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Despite the relevant advances in our understanding of the pathogenetic 
mechanisms regulating inflammation in rheumatoid arthritis (RA) and the 
development of effective therapeutics, to date, there is still a proportion of 
patients with RA who do not respond to treatment and end up progressing 
toward the development of joint damage, extra-articular complications, 
and disability. This is mainly due to the inter-individual heterogeneity of 
the molecular and cellular taxonomy of the synovial membrane, which 
represents the target tissue of RA inflammation. Tumor necrosis factor alpha 
(TNFα) and interleukin-6 (IL-6) are crucial key players in RA pathogenesis 
fueling the inflammatory cascade, as supported by experimental evidence 
derived from in vivo animal models and the effectiveness of biologic-Disease 
Modifying Anti-Rheumatic Drugs (b-DMARDs) in patients with RA. However, 
additional inflammatory soluble mediators such as IL-8 and IL-17 exert their 
pathogenetic actions promoting the detrimental activation of immune and 
stromal cells in RA synovial membrane, tendons, and extra-articular sites, 
as well as blood vessels and lungs, causing extra-articular complications, 
which might be excluded by the action of anti-TNFα and anti-IL6R targeted 
therapies. In this narrative review, we will discuss the role of IL-8 and IL-17 in 
promoting inflammation in multiple biological compartments (i.e., synovial 
membrane, blood vessels, and lung, respectively) in animal models of arthritis 
and patients with RA and how their selective targeting could improve the 
management of treatment resistance in patients.
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Introduction

The synovial membrane is a key tissue in 
rheumatoid arthritis

The synovial membrane (SM), which covers the joints and lines the 
joint cavity, is made up of two layers: lining and sublining (1–3). The 
lining layer is made up of two/three cell layers and does not have a 
basement membrane. The cell types of the lining layer are resident 
synovial macrophages and fibroblast-like synoviocytes (FLS) that reside 
over an underlying connective tissue. This underlying connective tissue 
is the sublining layer that is characterized by sparse tissue-resident 
macrophages and fibroblasts, adipose cells, and blood and lymphatic 
vessels as well as minimal infiltrating inflammatory cells. In the last few 
years, the use of high-definition technologies such as single-cell RNA 
sequencing revealed the heterogeneity of these populations and novel 
cell–specific functions (4–6). In particular, in healthy conditions, 
synovial tissue-resident macrophages and fibroblasts play a crucial 
homeostatic function forming an immunological barrier that enables 
the isolation of the joint cavity through their expression of membrane 
tight junctions and by the release of regulatory and anti-inflammatory 
mediators maintaining joint homeostasis (4–7). Few mast cells (MCs) 
have been described in normal synovium, mainly the subset containing 
either tryptase (MCt) or chymase (MCtc) (8). In the collagen-induced 
arthritis (CIA) model, MCs emerged as players of the early immune-
driven arthritis (not in the effector phase of the immune response in 
the K/BxN model) (9), and MCt is thought to contribute to the tissue 
hyperplasia by inhibiting FLS apoptosis (10). During arthritis 
development, immune cells are recruited toward the synovial 
membrane that shows lining layer hyperplasia and becomes a tumor-
like tissue (pannus). The pannus formation presents a molecular basis 
and pathways leading synovial fibroblasts to achieve and maintain an 
aggressive phenotype, similar to locally invasive cancer (3). Analyzing 
the physiology of FLS, it was demonstrated that normal FLS and 
RA-FLS spontaneously express genes such as IL-6, IL-8 (CXCL8), and 
transforming growth factor ß1 (TGFß1) but not tumor necrosis factor 
alpha (TNFα). After LPS stimulation, normal FLS and RA-FLS 
expressed granulocyte-macrophage colony-stimulating factor 
(GM-CSF) and interleukin-1α (IL-1α) (11). Interestingly, another study 
showed that long-standing RA-derived FLS constitutively expressed 
basic fibroblast growth factor (FGF), TGFß, IL-1α, and IL-6 but not 
TNFα (12), suggesting that FLS are constitutively prone to synthesize 
IL1-α and ß and mostly IL-6, IL-8, and TGFß but not TNFα.

