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As technology continues to evolve, the possibility for a wide range of dangers 
to people, organizations, and countries escalate globally. The United  States 
federal government classifies types of threats with the capability of inflicting 
mass casualties and societal disruption as Chemical, Biological, Radiological, 
Nuclear, and Energetics/Explosives (CBRNE). Such incidents encompass 
accidental and intentional events ranging from weapons of mass destruction 
and bioterrorism to fires or spills involving hazardous or radiologic material. 
All of these have the capacity to inflict death or severe physical, neurological, 
and/or sensorial disabilities if injuries are not diagnosed and treated in a timely 
manner. Ophthalmic injury can provide important insight into understanding and 
treating patients impacted by CBRNE agents; however, improper ophthalmic 
management can result in suboptimal patient outcomes. This review specifically 
addresses the biological agents the Center for Disease Control and Prevention 
(CDC) deems to have the greatest capacity for bioterrorism. CBRNE biological 
agents, encompassing pathogens and organic toxins, are further subdivided 
into categories A, B, and C according to their national security threat level. In 
our compendium of these biological agents, we address their respective CDC 
category, systemic and ophthalmic manifestations, route of transmission and 
personal protective equipment considerations as well as pertinent vaccination 
and treatment guidelines.
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1 Introduction

Recent outbreaks of Ebola virus disease, monkeypox, and the 
COVID-19 pandemic, which are public health emergencies of 
international concern (PHEIC) per World Health Organization 
(WHO) criteria, have provided insights into the clinical impact, 
socioeconomic implications, and widespread disruption of society 
(1–3). Identifying and understanding these infectious disease threats 
could be extended to potential engineered pathogens as well.

As technology evolves, a wide range of threats to service 
members, diplomats, and United States (US) citizens emerges. The 
US federal government classifies types of threats with the capability 
of inflicting mass casualties and societal disruption as Chemical, 
Biological, Radiological, Nuclear, and Energetics/Explosives 
(CBRNE) (4, 5). These incidents include accidental events like 
chemical waste spills to intentional use of technology like weapons of 
mass destruction (5, 6). CBRNE events have the potential to inflict 
death or severe disabilities in the absence of accurate diagnosis and 
timely treatment. There are various echelons of CBRNE initiatives 
within the US aimed to prevent, prepare for, respond to, and recover 
from these incidents (4–6). However, to date, we are unaware of a 
centralized resource for CBRNE incidents as they pertain to 
ophthalmic disease and countermeasures. Ophthalmic injury can 
provide key insight into understanding and treating patients 
impacted by CBRNE agents, while improper diagnosis and 
management can lead to debilitating implications for patients’ vision 
and quality of life.

CBRNE biological agents encompass pathogens and toxins from 
microbes and plants. The Center for Disease Control and Prevention 
(CDC) classifies biological agents into categories A, B, and C according 
to their national security threat level using the following elements: 
ease of dissemination; mortality and morbidity rates; capacity for 
inciting public panic and social disruption; and requirements for 
special public health preparations (Table 1) (7). Category A agents are 
of highest priority, Category B of moderate importance, and Category 
C agents are emerging in nature and require further research for 
detection, diagnosis and treatment (8).

This is a comprehensive summary of the biological agents with 
special focus in relation to CBRNE preparation and management as 
identified by the CDC. We address the CDC category, the clinical 
manifestations and ophthalmic findings, the route of transmission and 

personal protective equipment (PPE) considerations, and the current 
vaccination and treatment guidelines for each identified biological 
agent in this review.

2 Viruses

A wide array of viruses is found in biological agent Categories A, 
B, and C. Proper hand washing and surface disinfection practices aid 
in prevention of nosocomial dissemination (9). Since a considerable 
number of viral infections are zoonotic, general preventative measures 
involve limiting contact with vectors and reducing direct and indirect 
contact with natural reservoirs and intermediate hosts. For example, 
removal of standing water sources when handling mosquito-borne 
infections reduces vector propagation, thus reducing disease 
burden (10).

Multiple viruses may be shed in the tear film and subsequently 
pose additional risk to eye care providers; therefore, ophthalmologic 
environmental interventions may include transparent shields on slit 
lamps, disinfection of potentially contaminated surfaces and 
instruments between patients, and implementation of telemedicine 
initiatives. Awareness of potential aerosol generation such as air puff-
like tonometry is also critical to risk mitigation (11, 12). Appendix 1 
summarizes key viruses according to the CDC categories.

