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Clinical application of CT-based
radiomics model in
di�erentiation between laryngeal
squamous cell carcinoma and
squamous cell hyperplasia

Fengzhi Cui, Osama A. Khodrog, Wei Liu, Jianhua Liu* and

Qinghai Yuan

Department of Radiology, The Second Hospital of Jilin University, Changchun, China

Objective: To evaluate the clinical application of the CT-based radiomics

prediction model for discriminating SCC and SCH.

Methods: A total of 254 clinical samples were selected from 291 patients

with larynx-occupying lesions who underwent primary surgery. All lesions were

validated via histopathological examination at The Second Hospital of Jilin

University between June 2004 and December 2019. All patients were randomly

allocated to the training (n = 177) and validation (n = 77) cohorts. After the

acquisition of CT images, manual 3D tumor segmentation was performed using

the CT images of the arterial, venous, and non-contrast phases via ITK-SNAP

software. Subsequently, radiomics features were extracted using A.K. software.

Based on the above features, three di�erent diagnostic models (CTN, CTA+CTV,

and CTN+CTA+CTV) were constructed to classify squamous cell carcinoma

(SCC) and squamous cell hyperplasia (SCH). Additionally, receiver operating

characteristic (ROC) and decision curve analysis (DCA) curves were measured to

evaluate the diagnostic characteristics and clinical safety of the proposed three

prognostic models.

Results: In the radiomic prediction Model 1 (CTN), the area under the

curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV)

and negative predictive value (NPV) of the training cohorts in di�erentiating

SCC and SCH were 0.883, 0.785, 0.645, 1.000, 1.000, and 0.648, while in

the testing cohorts, these values were 0.852, 0.792, 0.66, 1.000, 1.000, and

0.652, respectively. In the radiomic prediction Model 2 (CTA+CTV), the AUC,

accuracy, sensitivity, specificity, PPV, and NPV values of the training cohorts

were 0.965, 0.91, 0.916, 0.9, 0.933, and 0.875, respectively, while in the testing

cohorts, the corresponding values were 0.902, 0.805, 0.851, 0.733, 0.833, and

0.759, respectively. In the radiomic prediction Model 3(CTN+CTA+CTV), the

AUC, accuracy, sensitivity, specificity, PPV, and NPV values of the training

cohorts were 0.985, 0.944, 0.953, 0.929, 0.953, and 0.929, while in the testing

cohorts, the corresponding values were 0.965, 0.857, 0.894, 0.8, 0.875, and

0.828, respectively.

Conclusion: The radiomic prediction Model 3, based on the arterial-venous-

plain combined scan phase of CT, achieved promising diagnostic performance,
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expected to be regarded as a preoperative imaging tool in classifying SCC and

SCH to guide clinicians to develop individualized treatment programs.

KEYWORDS

laryngeal squamous cell carcinoma, laryngeal squamous cell hyperplasia, radiomics, CT

imaging, di�erential diagnosis

1 Introduction

As the seventh most common cancer worldwide, squamous

cell cancer of the head and neck (HNSCC) is a potential health

concern worldwide with increased incidence and death rates. It

mainly occurs in the lips, oral cavity, nasal cavity, paranasal sinuses,

oropharynx, hypopharynx, larynx, and parotid gland (1). More

than 500,000 individuals are diagnosed with HNSCC worldwide

each year. Furthermore, it is estimated that the number of new cases

is expected to exceed 1 million in 2020, with the number of deaths

expected to exceed 500,000. Notably, Central Europe and Eastern

Europe had the largest increased incidence among men over 55

years of age (2, 3). In one study, ∼75% of head and neck cancers

overall are caused by tobacco smoking and alcohol abuse, with

the remaining other ∼25% attributable to HPV infection (4, 5).

Therefore, efforts to promote the HPV vaccination and reduce

pharmacy tobacco sales could help reduce risk factors in patients

with head and neck cancer (6, 7).