Moreover, mesenchymal stem cells (MSCs) represent a transitional 
cell in the synovial tissue that is capable of differentiating into 
fibroblasts, maintaining their potential multilineage differentiation  
in vitro, with the main immunological function of controlling T-cell 
and B-cell activation and proliferation, blocking the activation of 
natural killer (NK) cells, reducing the antigen-presenting function of 
dendritic cells inducing the phenotypic transformation of macrophages, 
and reducing the apoptosis of polymorphonuclear (PMN) cells (13, 14). 
The anti-inflammatory functions of MSCs are exerted through the 
synthesis of IL-6, interleukin-10 (IL-10), TGFß, hepatocyte growth 
factor (HGF), and prostaglandin E2 (PgE2) (14). Of particular interest, 
the injection of human MSCs obtained from synovial tissue of patients 
with osteoarthritis (OA) into the joint cavity of collagen-induced 
arthritis (CIA) in DBA/1J mice model was associated with a decrease 
in TNF-α, IFN-γ, and interleukin-17A (IL-17A), while IL-10 
production increased. Moreover, the number of T helper 1 (Th1) and 

Th17 cells in the spleen of mice treated with SM-MSCs (synovial 
membrane-MSCs) was decreased, while the number of Th2 (T helper 
2), Treg (T regulatory), PD-1+ CXCR5+ FoxP3+ follicular Treg cells, 
and IL-10-regulated B cells was increased (15).

Finally, RA synovial tissues were characterized by the presence of 
nurse-like cells (NLCs), having the ability to promote antibody 
production by B cells, to protect lymphocytes from apoptosis, and to 
secrete a large number of cytokines and chemokines, i.e., monocyte 
chemotactic protein1 (MCP-1), IL-8, and other chemokines (16), as 
well as IL-6, IL-7, GM-CSF, and granulocyte colony-stimulating factor 
(G-CSF) (17), promoting the accumulation and activation of 
monocytes and lymphocytes, including B cells (18). RA-NLC has also 
the unique capacity to promote the differentiation of osteoclasts from 
myeloid precursors in a receptor activator of NF-κB/receptor activator 
of NF-κB ligand (RANKL) in an independent manner (14).

IL-17 (and IL-8) as target cytokines in 
animal models of arthritis

Several studies have demonstrated that the synovial tissue of 
animal models of arthritis, such as CIA, adjuvant-induced arthritis 
(AA), antigen-induced arthritis (AIA), streptococcal cell wall (SCW) 
arthritis, and SKG (ZAP-70 mutation model, harbor a strain of a 
recessive mutation of the gene encoding an SH2 domain of 
ζ-associated protein 70 (ZAP-70), a key signaling molecule in T cells), 
express and synthesize an array of pro-inflammatory molecules 
(IL-1ß, IL-6, and TNFα) at the onset that determines the aggressive 
damaging disease phenotype (19). In particular, in the CIA model, the 
knock-out of the IL-6 gene (IL-6−/−) led to complete protection from 
the onset of arthritis and a decrease of the anti-collagen type II 
autoantibody level (20). Interestingly, early neutralization of IL-6 
bioactivities, after immunization with type II collagen, leads to a 
significant reduction of Th17 cells and subsequent protection from 
CIA (21). Mice knocked out for IL-17 (IL-17−/−), 129/sc x C36BL/B6 
F1 hybrid background, and IL-17+/+ littermates, showed CIA 
suppression, suggesting that IL-17 was crucial for collagen-specific 
T-cell activation and collagen-specific IgG2a synthesis (22). No data 
were available on the constitutive production of IL-17 by RA-FLS. This 
suggests that IL-6 plays an early effect in RA pathogenesis and is 
crucial to induce IL-17 synthesis. IL-17 is mainly (even if not 
exclusively) produced by specific T cells (Th17) that have been 
recruited into the synovial tissue, and which are generated under the 
influence of TGFβ, IL-6, and IL-1 (23), which are all molecules  
constitutively expressed by FLS. The key role of IL-17  in RA is 
supported by the observation that overexpression of IL-17 in DBA-1/
BOM knee joint mice, as well as in SCW arthritis, induces joint 
inflammation, bone erosion, and cartilage proteoglycan loss (24). 
According to these data, IL-17 appears to amplify the inflammatory 
cascade triggered by IL-1α and β, TGFβ, and IL-6. Moreover, FLS cells 
constitutively express CXCL12 (stromal cell-derived factor 1, SDF-1) 
that recruits T cells which, in turn, constitutively express its receptor 
CXCR4 (25), and IL-6 that, through STAT3 activation, induces the 
expression of CCR3, CCR4, CCR5, and CXCR2 (26), all receptors 
present in CD3pos cells associated with the synthesis of chemokines as 
CCL4 (macrophage inflammatory protein, MIP-1β), CCL5 (regulated 
upon activation, normally T cell expressed and secreted, RANTES), 
CCL17 (thymus and activation-regulated chemokine, TARC), and 
CXCL10 (interferon-y-inducible protein- IP-10) (25, 26). These 
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chemokines contribute to the progressive accumulation of monocytes–
macrophages infiltrating the tissue. In particular, RANTES, MIP-1β,α, 
and SDF-1 are more actively involved in the recruitment of T and B 
cells into the synovial pannus leading to the formation of extranodal 
lymphoid tissue and pseudo germinal centers, as seen in early and 
long-standing RA-derived synovial tissues (27). The massive 
recruitment of B and T lymphocytes cannot occur without 
neoangiogenesis, which is strongly favored by the chemokines that 
possess angiogenic properties, such as IL-8, CXCL12, CXCL5 
(ENA-78, epithelial cell-derived neutrophil attractant 78), and CXCL1 
(GRO alpha, growth-related oncogene alpha). Among the chemokines, 
IL8, which has functional homologs (CXCL1/KV, CXCL2/MIP-2, and 
CXCL5-6/LIX in rodents), plays a key role, since antagonizing its 
function by blocking one of its receptors (CXCR2) through an 
antagonist significantly reduced acute and chronic arthritis 
inflammation in rabbits (28). Indeed, the more inflammation in the 
tissue, the more inflamed the synovial fluid, which shows enrichment 
of infiltrating PMNs, strongly recruited by IL-8, CXCL5, and CXCL1. 
Therefore, the constitutive syntheses of IL-8 and SDF-1 by FLS 
strongly contribute to synovitis chronicity, allowing the continuous 
recruitment of PMNs into the joint cavity of T and B cells into the 
synovial tissue. In this scenario, IL-8 and CXCL12 are likely essential 
for the recruitment and maturation of Th17, and the constitutive 
production of IL-6 and IL-8 by FLS is crucial for the whole process of 
synovial tissue inflammation. Indeed, FLS cocultured with IL17 for 
48 h, produced a high amount of IL-6 and IL-8 (29).