2.1 Category A

Category A viruses encompass viral hemorrhagic fevers (VHFs) 
including arenaviruses (Lassa and Machupo viruses) and filoviruses 
(Marburg and Ebola viruses), and smallpox (variola major) (7).

2.1.1 Arenaviruses: Lassa fever and Machupo virus
Arenaviruses cause zoonotic hemorrhagic diseases via rodents 

and include Lassa fever and Machupo viruses (13). Rodent-to-human 
transmission occurs through contact with urine, feces, and saliva in 
contaminated food, aerosolized particles, and epidermal barrier 
lesions. Human-to-human transmission occurs through direct 
contact with infectious body fluids and contaminated fomites (14). 
Lassa fever is an arenavirus endemic to Africa and transmitted by the 
Mastomys natalensis mouse (13). Systemic manifestations include 
fever, exudative pharyngitis, proteinuria, emesis, sensorineural 
hearing loss, and other neurologic complications. Patients may 
progress into acute hemorrhagic fever and multi-organ failure. 
Ophthalmic findings of Lassa fever are conjunctivitis and 
subconjunctival hemorrhage in an acute disease state, with potential 
for visual acuity decline over time due to anterior and posterior 
segment pathology (15).

Machupo virus is the etiologic agent of Bolivian Hemorrhagic 
Fever and is transmitted by the Calomys callosus vesper mouse (16, 
17). Systemic manifestations are a flu-like syndrome (16). Less than 
one third of cases may progress to neurologic and hemorrhagic 
syndromes culminating in multi-organ failure and death. Ophthalmic 
findings include conjunctivitis, conjunctival congestion, and 
periorbital edema. Current treatment is supportive care. Some early 
animal trials and per os administration suggest potential benefits of 
ribavirin and favipiravir as treatment and prophylaxis for Lassa fever 
and Machupo viral infections (13, 16).

TABLE 1 Biological agent characteristics by threat category.

Agent 
characteristic

Category

A B C

Priority level Highest Second highest Third highest

Ease of dissemination High Moderate High

Associated mortality High Low High

Associated morbidity High Moderate High

Other May cause 

large scale 

panic and 

social 

disruption

Require 

enhanced 

diagnostic and 

surveillance 

measures

Emergent in 

nature

Overview of biological agent characteristics according to Centers for Disease Control and 
Prevention threat category.
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2.1.2 Filoviruses: Marburg and Ebola virus 
diseases

Marburg and Ebola virus diseases are caused by members of the 
Filoviridae family—Marburg virus (MARV) and Ebola virus (EBOV), 
respectively (18). MARV is transmitted from its reservoir host, the 
African fruit bat, to humans and nonhuman primates (NHPs) 
through infectious body fluids and contaminated fruits (19). Infected 
NHPs can also serve as intermediate hosts for MARV transmission 
to humans through direct contact and bushmeat consumption while 
human-to-human transmission occurs via body fluids and 
contaminated fomites. High-risk populations for filovirus infection 
include health care workers and those involved in the burial of 
infected human corpses (19, 20). Systemic MARV manifestations are 
grouped into three phases: Phase 1: flu-like illness and fever; Phase 2: 
neurological and hemorrhagic symptoms; and Phase 3: prolonged 
phase of restoration or multi-organ failure and death (19). There have 
been reports of acute anterior uveitis three months after initial disease 
onset (21, 22). Current treatment is supportive care with no effective 
vaccines or therapeutics available (19).

EBOV is highly fatal and demonstrates similar human-to-
human transmission mechanisms as MARV especially in instances 
of accidental needlesticks by healthcare workers (20, 23). Although 
EBOV’s natural reservoir is unknown, bats are often implicated (20). 
Systemic manifestations are divided into three phases: Phase 1: 
Nonspecific symptoms and fever that progresses to intractable 
vomiting and watery diarrhea; Phase 2: Illness peaks with 
meningoencephalitis, acute kidney injury, adrenal insufficiency, 
pulmonary vascular leakage, pericarditis, and pancreatitis; and 
Phase 3: development of late-onset sequelae including ophthalmic 
and otologic complications, cognitive difficulties, and 
musculoskeletal pain and weakness (24). Ophthalmic findings 
during acute infection are conjunctival hemorrhages and vision loss, 
and after convalescence patients may present with anterior uveitis 
followed by posterior uveitis (25–27). Other ophthalmic sequelae 
include eye pain, redness, photophobia with acute or chronic 
unilateral vision loss, episcleritis, interstitial keratitis, and cataracts. 
A slit lamp exam may reveal nonspecific signs of active or old 
inflammation, as well as retinal and peripapillary lesions (Figure 1). 
Like MARV, current treatment is supportive care with no effective 
vaccines or therapeutics available.

