AUTHOR=Albalawi Eid , Thakur Arastu , Ramakrishna Mahesh Thyluru , Bhatia Khan Surbhi , SankaraNarayanan Suresh , Almarri Badar , Hadi Theyazn Hassn TITLE=Oral squamous cell carcinoma detection using EfficientNet on histopathological images JOURNAL=Frontiers in Medicine VOLUME=10 YEAR=2024 URL=https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2023.1349336 DOI=10.3389/fmed.2023.1349336 ISSN=2296-858X ABSTRACT=Introduction

Oral Squamous Cell Carcinoma (OSCC) poses a significant challenge in oncology due to the absence of precise diagnostic tools, leading to delays in identifying the condition. Current diagnostic methods for OSCC have limitations in accuracy and efficiency, highlighting the need for more reliable approaches. This study aims to explore the discriminative potential of histopathological images of oral epithelium and OSCC. By utilizing a database containing 1224 images from 230 patients, captured at varying magnifications and publicly available, a customized deep learning model based on EfficientNetB3 was developed. The model’s objective was to differentiate between normal epithelium and OSCC tissues by employing advanced techniques such as data augmentation, regularization, and optimization.

Methods

The research utilized a histopathological imaging database for Oral Cancer analysis, incorporating 1224 images from 230 patients. These images, taken at various magnifications, formed the basis for training a specialized deep learning model built upon the EfficientNetB3 architecture. The model underwent training to distinguish between normal epithelium and OSCC tissues, employing sophisticated methodologies including data augmentation, regularization techniques, and optimization strategies.

Results

The customized deep learning model achieved significant success, showcasing a remarkable 99% accuracy when tested on the dataset. This high accuracy underscores the model’s efficacy in effectively discerning between normal epithelium and OSCC tissues. Furthermore, the model exhibited impressive precision, recall, and F1-score metrics, reinforcing its potential as a robust diagnostic tool for OSCC.

Discussion

This research demonstrates the promising potential of employing deep learning models to address the diagnostic challenges associated with OSCC. The model’s ability to achieve a 99% accuracy rate on the test dataset signifies a considerable leap forward in earlier and more accurate detection of OSCC. Leveraging advanced techniques in machine learning, such as data augmentation and optimization, has shown promising results in improving patient outcomes through timely and precise identification of OSCC.