Cellular crosstalk through IL-8 and 
IL-17

IL-8

IL-8 is secreted by multiple cell types, including FLS, macrophages, 
monocytes, PMNs, endothelial cells, and MSCs (24), and its expression 
is regulated at both transcriptional and post-transcriptional levels (25). 
IL-8 mediates its effects via binding to two heterotrimeric G protein-
coupled receptors, CXCR1 and CXCR2, that become phosphorylated, 
desensitized, and internalized. The signaling pathways activated 
downstream by CXCR1/2 engagement, including mitogen-activated 
protein kinase MAPK pathways (p38, MEK1/2, and JNK) (30). IL-8 
signaling activates a wide range of transcription factors, such as nuclear 
factor kappa B (NFκB), activator protein-1 (AP-1), hypoxia-inducible 
factor 1 (HIF-1), and signal transducer and activator of transcription 3 
(STAT3). It is chemotactic for PMNs, monocytes, and fibroblasts. 
Moreover, IL-8 also accelerates fibroblast migration and stimulates the 
deposition of tenascin and fibronectin during wound healing in vivo. In 
epithelial, endothelial, and fibroblastic cells, secretion of IL-8 is induced 
by IL-17 (31). It is one of the key chemokines regulating neoangiogenesis 
(28, 32). Importantly, IL-8 appears crucial in RA for the recruitment and 
infiltration of the synovium by leukocytes, and it is easily detectable in 
the synovial fluids and by in situ hybridization in the rheumatoid synovial 
tissue, correlating with disease activity (33, 34). In particular, IL-8 
activates PMNs and subsequently releases neutrophil-derived 
chemotactic factor (NDCF) acting as chemotactic factors for monocytes 
and T cells (35). Inside the synovial tissue with lympho-myeloid 
pathotype, IL-8 is produced by CD20pos germinal center (GC) 
lymphocytes, especially centroblasts and centrocytes, and it appears 

crucial, along with RANTES, to enhance the recruitment of T cells inside 
the GC and favor the interaction between B and T cells at a stage in which 
B lymphocytes are engaged in active-dependent interactions with T cells 
(36–38). In addition, IL-8 is produced by cells located within the sublining 
layer that is in direct contact with the cartilage, being one major 
adipokine secreted by stromal cells (39). If we consider that synovial 
stromal cells attract monocytes by producing IL-8 and MCP-1 (40) and 
IL-8 downregulates the expression of tissue inhibitors of 
metalloproteinases (TIMPs) (41), the increased synthesis of IL-8 in the 
sublining layer represents the ideal site for an increased expression of 
collagenases leading to cartilage damage (42). Moreover, IL-8 induces 
motility and loss of focal adhesion in primary fibroblasts and favors the 
direct invasion of cartilage by FLS and macrophages (37) that erode and 
degrade cartilage through the synthesis of collagenases (43–47). Since 
FLS cells constitutively express and synthesize IL-1β, and IL-1β is a strong 
inducer of IL-8 by chondrocytes (42), an amplification loop involving 
FLS and macrophages in the degradation and erosion of cartilage appears 
in place within the arthritis synovial tissue, with MMP14 (metallo type 
1 matrix metalloproteinases) of critical importance (48–50).