2.1.3 Variola major: smallpox
Variola major virus, the etiological agent of smallpox, is an 

Orthopoxvirus that significantly impacted human populations for 
centuries until vaccination efforts globally eradicated this notorious 
pathogen in 1980 (28). Changes in global population health, 
vaccination hesitance, and increased intercontinental contact portend 
risks for pandemics and bioterrorism (28, 29). Transmission of variola 
virus involves inhalation of microdroplets from the respiratory tract, 
skin, and body fluids of infected patients. Systemic manifestations 
include a nonspecific prodromal phase followed by a rash of 
characteristic small cutaneous lesions that synchronously progress to 
scabs and pock scars (28). Vaccination with the vaccinia virus, a live 
attenuated poxvirus like smallpox and treatment with cidofovir are 
used to prevent and manage systemic infection (28, 29). Ophthalmic 
findings include pustular rash, edema, discharge, and dried secretions 
of the eyelids; conjunctival pustules that induce pain, photophobia, 

and lacrimation; corneal ulceration and perforation, iris prolapse, 
hypopyon, staphyloma, and endophthalmitis (9). Additional 
ophthalmic findings may include iritis, iridocyclitis, secondary 
glaucoma, and disciform keratitis, among others (9, 30–32). 
Subsequent treatments may involve topical antivirals, vaccinia 
immunoglobulins, and combination therapy with antivirals and 
topical steroids.

2.2 Category B

2.2.1 Togaviruses: Venezuelan encephalomyelitis 
and Western equine encephalomyelitis

Category B viruses consist of three alphaviruses from the 
Togaviridae family with severe morbidity and mortality—Venezuelan 
encephalomyelitis (VEEV) and Eastern and Western Equine 
encephalomyelitides (EEEV, WEEV) (7, 33, 34). Although primarily 
transmitted by mosquitos between equine, the natural reservoir, and 
humans, these viruses have been aerosolized as highly infectious 
virions employed in biowarfare (34, 35). Shared systemic 
manifestations for all three encephalomyelitides includes an 
asymptomatic febrile incubation period, symptomatic phase 
encephalopathy, and high case fatalities, especially with EEEV 
(50–75%) (33). Severe neurologic sequelae present in survivors 
(VEEV 4–14%, EEEV 50–90%, WEEV 15–30%) include emotional 
instability, seizures, and cognitive, sensory, and motor deficits (10, 33).

Ophthalmic findings in addition to those seen in encephalitis with 
papilledema from elevated intracranial pressure involve occasional 
optic neuritis and/or cranial nerve (CN) palsies (CN-VI, CN-VII) 
affecting vision (10). Those with VEEV and WEEV may also exhibit 
conjunctivitis, eye pain, and photophobia. Current treatment is 
supportive care. Although several vaccine candidates are under 
investigation, none have been approved for use in humans (34, 35). 
Preventive methods entail vector control by thorough elimination of 
standing water sources, bed nets, insect repellents and mosquito-
repellent clothing (10).

2.3 Category C

Category C agents include Nipah virus (NiV) and Hantaviruses (7).

2.3.1 Hantavirus
Hantaviruses are rodent-carried viruses transmitted by aerosols 

of excreta, saliva, and urine; however, they are rarely transmitted 
human-to-human (36, 37). These viruses are subdivided according 
to their geographic distribution and unique systemic manifestations 
following a nonspecific symptom phase. ‘New World’ hantaviruses, 
predominately in the Americas, present with cardiopulmonary 
syndrome (HCPS) that progresses to organ failure. ‘Old World’ 
hantaviruses are endemic to Europe and Asia and present as 
hemorrhagic fever with renal syndrome (HFRS) and potential renal 
failure (36, 38). The first ophthalmic finding is acute, transient 
myopia, which is primarily associated with the HFRS-causing 
Puumala hantavirus (39, 40). One case reported a co-presentation 
of assumed hantavirus necrotizing retinitis and HFRS (41). 
Additional manifestations include anterior segment changes such 
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as conjunctival chemosis, lens thickening, vitreous length 
shallowing, and macular features such as intraretinal hemorrhages, 
in addition to disc streak hemorrhages (42). Current treatment is 
supportive care with no effective vaccines or therapeutics 
available (43).