There are ∼2,814,000 cancer deaths in China, and the

incidence and mortality rates are steadily increasing. In almost

all populations examined, the incidence of cancer is higher in

men than women, and the mortality rate is almost equal to

the morbidity rate (8, 9). Among all cancers, HNSCC occupies

an important position which has seriously threatened the health

and lives of the Chinese people (10). Another point is that the

incidence of HNSCC is ∼3 times more common in men than

women. Therefore, this area of research to improve the early

detection, early diagnosis, and early treatment of HNSCC is of

high importance, which could possibly enable the patients to

receive the best treatment within the shortest possible time to

reduce injury and prevent death rates by improving their clinical

treatment (11).

In recent years, radiomics has been applied in the medical

field for medical diagnosis, treatment, and prognosis prediction

(12, 13). Many of radiomics features can be extracted from

regions of interest on medical images which can be associated

with clinical diagnosis and biological characteristics to build

a diagnostic model, thereby improving the diagnostic efficacy

(14). Integration of big data and medicine has raised new

hopes for personalized medicine, and radiomics has become

more feasible, extracting large amounts of data from medical

images. CT has the characteristics of quick scanning speed

and high repeatability, making it the most preferred inspection

method to detect early HNSCC. Conventional examination

methods are easily susceptible to the influence of a physician’s

subjective experiences. Furthermore, morphological characteristics

supplied by CT are insufficient to evaluate the biological

characteristics of the primary tumor. At present, radiomics

overcomes the insufficiency of the above traditional imaging

techniques, widely used in clinical diagnosis, treatment, and

prognosis (15, 16). The qualitative and quantitative assessment of

lesion characteristics and intratumoral spatial heterogeneity can

contribute to improving the non-invasive preoperative diagnosis

accuracy of HNSCC. This approach also provides personalized

adjuvant treatment programs (17). What has been inquired into

in this research is the evaluation of the clinical application

of a CT-based radiomics prediction model for discriminating

laryngeal squamous cell carcinoma (SCC) and squamous cell

hyperplasia (SCH).

2 Materials and methods

2.1 Patient characteristics

In this retrospective study, a total of 254 clinical samples

were selected from 291 patients with larynx-occupying lesions

who underwent primary surgery, and all lesions were validated

via histopathological examination at The Second Hospital of

Jilin University between June 2004 and December 2019. A

flowchart is presented in Figure 1 to represent the process

of selecting patients. All patients underwent preoperative

unenhanced and dual-phase contrast-enhanced CT examination

of the neck. Clinical-pathological data including age, gender,

smoking and drinking history, pathological grade, tumor

size, and clinical stage were collected. They were divided into

two groups: the first group of patients were diagnosed with

SCC while the second group consisted of those diagnosed

with SCH. The study involved 227 men and 27 women with

an average age of 44–85 years. Among them, 209 patients

were smokers while 45 patients were non-smokers, and 202

patients reported alcohol consumption, while 52 patients did

not drink.

The study included the following inclusion criteria: (a)

Patients with primary larynx-occupying lesion; (b) No medical

history of preoperative chemoradiotherapy; (c) Complete clinical

and pathological diagnosis data were acquired; (d) Plain scan

plus conventional dual-phase enhanced scan (arterial phase and

venous phase) were implemented before the operation with

complete image information. The exclusion criteria were as

follows: (a) The lesions measured 10mm or less in diameter,

partially becoming superficial; (b) No neck CT examination before

the operation; (c) Low-quality CT images due to movement

or artifacts.
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2.2 CT radiomics analysis

The radiomics analysis process mainly includes five phases:

CT image acquisition, ROI segmentation, feature extraction,

feature selection, forecast model establishment, and diagnostic

performance evaluation, as shown in Figure 2.