In the joint “bare areas,” referring to the bone within the synovial 
space that is not covered by articular cartilage, the IL-8 recruitment of 
FLS and macrophages may lead to the key feature of inflammatory 
arthritis, that is, bone erosions (48, 49). In fact, IL-8 has been identified 
as an autocrine regulator of RANKL-induced osteoclastogenesis, by 
promoting the expression of RANKL by osteoblastic stromal cells (50, 
51). Either osteoclast precursors or mature osteoclasts express CXCR1, 
the IL-8 receptor, and the IL-8 effect on osteoclasts and their 
progenitors is associated with CXCR1 cell surface expression, 
demonstrating a direct effect of IL-8 on osteoclast differentiation and 
activity (52). Moreover, the ablation of IL-8 with a neutralizing 
antibody, attenuated osteoclastogenesis by the inhibition of NFATc1 
translocation to the nucleus, even in the presence of RANKL (53), 
clearly supporting the notion that IL-8 is an autocrine key regulator of 
osteoclasts differentiation and activation. This role of IL-8 may explain 
why 34.9% of patients with early RA (symptoms duration 
6.4 ± 3.3 months) had erosions at diagnosis (49). The presence of Anti-
citrullinated protein antibodies (ACPA), through the binding to 
citrullinated vimentin (as a putative autoantigen) present on the surface 
of osteoclasts, may increase cellular differentiation to bone-resorbing 
osteoclasts via autocrine stimulation of TNF production (44). In 
particular, ACPAs against vimentin or enolase, but not against other 
citrullinated peptides, were shown to induce the expression of IL-8 by 
osteoclast precursor cells, which acts in an autocrine way to facilitate 
osteoclastogenesis (54), thus stressing the role of the innate immune 
response in the erosion process, especially of seropositive arthritis. 
Since seronegative (for ACPA and rheumatoid factors) early RA also 
presents erosions in a significant percentage (31.9%) (55), the ACPA 
positivity does not appear to be a needful requisite for being erosive. In 
these cases, the IL-8-driven pathway may still play a key role.

IL-17

There is no evidence of the constitutive IL-17 production by FLS 
in humans. In 1999, Chabaud et  al. (56) demonstrated IL-17  in 
synovial biopsies of patients with RA. The IL-17 family is composed 
of six members (i.e., A–F) and is mainly produced not only by Th17 
but also by CD8+ T cells, CD4-CD8-γδ T cells, NK cells, innate 
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lymphoid cells (ILC3), mast cells (MCs), and PMNs, yet Th17 are 
thought to be the main drivers of arthritis (57, 58). Of interest, the 
MCs capture, store, and release bioactive IL17A (59, 60). In CIA 
models, Th17 and γδT cells were found in the synovial tissues, and 
Th17 depletion protected mice from bone erosions (61). In a seminal 
study, Komatsu et  al. (62) showed that transferring 
CD25hiFoxp3posCD4pos or CD25lowFoxp3posCD4pos T cells into mice 
immunized with type II collagen, and 1 week after secondary 
immunization, CD25lowFoxp3posCD4pos T cells lost Foxp3 expression 
and became IL-17-producing cells. When culturing 
CD25lowFoxp3posCD4pos T cells with Thy1posCD11 cells (synovial 
fibroblasts) but not with Thy1negCD11bpos cells (synovial macrophages), 
Foxp3 was lost and became Th17-producing IL-17. The major 
mediator of the transition from a regulatory to active status of T cell 
was found to be IL-6, heavily produced by Thy1posCD11bneg cells (FLS), 
and the treatment with a neutralizing antibody against IL-6, while 
neither an antibody against TNF-α nor IL-1β, inhibited the generation 
of Th17 cells after the coculture of Foxp3posCD4pos T cells with synovial 
fibroblasts. These data suggest that IL-6, secreted by FLS, is crucial in 
the development of Th17 (along with IL1, TGFβ, and IL23) (62) and 
the production of IL-17. Furthermore, Th17 cells expressed high levels 
of RANKL and had higher osteoclastogenic ability than naive CD4pos 
T cell-derived Th17 cells in a co-culture of synovial fibroblasts and 
bone marrow-derived monocyte and macrophage precursor cells (62). 
Moreover, IL-17 is able to enhance cartilage proteoglycan loss and 
inhibit its synthesis, as demonstrated in mouse models (56). On 
human RA-derived bone explants, IL-17 enhanced IL-6 production, 
increased bone resorption, and decreased its formation (56). Of 
critical importance, IL-17 induces the production of IL-6 and IL-8 
from RA FLS via PI3Kinase/Akt-dependent pathways, thus further 
amplifying the inflammatory role of FLS in RA pathogenesis (63). In 
addition, the finding that IL-17 is directly involved in the stimulation 
of fibroblasts and endothelial cells to secrete cytokines such as IL-6, 
IL-8, G-CSF (granulocyte colony-stimulating factor), and 
prostaglandin E2, and in sustaining the proliferation of CD34+ 
hematopoietic progenitors suggests that this cytokine is not only an 
amplifier molecule but also a potent bridge between innate immune 
response and systemic inflammatory response (64). Finally, the 
demonstration that on one side IL-17 promotes B-cell chemotaxis (65)
and on the other side that B cells stimulated with IL-4, IFNγ, IL-6, and 
TGFβ upregulate the expression of both IL-17A and F, appears to 
be an important step toward pannus expansion and maintenance  (66).