2.3.2 Nipah virus
Nipah virus (NiV), a member of the Paramyxoviridae family, is a 

zoonotic disease naturally found in fruit bats with spillover into 
intermediate hosts (pigs and horses) and humans (44). Reported 
transmission from bats was associated with bat-bitten fruit and bat 
saliva- and excreta-contaminated date palm sap (44–47). Human-to-
intermediate hosts and human-to-human NiV transmission has been 
recorded in association with urine, saliva and respiratory secretions 
in addition to direct contact, fomites, and aerosols (45, 46, 48, 49). 
Severe respiratory and neurologic systemic manifestations encompass 
acute respiratory distress syndrome pneumonia, encephalitis, 
meningitis, seizures, and multiple organ dysfunction syndrome with 
a 40–70% case fatality (44–47). Several small studies report the 
following ophthalmic findings: nystagmus, CN-VI palsy and transient 
blindness during the acute phase of the illness; branch retinal artery 
occlusion, CN-VI palsy and Horner’s syndrome upon follow up with 
a higher mortality associated with doll’s eye reflex and pin-point 
pupils (50, 51). Current treatment is supportive care with no effective 
vaccines or therapeutics available (47).

3 Bacteria

Many bacteria are noted in the CDC’s tripartite partitioning of 
biological agents within the CBRNE framework. Appendix 2 contains 
a summary of the bacteria and toxins according to CDC categories.

3.1 Category A

Category A bacteria include Bacillus anthracis, Yersinia pestis, and 
Francisella tularensis, and the botulinum toxin of Clostridium 
botulinum (7).

3.1.1 Bacillus anthracis: anthrax
Bacillus anthracis is a spore-forming, aerobic, Gram-positive rod 

that rose to public notoriety following the 2001 Anthrax letters (52, 
53). Produced by the Soviet Union in at least one military research 
facility in 1979 (54), the bacterium is capable of cutaneous, respiratory, 
and gastrointestinal forms, which arise from the entrance of 
endospores into the body via breaks in the skin, by inhalation, or by 
ingestion. The vast majority of reported cases are cutaneous, and the 
gastrointestinal form is quite rare (55). Inhalational anthrax, also 
known as wool sorter’s disease, is the cause of bioterror potential and 
involves germination of endospores in the lungs (55). Systemic 
manifestations of the disease include an early phase of fever, malaise, 
headache, and a nonproductive cough followed by a secondary phase 
of dyspnea and hypoxemia that can progress to septic shock (55). 
Ophthalmic findings of anthrax are limited and seen in the cutaneous 
form, with the characteristic black eschar seen on the eyelids (56). 
Current treatment of inhalational anthrax includes two months of 
intravenous antimicrobial combination therapy of at least one 
bactericidal drug and one protein synthesis inhibitor, an antitoxin, and 
postexposure prophylactic vaccination (57–59).

3.1.2 Botulinum toxin (Clostridium botulinum): 
botulism

The botulinum toxin, produced by Clostridium botulinum, can 
be spread via foodborne vectors (consumption of spores in children 
or preformed toxin in adults), direct wound colonization and toxin 
production by C. botulinum, inhalation of aerosolized toxin, or an 
iatrogenic route via exposure to injectable therapeutic toxin (60). 
Regardless of the mode of transmission, infection from botulinum 
toxin results in a characteristic bilateral, symmetric, flaccid paralysis 
that can lead to respiratory failure. Ophthalmic manifestations include 
photophobia, ptosis, diplopia, mydriasis, and extraocular/eyelid 
paralysis (61). Treatment of botulism includes antitoxin administration 
and supportive care, and intubation may be required in instances of 
airway protection and respiratory failure (60, 62).