2.2.1 CT image acquisition
All patients underwent a neck CT (iCT 256, Philips,

Netherlands) to collect plain scan plus conventional dual-phase

enhanced scans (arterial phase and venous phase). In general, the

scanning neck range was from the inferior margin of the foramen

magnum to the upper edge of the aortic arch, in which the patients

were laid in the supine position with the neck completely exposed

during the scanning. The most important parameters for the neck

tissue CT scan requested here are as follows: the tube voltage

120kVp, electric current of 200mAs, scan time raging from 1s

to 3s, slice thickness of 1mm, matrix size of 256 × 256, and

pitch ratio of 0.342. For an enhanced scan, iodinated contrast

material was intravenously injected at a dose of 1.5 mL/kg, with

an injection rate of 3.5 mL/s. The time for the arterial phase scan

after injection was 35 s, whereas the time for the portal venous scan

was 65 s.

FIGURE 1

Flowchart of the patient selection process.

FIGURE 2

Graphical summarization of radiomics models analysis process.
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2.2.2 ROI segmentation
Three-dimensional manual segmentation of tumor in axial

CT image of plain, arterial, and venous phase utilized via ITK-

SNAP software (v.3.8.0; www.itksnap.org). Under the random and

double-blind method, the boundaries of each layer were manually

delineated on tumors by two radiologists with head and neck CT

imaging diagnostic experience, and the region of interest (ROI)

was composited. The tumor ROI segmentation in the larynx and

hypopharynx was performed by a junior radiologist (with 5 years

of experience) and reviewed by another senior radiologist (with 10

years of experience). In case of occurrence of a dispute, the final

decision was made after the discussion between two doctors.

2.2.3 Feature extraction
High-throughput quantitative features are extracted from 3D

ROI of tumor lesions in three-phasic CT scan, from which

mainly include histogram, gray-level size zone matrix (GLSZM),

formfactor, haralick, gray-level cooccurrence matrix (GLCM),

run length matrix (RLM) by A.K. software (Analysis Kit, GE

Healthcare). In total, 1,188 quantitative radiomics features were

extracted for each patient, with 396 features from each of the plain,

arterial, and venous phases, respectively.

2.2.4 Feature selection and forecast model
establishment

We implement a comprehensive feature selection to establish

the final forecast model via IPM statistics (V1.1.463 GE Healthcare,

Shanghai, China). Before feature selection, the collected 1188

quantitative radiomics features were preprocessed, and feature

normalization were employed. We first proposed that variables

with zero variance were excluded from analyses. Then, the missing

values and outlier values were replaced by the median. Finally, the

data were standardized by standardization.

The 254 tumors will be randomly allocated based on a 7:3

ratio between the training cohort and the testing cohort, where

177 patients were used as the training cohort for feature selection

and model building. The remaining 23 patients were regarded as

the testing cohort for verifying the selected features and forecast

model. Feature selection was implemented employing univariate

(using Variance, Correlation_xx, and General_Univariate_analysis)

and multivariate analyses (using L1) with stepwise selection-based

dimensionality reduction algorithm for all the features. To further

avoid model overfitting, 10-foldcross-validation was performed to

recurve the selection of redundancy features and the least absolute

shrinkage and selection operator (LASSO) regression to effectively

eliminate a sequence of regression coefficients to exactly zero.

Furthermore, a set of optimal features, which were compared by

the Wilcoxon test, were obtained.

Subsequently, Model 1 (CTN) was constructed based on 10

optimal features; Model 2 (CTA+CTV) was constructed based on

25 optimal features; and Model 3 (CTN+CTA+CTV) considered

all 35 parameters, extracted in the combination of Model 1 and

Model 2 using logistic regression for discriminating laryngeal SCC

and SCH. The differential diagnostic effectiveness and performance

of the proposed three models were measured by the receiver

operating characteristic (ROC) curves, area under the curve (AUC),

sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV). The calibration curves were measured to

analyze the goodness of fit of the predictionmodels. In addition, the

decision curve analysis (DCA) was adapted to evaluate the clinical

efficacy and safety of the three models.

2.3 Statistical analysis

All statistical analyses were conducted based on IPM statistics.

The continuous variables were assessed by the Mann–Whitney U-

test or independent samples T-test, and the categorical variables

were investigated using the chi-squared or Fisher exact tests. A two-

tailed test with a p < 0.05 (typically ≤ 0.05) was indicative of a

statistically significant difference.