In conclusion, IL-8 at the onset and IL-17 after the RA onset (58) 
are key cytokines involved in the amplification of the arthritis 
inflammatory process, with the expansion of FLS and the action on 
chondrolytic and osteolytic activation.

IL-8 and IL-17 as key players in organ 
damage (cardiovascular risk, lung 
interstitial fibrosis, chronic obstructive 
pulmonary disease, and chronic pain) 
in RA.

IL-8

The expression of IL-8 is induced not only by several inflammatory 
cytokines but also by oxidized low-density lipoprotein (OxLDL) that 

mediates cholesterol loading of macrophages, which, in turn, 
selectively reduces the production of tissue inhibitors of 
metalloproteinases-1 (TIMP-1) by human monocyte-derived 
macrophages (HMDMs) (40). The role in cardiovascular disease is 
supported by the demonstration that myocardial ischemia and 
reperfusion strongly increase IL-8 mRNA expression, which 
determines leukostasis and PMNs-mediated myocardial injury (67), 
and by the observation that inhibiting IL-8 with a monoclonal 
antibody protects the myocardium from the injury of ischemia–
reperfusion, as seen in a New Zealand White (NZW) mouse model 
(68). Moreover, the demonstration that in interstitial lung disease-
idiopathic pulmonary fibrosis (ILD-IPF), IL-8 and its receptor CXCR1 
are highly expressed by mesenchymal progenitor cells (MPCs), which 
are the cellular originators of IPF fibroblasts, is of clinical significance. 
Most importantly, IL-8 was shown to expand the MPCs population, 
recruit activated macrophages, and promote fibrosis (69).

Finally, musculoskeletal chronic inflammatory diseases are often 
associated with acute and chronic pain. The demonstration that IL-8 
plays an important role in neuropathic pain (following nerve injury) 
(70), and the observation that an inhibitor of IL-8-CXCR1/2 
interaction improved neuropathic pain (71), suggest that IL-8 may 
indeed play a role in chronic neuropathic pain that affects 17–21% of 
patients with RA (72).

IL-17 family

Within its biological effects, IL-17A might promote accelerated 
atherosclerosis, which is a key extra-articular manifestation of RA 
(73). The observation that in the ApoE−/− (apolipoprotein E-deficient) 
mouse model, which is a model prone to accelerated atherosclerosis, 
IL-17A blockage reduced the plaque burden, IL-6 levels, G-CSF levels, 
CXCL1 expression, and macrophage content in the aorta strongly 
suggests, among many others, a pathogenetic role of IL-17A in the 
atherogenic process (74). The clinical observation that RA patients 
who had higher baseline bioactive peripheral blood IL-17 levels and 
were followed for 19.8 years had a higher incidence of stroke, acute 
myocardial infarction (AMI), or peripheral acute artery ischemia, 
supports the reported experimental data (75).

Considering the lung involvement in RA, interesting data have 
emerged from studies on mice models deficient in the IL-17 receptor 
A (IL-17Ra−/−), showing that in two different mice models of 
pulmonary fibrosis employing COPD stimuli (cigarette smoking and 
viral mimetic polyinosinic-polycytidylic acid), animals were protected 
from both airway inflammation and fibrosis (76). Moreover, blocking 
IL-17A or IL-17Ra with monoclonal antibodies proved that IL-17A 
exerts crucial functions in this process. In fact, the IL-17A/IL-17Ra 
axis has been demonstrated to be critical in murine fibrosis models 
(77), and most importantly, it was demonstrated, in vitro, that IL-17A-
stimulated human fibroblasts proliferation can be  suppressed by 
inhibitors of Janus Kinase 2 (JAK2) or JAK1-3, while myofibroblast 
transdifferentiation is sensitive to JAK2 inhibition (78).