3.1.3 Francisella tularensis: tularemia
Francisella tularensis, like Yersinia pestis, is a poorly staining 

Gram-negative coccobacillus that can be transmitted by ingestion or 

FIGURE 1

Anterior segment photograph of an Ebola virus disease survivor shows pigment on the lens capsule (A), indicative of prior uveitis. In a West African 
survivor who was seen late in the uveitis disease course, complete seclusion of the pupil from extensive posterior synechiae and chronic inflammation 
is observed (B).
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inhalation and via tick bites (63). Studied by several countries in the 
20th century and probably used to some degree in World War II 
(WWII), Tularemia presents with six forms – ulceroglandular, 
glandular, oculoglandular, oropharyngeal, typhoidal and respiratory 
(64–66). Each of these forms begins with a nonspecific, flu-like phase 
of headache, fever, fatigue, chills, and myalgias (64). Given the scope 
of this article, the focus will be on the oculoglandular form. As the 
only ophthalmic form of tularemia, this localized form manifests with 
symptoms of photophobia, lacrimation, conjunctivitis, yellow 
conjunctival ulcers, chemosis, and eyelid edema (10, 63, 67). These 
symptoms coincide with the formation of regional pre-auricular or 
submandibular lymphadenopathy, and treatment should include 
10–21 days of tetracycline, aminoglycoside, or fluoroquinolone 
antibiotics (10).

3.1.4 Yersinia pestis: plague
Yersinia pestis, commonly known as plague, is a Gram-negative 

coccobacillus transmitted by flea bites, infected animal contact, and 
inhalation (68). Plague can manifest in bubonic, septicemic, and 
pneumonic forms, with pneumonic being the most likely bioterror 
threat due to the potential for particles to be aerosolized. In WWII, 
the Japanese military used plague on prisoners at Manchuria, and even 
deployed plague-infected fleas in a number of cities in China (69, 70). 
This form begins with a sudden onset of headache, chills, fever, 
tachypnea, tachycardia, and a cough that progresses from dry to 
hemoptysis (68, 71). Ocular plague has been described in mule deer, 
but no cases have been reported in humans (72). Infections can 
be successfully treated with an aminoglycoside, such as streptomycin 
(68, 71, 73).

3.2 Category B

The CDC has designated the following ten bacteria and two 
bacterial toxins as Category B agents.

3.2.1 Brucella spp.: brucellosis
Brucellosis is the clinical disease caused by species of the Brucella 

genus. Like many bacteria, Brucella can be transmitted by ingestion of 
contaminated food, inhalation, or contact with mucous membranes 
(74). The clinical manifestations of brucellosis are both numerous and 
nonspecific. Patients may present with flu-like illness, abdominal pain, 
hepatomegaly and splenomegaly, or arthralgia, with more severe cases 
reporting endocarditis, motor and cranial nerve deficits, meningitis, 
seizures, bronchopneumonia, and pleural adhesion (75). Despite the 
many clinical manifestations reported, ophthalmic manifestation is 
infrequent. One 26-year study in Peru described 52 patients with 
ocular brucellosis, with uveitis being the most common presentation 
although keratitis and conjunctivitis were also reported (76). 
Treatment of brucellosis is difficult, requiring a combination therapy 
of doxycycline plus streptomycin/gentamicin or doxycycline plus 
rifampin (77).

3.2.2 Burkholderia mallei: glanders
Burkholderia mallei is a Gram-negative intracellular bacterium, 

and the causative agent of glanders. While glanders is rarely seen in 
developed countries today, it was one of the first biological agents used 
in warfare during the World War I and employed to impact adversarial 

transport animals (78). Transmission and human infection can occur 
through direct contact with damaged skin or mucosal membranes and 
inhalation (79, 80). Clinical presentation of glanders can range from 
a localized infection to septicemia. Generalized symptoms include 
fever, fatigue, headache, myalgias, and lymphadenopathy, and 
localized infections characterized by focal areas of suppuration that 
may ulcerate. Ophthalmic symptoms are generally due to localized eye 
infection of the conjunctiva, resulting in photophobia and excessive 
lacrimation (80). Pulmonary infection due to inhalation can cause a 
productive cough, dyspnea, and chest pain with pneumonia, pleuritis, 
or abscess formation. Dissemination of infection to the bloodstream 
can lead to bacterial colonization and abscess formation in nearly any 
organ (79, 80). Due to the lack of recent human glanders cases, 
treatment options have not been well described, but B. mallei has been 
shown to be  susceptible to doxycycline, imipenem, ceftazidime, 
ciprofloxacin, piperacillin, and aminoglycosides (81).

