upper graph). The individual predictive plot showed the 
explainability of the optimal model for individual observation 
(Figure 5 lower graph).

Discussion

In our study, more than 120,000 patients from 2001 to 2019 were 
screened from MIMIC III and IV databases. A total of 673 eligible 
patients from MIMIC IV were included in the prognostic analysis and 
48-h intubation model construction and internal validation, while 408 
eligible patients from MIMIC III were included in the external 
validation. We found that (1) the NIV group intubation rate, ICU 
28-day mortality, and in-hospital mortality were significantly lower 
and the lengths of stay in the ICU and hospital were shorter compared 
with the HFNC group in cross-sectional analysis; (2) after considering 
time effect, the initial therapy of either HFNC or NIV had no 
significant influence on the total and 48-h intubation rate; (3) the 
ensemble AdaBoost Tree algorithm (internal and external validation 
set AUROC 0.878, 0.726) was the best model in the validation cohort, 
providing a proper method for clinicians to make clinical decisions 
and a reference for researchers to optimize the models in further 
prospective studies; (4) The model Shapley algorithm showed SOFA, 
APSIII, the minimum and maximum lactate value as risk factors for 
early failure and age, the PaCO2max and PHmax, GCS, PaO2/FiO2min, and 
PaO2min value as protective factors.

HFNC, with a high concentration of oxygen continuously flushing 
physiological dead space (20, 21), low level of positive end-expiratory 
pressure (22), and increased patient comfort (23) was a frequently 
used non-invasive equipment for improving oxygenation. NIV was 
another commonly used non-invasive respiratory support for 
enhancing gas exchange and ventilation. It mainly improves 
oxygenation through three mechanisms: moderate inspiratory 
pressure to enhance ventilation (24, 25), adjustable end-expiratory 
positive pressure (25), and decreased left ventricular afterload to 
enhance left ventricular function (24). In comparison to HFNC, NIV 
can provide higher airway pressure for ventilation support, especially 
with helmet NIV (11). These differences explained why professional 
clinicians were inclined to select HFNC as a therapy for single 
hypoxemia and select NIV as a therapy for complex hypoxemia 
combined with coronary artery disease, COPD, or respiratory acidosis 
in our baseline information comparison of two groups in the baseline 
clinical parameters comparison.

The NIV group was superior to the HFNC group in terms of the 
total intubation rate, ICU 28-day mortality, in-hospital mortality, ICU 
LOS, and hospital LOS in the cross-sectional analysis. Our primary 
outcome was that the 48-h and 30-day intubation rates were not 
significantly different between the groups after considering the factor 
of time to the endpoint event in the survival analysis, which reinforced 
that the difference may be  due to the heterogeneity of baseline 
information of the groups. These results are consistent with the 
consensus on acute hypoxemic failure treated by HFNC or NIV (10, 

26, 27). In 2020, Ferreyro (28) et  al. conducted a network meta-
analysis on endotracheal intubation of non-invasive oxygenation 
strategies with acute hypoxemic respiratory failure. They found that 
helmet NIV was associated with a decreased risk of endotracheal 
intubation compared with HFNC (RR, 0.35; absolute risk difference, 
−0.20; low certainty) and face mask non-invasive ventilation (RR, 
0.35; absolute risk difference, −0.20; low certainty), and there was no 
significant difference between face mask NIV and HFNC (RR, 1.01; 
absolute risk difference, −0.00; low certainty). In 2022, Perkins et al. 
(29) performed a multicenter random multicenter random control 
trial comparing continuous positive airway pressure (CPAP) and 
HFNC with conventional oxygen therapy (COT) in COVID-19 
patients continuous positive airway pressure (CPAP), HFNC, and 
conventional oxygen therapy (COT) in COVID-19 patients with acute 
hypoxemic respiratory failure. They found that the intubation rate 
within 30 days was significantly lower with CPAP vs. COT (36.3% vs. 
44.4%, absolute difference, −8%, p = 0.03) but was not significantly 
different between HFNC and COT (44.3% vs. 45.1%, absolute 
difference, −1%, p = 0.83). Therefore, the different physiopathological 
mechanisms of primary disease and therapy parameters may 
be  important factors in influencing treatment failure rate. More 
disease states and detailed treatment parameters need to be controlled 
in future studies.