The IL-17/IL-17R axis has a role even in chronic pain in RA, as 
emerged from experimental data in a mouse model of neuropathic 
pain elicited by partial ligation of the sciatic nerve, in which the IL-17 
knock-out mice demonstrated significantly lower pain hypersensitivity, 
decreased infiltration of T cells and macrophages into the sciatic 
nerve, and decreased activation of microglia and astrocytes in the 
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L3–L5 dorsal and ventral horns of the spinal cord. Conversely, IL-17 
infusion increased mechanical allodynia and thermal hyperalgesia 
(79). This study demonstrates that, in experimental models, IL-17 
increases glial activation and neuropathic pain after peripheral nerve 
injury, and if we consider that IL-17A crosses the brain barrier to 
trigger neuroinflammation in rat models (80), we  may infer that 
IL-17A indeed is a player in one of the most complex symptoms of 
pathophysiology, the occurrence of neuropathic pain in chronic 
inflammatory illnesses (Figure 1).

IL-8 and IL-17 and monoclonal 
antibodies

Experimental data and synovial tissue analyses have demonstrated 
the presence and function of IL-8 and IL-17  in RA. Kraan et  al. 
showed a higher expression of IL-8/CXCL8 in the involved joints of 
patients with RA compared with uninvolved ones (35), and Koch et al. 
demonstrated the crucial pro-angiogenetic role of IL-8  in the 
development of chronic synovitis in RA (81). When examining 

peripheral blood and synovial fluid compartments, IL-8 levels were 
significantly increased in the plasma of very early RA (VERA) 
compared with established RA or healthy controls and in the synovial 
fluid of established RA compared with osteoarthritis patients (82). 
Despite this, the results obtained from the use of anti-IL-8/CXCL8 in 
a clinical trial enrolling patients with RA have not been published, and 
the compound was not further developed (83).

Moreover, synovial tissue of patients with RA is significantly 
enriched in IL-17 (84, 85), and IL-17 receptors were identified in the 
endothelial cells of RA synovium and chondrocytes derived from 
many types of arthritis, with the highest expression in osteoarthritis 
and SpA cartilages and the lowest in RA cartilage (82). Similar to IL-8, 
the peripheral blood of patients with VERA is enriched in IL-17 
compared with established RA or healthy controls, and the synovial 
fluid of patients with established RA shows significantly higher IL-17 
levels compared with osteoarthritis (82).

However, despite a strong biological background, the efficacy of 
secukinumab (a fully human monoclonal antibody binding and 
neutralizing selectively IL-17A) in RA was modest when compared 
with abatacept (86), with limited efficacy in patients who were poor 

FIGURE 1

Pathogenetic actions of interleukin-8 (IL-8) and IL-17 on immune and stromal cells in multiple biological compartments in rheumatoid arthritis. (Left 
section) Schematic representation of the pathogenetic actions of IL-8 in the synovial tissue, blood vessel wall, and alveolar space in RA. Synovial tissue: 
The release of IL-8 by resident macrophages and fibroblast-like synoviocytes (FLS) plays a chemotactic action promoting the recruitment of immune 
cells toward the synovial tissue fueling tissue inflammation and promoting osteoclasts differentiation and activation leading to bone damage. Vessel 
wall: The release of IL-8 by infiltrating macrophages promotes the proliferation of smooth muscle cells and the activation of endothelial cells 
promoting plaque progression. Alveolar space: The release of IL-8 by alveolar macrophages enhances myeloid cell migration from circulation and 
promotes the development of hyper-fibrotic macrophages. Moreover, the release of IL-8 from mesenchymal cells induces their migration and 
proliferation in an autocrine loop. (Right section) Schematic representation of the pathogenetic actions of IL-17 in the synovial tissue, blood vessel wall, 
and alveolar space in RA. Synovial tissue: The release of IL-17 by Th17 lymphocytes promotes the activation of synovial macrophages and FLS 
contributing to the chronicity of synovitis. Moreover, IL-17 is a potent inducer of osteoclast/chondrocyte activation contributing to bone and cartilage 
damage. Vessel wall: The release of IL-17 by adaptive and innate immune cells promotes the chemotaxis of immune cells within the vessel plaque and 
promotes endothelial cell apoptosis, accelerating the atherosclerotic process and leading to increased cardiovascular risk. Alveolar space: The release 
of IL-17 interferes with the pneumocyte I autophagy process and its release by pneumocytes type II enhances fibroblast proliferation, which 
contributes to extracellular matrix deposition and lung fibrosis.
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responders to TNF inhibitors (87). We  know that chronically 
stimulated lymphocytes undergo TCR-zeta downregulation and 
become TCR-zetadim lymphocytes. TCR-zetadim lymphocytes are 
increased in RA synovial tissue and would selectively migrate to the 
joint during disease flare. We, and others, found that TCR-zetadim 
lymphocytes not only produce IL-17 but also IFNγ (88). These T cells 
are called non-classical Th1 because they produce IFNγ similar to Th1, 
yet they have been shown to proliferate more than Th17 after 
stimulation and to produce an increased amount of pro-inflammatory 
cytokines (GM-CSF, TNFα, IL2, IL17, and IFNγ), and might be more 
resistant to IL-17-targeted therapy (89). Tenosynovitis occurs in a 
subset of patients with RA, even in patients with no 
metacarpophalangeal joint synovitis (90), and these patients could 
benefit from an anti-IL-17A therapeutic approach if they do not fully 
respond to the specific biologic agent (83). Although no data are 
available on patients’ refractory to anti-TNF, a bifunctional antibody 
might be relevant, as observed in other illnesses (91).