3.2.3 Burkholderia pseudomallei: melioidosis
Despite being from the same genus, Burkholderia pseudomallei 

causes a separate clinical disease known as Melioidosis. Unlike 
glanders, human melioidosis cases are still known to occur in tropical 
and subtropical regions with endemic areas including Australia, 
southeast Asia, and India (82). Human infection typically occurs via 
inhalation or contact with contaminated water or soil (83). Pneumonia 
is the most common presentation and is associated with subsequent 
bacteremia. These patients typically present with a productive cough 
and dyspnea with fever and abscess formation following dissemination 
like glanders. Melioidosis can also present with a localized ulcerative 
infection (79, 83). Ocular melioidosis is rare but may present with 
symptoms such as orbital cellulitis, endophthalmitis, corneal 
ulceration, and dacryocystitis (84). Current regimens include 
ceftazidime or a carbapenem followed by trimethoprim-
sulfamethoxazole (81, 83). Employment of biosafety level 3 
precautions for laboratory workers has been suggested by some 
researchers (82, 83).

3.2.4 Chlamydia psittaci: psittacosis
Psittacosis is considered an atypical pneumonia caused by the 

Gram negative, intracellular bacterium Chlamydia psittaci (85, 86). 
The bacterium commonly infects both domestic and wild birds and 
can be transmitted to humans via inhalation of aerosolized feces or 
feather dust (85, 86). Systemic signs of psittacosis include an abrupt 
onset flu-like illness of fever, headache, chills, myalgias, fatigue, and 
cough, with less common manifestations of hepatosplenomegaly and 
peri-, endo-, or myocarditis (86, 87). The most commonly reported 
ophthalmic symptom of psittacosis is keratoconjunctivitis although 
this is still rare and typically reported in bird fanciers or laboratory 
workers (88). An association between psittacosis and ocular adnexal 
lymphoma has been described although this is still contested (89). 
Treatment of psittacosis with oral doxycycline is effective, and a 
macrolide such as azithromycin is considered a second line agent 
(85, 87).

3.2.5 Coxiella burnetii: Q fever
Coxiella burnetii, the causative agent of Q fever, is a Gram-

negative, obligate intracellular bacterium that spreads via inhalation 
of aerosolized body fluids or consumption of contaminated food 
material (90). In humans, the clinical disease begins with a sudden 
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onset of flu-like symptoms with pneumonia and hepatitis (91). Q fever 
can progress to a chronic form which can involve endocarditis. In 
pregnant women, Q fever has been linked to both spontaneous 
abortion and stillbirth (92). Ophthalmic manifestations of Q fever are 
limited to case reports and include acute multifocal retinitis, optic 
neuritis, and bilateral exudative retinal detachment (93–95). Both 
acute (2–3 weeks) and chronic (18–24 months) Q fever should 
be treated with doxycycline and hydroxychloroquine (91). Due to the 
aerosolized nature of transmission, PPE should include 
respirators (96).

3.2.6 Enterotoxin B (Staphylococcus spp.)
Comparable to C. botulinum, Staphylococcus species can produce 

a Category B toxin known as Enterotoxin B. It was previously studied 
for use as an aerosol biological weapon, but the toxin can also spread 
via contaminated food (97, 98). The toxin is a superantigen that causes 
widespread stimulation of the immune system, inducing fever, 
hypotension, pulmonary edema, acute respiratory distress syndrome, 
or septic shock (97–99). Ophthalmic symptoms are typically not well 
characterized, although purulent conjunctivitis following exposure to 
the toxin has been reported (100). The rapid and widespread onset of 
symptoms from Enterotoxin B make treatment difficult, and there are 
currently no approved antitoxins for clinical use (97–99).

3.2.7 Epsilon toxin (Clostridium perfringens)
The capacity for aerosolization of the epsilon toxin produced by 

Clostridium perfringens makes it a possible biowarfare agent (101). 
Despite this, little is known about the clinical manifestations, with 
only two cases ever being reported, both from 1955 (102, 103). One of 
the patients presented with only profuse diarrhea while the other 
developed a peritoneal effusion with a gangrenous ileum (102, 103). 
No ophthalmic symptoms have been reported. Moreover, there is 
currently no known treatment for infection with epsilon toxin (101).