Machine learning, as an essential part of artificial intelligence, 
can analyze complex and diverse medical data using various 
algorithms in data mining and analysis. It can provide early warning 
and support for medical clinical decision-making. In the electronic 
health information system of intensive care units, machine learning 
and deep learning can perform better than traditional models or 
single indicators in processing nonlinear, dynamic medical data with 
complex correlation, especially with high granularity monitoring 
systems collecting continuous data on respiratory, hemodynamic, 
neurological, and clinical variables. In previous studies, the 
traditional risk assessment model for non-invasive supportive 
therapy failure and independent risk factors were HACOR score to 
dynamically assess the risk of intubation in mask NIV patients (30) 
andSpO2 / FiO2 to assess respiratory rate ratio (ROX) (31) and ROX 
/ HR (32) in HFNC patients; esophageal pressure fluctuation (14); 
and exhaled tidal volume (15, 16) in NIV patients, etc. Due to the 
inherent deficiency of using algorithms, these traditional models and 
indicators mainly focus on the physiological parameters before or 
after treatment and do not include the impact of primary disease, the 
severity of the organ dysfunction before treatment, and the treatment-
related parameters. Therefore, machine learning methods that 
combine multiple types of complex parameters when handling 
similar tasks may be  more competent. In 2020, Siu et  al. (33) 
conducted a retrospective analysis of the MIMIC III and eICU 
databases to construct a 24-h ICU admission intubation predictive 
model, using logistics regression (AUC 0.77) and random forest 
algorithm (AUC 0.86). In 2021, Arvind et  al. (34) conducted a 
retrospective analysis based on medical data from 4,087 adult patients 
who were hospitalized with confirmed COVID-19 or under suspected 
medical observation in five New York hospitals. The team compared 
the predictive accuracy of the random forest model and the ROX 
index in 72-h endotracheal intubation, respectively. Random forests 
had a better predicted performance (mean AUC 0.84) than the ROX 
index (mean AUC 0.64). In a retrospective analysis of Shashikumar 
et  al. (35) based on ICU patients at the San Diego Hospital of 
California University (trial set n = 18,528) and Massachusetts General 
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TABLE 4 Model performance in the internal and external validation datasets.

Models Internal validation External validation

AUC thresholds Sensitivity Specificity Youden index AUC thresholds Sensitivity Specificity Youden index

Naive Bayes 0.619 [0.565,0.673] 0.200 0.525 0.748 0.274 0.617 [0.553,0.681] 0.947 0.442 0.770 0.212

KNN 0.687 [0.631,0.739] 0.611 0.622 0.675 0.297 0.569 [0.496,0.636] 0.318 0.430 0.677 0.107

Decision Tree 0.611 [0.557,0.669] 0.074 0.493 0.724 0.217 0.548 [0.496,0.615] 0.800 0.360 0.786 0.239

NN 0.766 [0.717,0.810] 0.882 0.576 0.779 0.355 0.658 [0.586,0.717] 0.987 0.360 0.826 0.187

SVM 0.820 [0.768,0.858] 0.053 0.682 0.804 0.486 0.707 [0.645,0.765] 0.092 0.465 0.795 0.260

QD 0.755 [0.703,0.800] 0.853 0.548 0.810 0.358 0.622 [0.556,0.683] 0.947 0.337 0.795 0.132

LD 0.726 [0.671,0.775] 0.365 0.687 0.607 0.294 0.683 [0.619,0.747] 0.549 0.605 0.680 0.285

Kernal 0.648 [0.597,0.703] −0.213 0.465 0.699 0.165 0.549 [0.482,0.617] 0.763 0.372 0.665 0.037

logistic 0.724 [0.667,0.773] 0.360 0.677 0.607 0.285 0.686 [0.621,0.749] 0.555 0.558 0.683 0.241

Subspace KNN 0.783 [0.731,0.824] 0.567 0.645 0.736 0.381 0.693 [0.628,0.755] 0.567 0.512 0.761 0.107

AdaBoost Tree 0.878 [0.837,0.909] 7.916 0.687 0.883 0.570 0.726 [0.665,0.789] 7.553 0.360 0.919 0.280

GentleBoost Tree 0.863 [0.823,0.896] 0.029 0.650 0.865 0.515 0.742 [0.682,0.798] 0.054 0.384 0.904 0.287