How can we support the IL-8 and IL-17 
involvement in RA?

The answer comes from the biology of RA. Studying the effects of 
gold sodium thiomalate (GST) and methotrexate (MTX) in RA, both 
employed as first-line therapy in RA diagnosis, Seitz et al. (92) showed 
that after stimulation with lipopolysaccharide (LPS) or IL-1ß, there was 
a profound decrease of IL-8 levels in peripheral blood mononuclear cell 
(PBMC) cultures from healthy controls as well as patients with RA, and 
also a significant decrease in the spontaneous production of IL-8 by RA 
PBMCs. If we consider that IL-8 is released by several cells which 
populate the synovial tissue of RA (93, 94) (endothelial cells, FLS, MLS, 
and chondrocytes), we may hypothesize that control of the innate 
immune response by MTX may be obtained through the inhibition of 
IL-8 synthesis. The demonstration that tocilizumab (a monoclonal 
antibody directed against the IL-6 receptor) was able to inhibit the 
synthesis of IL-8 from triple-negative breast cancer cells, thus blocking 
both IL-6 and IL-8, which promotes angiogenesis and favor the growth 
and spread of the disease, suggests that targeting IL-6 means targeting 
also IL-8, with IL-6 coming first (95). Since MTX also decreased IL-6 
synthesis after stimulation with LPS of PBMC from juvenile idiopathic 
arthritis (JIA) (96) and in the GPI-arthritis model (glucose-6-
phosphate isomerase-induced arthritis model), MTX potently inhibits 
the development of arthritis, and this effect relates to the progressive 
reduced SLC19A1 expression (the folate carrier SCL19A1) (97). Thus, 
it is possible to infer that the inhibition of IL-6 is a key to 
downregulating IL-8. In contrast, when studying gene expression in 
whole blood-derived cells, patients with RA stabilized under etanercept 
(a fusion protein produced by recombinant DNA that fuses the TNF 
receptor to the constant end of the IgG1 antibody) showed an increased 
expression of the IL-8 gene, as well as under infliximab therapy (a 
DNA-derived chimeric monoclonal antibody working by binding to 
and neutralizing TNFα) (98). The induction of a strong 
pro-inflammatory gene such as IL-8, under TNFα inhibition, suggests 
that an underlying persistent inflammatory milieu may be associated 
with RA clinical stabilization. Whether this may foresee the progressive 
loss of efficacy, needs to be defined in follow-up studies of patients 
treated with TNF inhibitors. In contrast, Lun et  al. (99) showed a 
significant decrease in TNFα and IL-8 released by peripheral 

blood-derived mononuclear cells stimulated with phytohaemagglutinin 
and LPS under infliximab treatment, without any change in the 
induction of IL-6, IL-1ß, and IL-18. These apparently contradictory 
results support the idea that a persistent inflammatory background 
may remain after TNFα inhibition.

If IL-6 is upstream in RA disease, it follows that targeting IL-6 
means also targeting IL-8, while a direct inhibition of IL-8 may not 
stop the whole inflammatory cascade. Further support to the 
rationale that IL-6 and IL-8 walk together is the demonstration that 
RA-derived FLS stimulated with TNFα and IL-17 showed a higher 
synthesis of IL-6, IL-8, and G-CSF. Much lower concentrations of 
TNFα than IL-17 were required to stimulate chemokines, with IL-6 
stimulated at higher amounts than IL-8. Interestingly, a bispecific 
antibody against TNF and IL-17 blocked their expression and 
synthesis much more than it can be done using single selective 
inhibitors. Consequently, the anti-arthritic effect of the bispecific 
antibody became evident in the TNFα human transgenic arthritis 
model — hTNFtg (C57Bl6 background, Tg197 strain) (100).