3.2.8 Food safety threats: non-typhoid 
Salmonella spp., Shigella dysenteriae, Escherichia 
coli O157:H7

Non-typhoid Salmonella species, Shigella dysenteriae, and 
Escherichia coli O157:H7 together are classified as food safety threats 
by the CDC (7). Each bacterium is spread via the fecal-oral route 
through the consumption of contaminated food or water (Salmonella 
can also be transmitted via contact with reptiles) (104–106). While 
these pathogens exhibit shared clinical manifestations, Salmonella has 
some pertinent differences. Salmonella infection has a nonspecific 
presentation that may include fever, diarrhea, or pneumonia with 
hepatosplenomegaly common with bacteremia (105, 107). Shigella 
and E. coli O157:H7 can cause a watery diarrhea that progresses to a 
bloody diarrhea, or, in severe cases, hemolytic uremic syndrome 
(HUS) (104, 106). Infection of Shigella has been linked to reactive 
arthritis, previously known as Reiter’s syndrome, which is a rare 
presentation of infection-induced arthritis that can cause 
conjunctivitis, among other non-ocular symptoms (108). 
Non-typhoidal Salmonella species have also been implicated in 
reactive arthritis, causing keratitis, uveitis and conjunctivitis (109, 
110). While some strains of E.coli are known to impact the eye, the 
O157:H7 strain is not known to cause ocular disease. Unless 
immunocompromised, Salmonella infections are typically self-limited 
and should be treated supportively (111). The recommendation for 

E. coli treatment is similar, with antibiotic treatment demonstrating 
increased potential for developing HUS (104). Shigella, however, 
should be treated in both children and adults with ciprofloxacin or 
ceftriaxone (112, 113).

3.2.9 Rickettsia prowazekii: typhus fever
Rickettsia prowazekii is a Gram-negative bacilli and the causative 

agent of typhus fever. The disease is spread to humans via deposition 
of louse feces into bites or mucosal surfaces, or inhalation of 
aerosolized feces (114, 115). Clinical onset includes high fever, 
headache, and a rash due to hematogenous dissemination of 
R. prowazekii. Other symptoms can include nausea, vomiting, 
pneumonia, myocarditis, thrombocytopenia, jaundice, seizures, 
confusion, or even coma (114). Despite the numerous potential 
clinical manifestations of typhus fever, ophthalmic manifestations 
have not been described. Treatment of typhus fever is tetracyclines, 
with doxycycline being the preferred agent (115). Due to the louse-
borne transmission of typhus fever, proper use of gowns, gloves, and 
caps should be used to prevent louse spread.

3.2.10 Water safety threats: Vibrio cholerae and 
Cryptosporidium parvum

Akin to the previous bacteria, Vibrio cholerae is designated by the 
CDC as a water safety threat, along with the protozoan 
Cryptosporidium parvum (7). Despite its eukaryotic classification, this 
review includes C. parvum here due to the CDC grouping with 
V. cholerae. While the classical transmission route of both organisms 
is the consumption of contaminated water, both can also be acquired 
via contaminated food, and C. parvum is capable of respiratory 
transmission (116–118). Infection from either organism leads to a 
watery diarrhea. V. cholerae causes pathognomonic “rice water” stool 
that leads to severe dehydration and electrolyte imbalances (116). In 
contrast, C. parvum infection typically presents with less severe 
diarrhea along with abdominal pain, nausea, flatulence, anorexia, and 
fatigue. If inhaled, one may also demonstrate a productive cough (117).

While neither are widely known for ophthalmic manifestations, 
some cases have been reported including a single case report of 
keratitis with corneal scraping cultures that grew V. cholerae after the 
patient was struck in the right eye by a marine shrimp (119). It should 
be  noted that this infection was presumably caused by the direct 
contact of V. cholerae to the mucosal surface of the eye, and not the 
typical water-borne route. One study also reported that 9% of patients 
reported eye pain one-year post infection with C. parvum, but the 
protozoan is otherwise not linked to any other ophthalmic disease 
(120). The hallmark of cholera treatment is volume replacement and 
rehydration therapy with doxycycline indicated in severe cases (116). 
C. parvum infection should be treated with nitazoxanide (117).

4 Miscellaneous

4.1 Category B

4.1.1 Ricin toxin (Ricinus communis)
The ricin toxin is the only bioterrorism agent classified by the 

CDC that is neither viral, nor bacterial (or designated as a specific 
threat with a bacterium, as is the case with C. parvum) (Appendix 3). 
The toxin is produced by Ricinus communis, the castor bean, and when 
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extracted, it can be disseminated by a number of modalities including 
aerosol, injection, or ingestion pathways (121). Physical symptoms 
vary by route of intoxication.