LogitBoost Tree 0.855 [0.813,0.889] 4.433 0.668 0.883 0.552 0.716 [0.654,0.777] 5.810 0.326 0.913 0.212

RUSBoost Tree 0.758 [0.708,0.807] 2.342 0.530 0.847 0.377 0.691 [0.632,0.747] 2.880 0.279 0.888 0.167

Bootstrap Random 

Forest

0.811 [0.763,0.849] 0.412 0.622 0.816 0.438 0.710 [0.649,0.770] 0.715 0.349 0.882 0.231

AUC, area under curve; Youden index was defined as sensitivity + specificity-1. KNN, K-Nearest Neighbor; NN, neural network; SVM, support vector machine; QDA, quadratic discriminant analysis; LDA, linear discriminant analysis; Subspace KNN, subspace 
K-Nearest Neighbor; AdaBoost, adaptive boosting; RUSBoost, random under-sampling boosting.
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Hospital (validation set n = 3,888), a deep learning prediction model 
of invasive mechanical ventilation (trial set and validation set AUC, 
0.895 vs. 0.882) was better than the ROX index (0.738 vs. 0.782). 
Based on the above results, the predictive efficiency of mechanical 
learning is generally higher than that of traditional prediction models 
or single predictive indicators.

In this study, we constructed nine machine learning models and six 
integrated learning models in the test dataset and compared the prediction 

efficiency in the internal and external validation sets. The prediction 
accuracy of all models in the internal validation set is higher than that of 
the external validation set, which may be partly due to the potential 
differences among the datasets caused by the different admission time of 
the original database. Combining the AUROC, sensitivity, specificity, and 
Youden index of each model, the ensemble AdaBoost decision tree model 
performed the best. The AdaBoost model, short for Adaptive Boosting, 
first introduced by Freund and Schapire (36), is a widely used and 

FIGURE 3

Internal and external validation of the machine learning models.
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FIGURE 4

The confusion matrix of the ensemble AdaBoost decision tree model for internal and external validation.

FIGURE 5

The Shapley Explanation plot for the ensemble AdaBoost Tree model.
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researched model based on the boosting algorithm. Schapire’s experiments 
involving 300 rounds of boosting tests showed that AdaBoost often avoids 
overfitting with excellent and stable prediction performance. The 
AdaBoost model in the internal validation set has high prediction 
efficiency (AUC 0.878, sensitivity 0.687, specificity 0.883), and the 
external validation set has high specificity and relatively low sensitivity 
(AUC 0.726, sensitivity 0.360, and specificity 0.919). Possible reasons for 
the substantial difference in the specificity and sensitivity of the external 
validation set may include the following. 1. The uneven distribution of the 
modeling data on the outcome factors of intubation makes it easier to 
identify patients with successful ventilation using the constructed model. 
Therefore, in constructing the model, we  adopted the artificial 
oversampling method to deal with the category imbalance problem in 
order to improve the identification ability of a few classes (intubation 
patients) and increase the generalization ability of the model. 2. The 
original database did not fully record the parameters related to 
non-invasive respiratory supportive therapy and therapeutic efficiency 
assessment. 3. The two datasets are derived from medical databases at 
different periods, and advances in supportive treatment make it easier for 
the model constructed in MIMIC IV (2008–2019) to identify successfully 
ventilated patients in the external validation of the previous MIMIC III 
(2001–2012) database. However, the high specificity of this model can 
assist clinicians in accurately screening patients with successful ventilation 
and can warn medical staff to implement early intervention and 
preparation of high-failure-risk patients during ventilation and avoid 
complications related to high-risk emergency intubation and delayed 
intubation, thus improving patient prognosis. This has been of great 
clinical significance during the COVID-19 pandemic, with existing 
medical resources being tight and scarce.