If targeting IL-6 leads to an increase in the Treg/Th17 ratio, since 
the conversion of Treg cells (Foxp3 positive) into Th17 cells is IL-6 
dependent (62), a tocilizumab treatment increased this ratio in vivo 
(101). Once again, targeting IL-6 means targeting IL-17 downstream, 
and since TNFα induces IL-6 and IL-8, targeting IL-6 means also 
stopping the deleterious effects of TNFα. This can be the reason why 
IL-6 has been considered the pivotal cytokine in RA (102). Indirect 
supports to these considerations come from recent data showing that 
abatacept (a fusion protein composed of the Fc region of the 
immunoglobulin IgG1 fused to the extracellular domain of CTLA-4, 
an immune check-point that downregulates T-cell activation and the 
immune response) leads its strongest effects in patients with the lowest 
IL-6 levels at the baseline and with the highest Treg levels (103).

Unmet needs and perspectives

Despite incredible advances in our understanding of the cellular 
and molecular biology of RA, an important percentage of patients 
cannot be  led to full persistent remission. We recognize that IL-6 
(upstream pivot) and TNFα (final kingmaker) represent key players 
in treatment options, yet there are patients who we define as difficult 
to treat (104) that still do not reach a satisfactory clinical control with 
the available therapies (Figure 1). To avoid multiple interventions with 
multiple drugs with different modes of action, following the 
pathogenetic pathways described here, a sequential therapy like in 
hematology (105), with anti–IL-6 or anti-TNFα followed by anti–
IL-17, might offer favorable outcomes. In the CIA model, the dual 
blockade of TNF and IL-17 gave better results than either monotherapy 
(106) and in the TNFα transgenic animal model of arthritis, as well as 
cartilage and bone damage, were better controlled with bi-specific 
antibodies (anti-TNFα and anti–IL-17A) than with monotherapies 
(100). Along the same line, in the CIA model, the therapeutic 
intervention during the induction phase of arthritis with anti–IL-6 
and anti–IL-21 reduced disease development more efficaciously than 
monotherapies (107).

It is well accepted that patients with RA are clinically 
heterogeneous and that the lympho-myeloid pathotype at synovial 
tissue analysis represents the most aggressive and severe subset (108). 
In this scenario, RA patients with resistant tenosynovitis might benefit 
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from anti–IL-6, which has been shown to also act on the stromal 
component (108), followed by anti–IL-17 therapy (106). Conversely, 
in RA patients with an erosive disease, anti–IL-6 or anti-TNFα, 
followed by anti–IL-8, which is a key factor promoting erosiveness, 
should be tested. Alternatively to anti–IL-8 inhibitors, not currently 
available in the clinic, JAK inhibitors could be employed sequentially 
(109, 110), some of which (i.e., peficitinib and filgotinib) may act on 
FLS reducing their migration invasiveness and decreasing their 
synthesis of IL-8 and IL-6 (111). All of these unmet needs require 
intensive and tireless biopsy-driven research at the cellular (112) and 
molecular levels (113), aimed to develop a more biologically oriented 
personalized decisional algorithm. While waiting for bifunctional 
antibodies, the dual-target with anti-TNFα (certolizumab), followed 
by targeting IL-17A-F (ixekizumab), led to faster and stronger disease 
control in anti-TNFα incomplete responders, at the expense of more, 
not severe, infections (114).

Recent studies on the genetic background of seropositive 
(rheumatoid factor and anti-citrullinated protein antibodies positive) 
RA suggest that the inflammatory milieu is very complex (113). The 
association between seropositive RA and STAT4 (significantly 
associated with RA and activated by a variety of cytokines, i.e., IL-12, 
type 1 IFN, IL-23, IL-2, IL-27, and IL-35), PTPN22 (important for 
TCR and BCR signaling, for the upregulation of IL-4R, IL-13R, 
IL-17R, and IL-21R, the hyper citrullination, and netosis) (112), FLT3 
(important for the maintenance of hematopoietic progenitors, 
development of B cell lineage, and dendritic cells), gene variants, 
CTLA4, and IL6ST, supports the rationale that along with the major 
final players, other molecules are certainly involved in different phases.

Conclusion

The availability of synovial tissue biopsy during the RA course 
might provide information on the aggressiveness of synovitis (19) in 

terms of stromal cells proliferation and enrichment of B-cell lineage 
(105) and can be integrated with the assessment of the activity across 
the disease stages through multiparametric activity scores (106) to 
create patient-specific individual taxonomy. This will allow clinicians 
to define much earlier the individual molecular signature and the 
entity of the response to therapy and will let them promptly modify 
the therapeutic approach. Therefore, an oncohematological-like 
approach with drugs modulating different targets could be achievable 
once the clinical features and tissue characteristics have defined this 
individual multiparametric matrix.
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