If ricin is aerosolized, the inhaled toxin can cause dyspnea, fever, 
cough, nausea, chest tightness, pulmonary edema, and skin erythema. 
If injected, myalgias and circulatory collapse are common. Ingested 
ricin typically causes abdominal pain, diarrhea, cramping, and 
dehydration (121). Ophthalmic implications of ricin toxin have yet to 
be described other than conjunctival injection. An antitoxin has been 
shown to be an effective countermeasure against ricin toxin in swine 
models (122).

5 COVID-19

Although not included in the CBRNE framework, response efforts 
to novel agents such as SARS-CoV-2 involve principles shared with 
other biological pathogens. The WHO COVID-19 Dashboard shows 
that estimates of COVID-19 has exceeded 770 million affected 
individuals and nearly 7 million deaths (123). Transmission is variable 
and includes SARS-CoV-2 particles landing on or otherwise coming 
into contact with the eyes, mouth, or nose, as well as inhalation of 
aerosol particles or droplets that contain the virus (124). Those 
infected may experience a range of symptoms, including those that are 
mild, moderate, and severe, but asymptomatic infection and 
transmission may also occur. Reported symptoms include malaise, 
fever or chills, cough, new loss of taste or smell, muscle or body aches, 
and difficulty breathing (125).

Ophthalmic manifestations associated with COVID-19 have been 
reported and include findings involving both the anterior and 
posterior segments of the eye. Reported findings include conjunctival 
hyperemia and injection, eye pain and redness, photophobia, cotton 
wool spots, retinal artery occlusion, retinal hemorrhage, and 
retinopathy (126–131). In addition to these ophthalmic findings, 
SARS-CoV-2 RNA has been previously detected in the tear film of 
25% of patients in a hospitalized COVID-19 cohort (126). These 
ocular findings may provide insight into the physiologic changes of 
COVID-19, as well as the behavior of SARS-CoV-2 on the 
ocular surface.

6 Personal protective equipment

Due to the variable nature of the above biological agents, PPE 
decision-making relies on an understanding of the agent(s) of interest 
including the specific route(s) of transmission (e.g., respiratory, 
aerosolized droplets, contact), and the potential for spread during 
asymptomatic or presymptomatic infection. Agencies within the 
United States federal government, such as the National Institute for 
Occupational Safety and Health (NIOSH) and the Occupational Safety 
and Health Administration (OSHA), among others, have developed 
specific guidelines for CBRNE incident response that consider 
transmission routes (132–134).

Droplets of variola major virus, for example, can be  spread 
through a respiratory route and guidance from the CDC indicates 
appropriate PPE as: eye protection, a NIOSH-certified N95 respirator, 
and disposable gown and gloves (135). Alternatively, contact 
transmission has been implicated in a number of VHFs so the CDC 
and WHO advocate for transmission-specific PPE provisions, such as 

a disposable facemask, full face shield, fluid-resistant gown, and two 
pairs of gloves (136, 137). Other key factors related to PPE include the 
specific tasks to be  performed, duration of PPE wear, and the 
environmental conditions where patient care activities occur (e.g., 
forward, resource-austere settings vs. high resource settings).

7 Conclusion

Biologic agents can precipitate great ophthalmic injury and cause 
significant morbidity. With overlapping or limited ophthalmic 
findings, further investigations and close clinical monitoring of 
impacted patients are critical. As the global public health community 
continues to learn more about these agents, the CBRNE biological 
agent list and associated classification framework will require 
subsequent reevaluation, including potential revision of PPE guidance. 
Additionally, the appearance of emerging infectious diseases, 
especially zoonoses, necessitates continual pathogen surveillance, 
investigation, characterization, and assessment of merit for CBRNE 
status. Several zoonotic agents described here also require vector and/
or source control measures for biohazard containment, and although 
an in-depth review of vector control is out of scope for this work, its 
importance should not be minimized. Future research to improve 
understanding of known pathogens will require reevaluation of the 
current CBRNE biological agent list and pathogen classification.

As globalization continues to expand, the risk for CBRNE 
incidents increases and subsequently prompts the need for progressive, 
vigilant surveillance and timely response to incidents to ensure a 
healthy global health community. Improving healthcare response and 
outcomes starts with accurate diagnosis, agent control, and treatment. 
This paper summarizes the clinical and ophthalmic manifestations, 
transmission routes and PPE considerations, as well as the current 
management guidelines for the biologic agents the CDC deems to 
be most dangerous to public health.
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