After building the optimal prediction model, we also introduce the 
game-theoretic Shapley-value method to weigh the importance of each 
feature and, thus, explain the model predictions. SOFA (37–39), 
APACHE II (39, 40), and lactate (41, 42) were also confirmed as 
independent predictors or related factors of tracheal intubation in 
previous studies. At the same time, elderly and severe patients being 
more inclined to choose “non-intubation” may be an important reason 
why age becomes a protective factor (43). In 2015, Correa et al. (42) 
found a lower PaCO2 level in NIV failure patients with acute hypoxic 
respiratory failure. In 2020, Park et al. (44) illustrated that lower PaCO2 
levels were an independent predictor of NIV treatment failure, which is 
consistent with the analysis in our study of PaCO2 as a protective factor 
for treatment failure. In 2012, Nicolini et al. (45) illustrated that the 
baseline oxygenation indicator PaO2/FiO2 ratio ≤ 127 was an independent 
predictor of tracheal intubation in patients with acute hypoxemic 
respiratory failure caused by H1N1. In 2018, Frat et  al. (16) used a 
multicenter study of acute noninvasive respiratory support patients with 
hypoxic respiratory failure to confirm PaO2/FiO2 ≤ 200 as an independent 
risk factor for tracheal intubation. In 2021, Teresa et al. (46) found in 
COVID-19 patients with NIV failure, the PaO2, PaO2 /FiO2 ratio, and 
PaCO2 value were relatively lower. In addition, the GCS score is also a 
common clinical scoring standard to determine the state of consciousness 
of patients, which has also been confirmed to be negatively associated 
with the risk of endotracheal intubation (16). In a multicenter study by 
Ricard et al. (38) in 2021, PH was found to be a protective factor (OR 
0.47, 95%CI: 0.24–086, p = 0.03) for intubation in patients with acute 
respiratory failure due to COVID-19. Therefore, early organ function 
support to improve patients’ SOFA and APSII scores, heart rate, PaO2, 

and lactate values can be useful to reduce the early failure rate and 
improve patient prognosis.

Limitations

Several limitations of this study should be considered. Firstly, our 
study was a retrospective research study, which mainly used the online 
MIMIC database. Based on the dataset and technical reasons, we did not 
involve therapy parameters such as treatment duration, interfaces, and 
treatment settings, which were also important factors that could influence 
the outcome according to our daily clinical observation. Secondly, due to 
the large amount of missing data, we also did not include the change 
values of respiratory treatment parameters and physiological indicators 
before and after treatment, which may influence the treatment outcome 
in clinical practice. Finally, important features based on Shapley 
interpretability analysis must also be validated in randomized controlled 
trials with large samples. We will further study and explore the following 
two directions: designing a prospective study cohort to obtain more real-
time parameters and further constructing more effective features to 
optimize the prediction model; designing prospective clinical randomized 
controlled trials to verify the impact of important feature factors in the 
risk prediction model in order to improve patient outcomes.

Conclusion

In conclusion, the NIV group was found to be associated with 
reduced intubation rate, ICU 28-day and in-hospital mortality, and 
shorter ICU and length of stay compared with HFNC using cross-
sectional analysis. It was also illustrated that the initial ventilation 
options, either HFNC or NIV therapy, had no significant influence 
on the 48-h intubation rate after considering the time effect and other 
confounding factors. The ensemble AdaBoost decision tree model 
may assist clinicians in making clinical decisions, and early organ 
function support to improve patients’ SOFA and APSII scores, heart 
rate, PaO2, and lactate values can be used to reduce the early failure 
rate and improve patient prognosis.
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Glossary

HFNC High-flow nasal cannula

NIV Non-invasive ventilation

ICU Intensive care unit

MIMIC III/IV Medical Information Mart for Intensive Care III/IV

BMI Body mass index

COPD chronic obstructive pulmonary disease

SOFA Sequential Organ Failure Assessment

APS III Acute Physiology Score III

SAPS II Simplified Acute Physiology Score II

LOS length of stay

AUROC area under the receiver operating characteristic curve

PaO2max maximum PaO2 on the first ICU day

PaCO2max maximum PaCO2 on the first ICU day

PHmax maximum PH value on the first ICU day

lactatemin minimum lactate value on the first ICU day

lactatemax maximum lactate value on the first ICU day

SpO2mean average value of SpO2 on the first ICU day

HRmean average value of heart rate on the first ICU day

MAPmean average value of the mean arterial pressure on the first ICU day

KNN K-Nearest Neighbor

NN neural network

SVM support vector machine

QDA quadratic discriminant analysis

LDA linear discriminant analysis

Subspace KNN subspace K-Nearest Neighbor

AdaBoost adaptive boosting

RUSBoost random under-sampling boosting
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