3 Results

3.1 Clinical characteristics of the patients

Table 1 shows the characteristics of the 254 patients, with 154

patients diagnosed with SCC and 100 patients diagnosed with SCH.

Statistical analysis for clinical data, such as age, gender, smoking

status, alcohol consumption, and tumor location described above,

was performed. The comparison of the two groups yielded a p >

0.05, revealing that there were similar between SCC and SCH in the

training and testing cohorts.

3.2 Radiomic feature selection and model
building

There are three steps in building Model 1: For the CT plain

scan, a total of 396 features were first subjected to the variance

method (threshold: 1.0) to screen out 98 features. Next, we

adopted the procedure of Correlation_xx method with a cutoff

set to 0.7 to remove redundant features, resulting in remaining

31 parameters. Then, a total of 11 features were retained via

General_Univariate_analysis (p-value threshold 0.05). Finally, the

remaining 10 features were obtained using the L1method, revealing

an obvious difference between SCC and SCH in the training

cohorts. A correlation heat map (Figures 3A–J) revealed that strong

positive correlation radiomics features were sufficient to receive

an obviously differential diagnosis. Figure 3K shows the results

of the tenfold cross-validation method, and Figure 3L shows the

results of the LASSO regression analysis. Subsequently, 10 features

from the CT plain scan were finally selected, and the optimal

parameters are as follows: [“GLCMEnergy_angle0_offset7”],

[“GLCMEnergy_angle90_offset4”],

[“GLCMEnergy_angle90_offset7”],

[“GLCMEntropy_angle90_offset1”],

[“InverseDifferenceMoment_AllDirection_offset1_SD”],

[“InverseDifferenceMoment_AllDirection_offset7_SD”],

[“InverseDifferenceMoment_angle135_offset7”],

[“HighGreyLevelRunEmphasis_angle90_offset1”],

[“LongRunLowGreyLevelEmphasis_AllDirection_offset4_SD”],

[“RunLengthNonuniformity_angle90_offset7”].
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TABLE 1 The risk factor analysis of larynx-occupying lesions in the training and testing cohorts examining clinical characteristics.

Training cohort Testing cohort P-value

SCC (N = 107) SCH (N = 70) P-value SCC (N = 47) SCH (N = 30) P-value

Age 61.9 (9.00) 60.0 (8.05) 0.150 60.2 (8. 27) 56.9 (6.90) 0.066 0.051

Sex 0.774 1.000 0.762

Female 11 (10.3%) 9 (12.9%) 4 (8.51%) 3 (10.0%)

Male 96 (89.7%) 61 (87.1%) 43 (91.5%) 27 (90.0%)

Smoking 0.656 0.643 0.067

No 17 (15.9%) 11 (15.7%) 4 (8.51%) 1 (3.33%)

Yes 90 (84.1%) 59 (84.3%) 43 (91.5%) 29 (96.7%)

Alcohol 0.759 0.186 0.651

No 20 (18.7%) 11 (15.7%) 9 (19.1%) 2 (6.67%)

Yes 87 (81.3%) 59 (84.3%) 38 (80.9%) 28 (93.3%)

Tumor location 0.476 0.951 0.603

Supraglottis 27 (25.27%) 19 (27.1%) 11 (23.43%) 6 (20.0%)

Glottis 68 (63.6%) 47 (67.1%) 33 (70.2%) 23 (76.7%)

Subglottis 12 (11.2%) 4 (5.71%) 3 (6.38%) 1 (3.33%)

Based on above single factor analysis and multifactor

analysis, a total of 10 most predictive features and coefficients

for constructing the optimal radiomics signatures Model

1(Figure 5A). Consequently, rad-score was calculated by

selected 10 features weighted as below: Rad-score (Model

1)=0.9334 + 0.4575[“GLCMEnergy_angle0_offset7”]-

1.2571[“GLCMEnergy_angle90_offset4”]-

0.0960[“GLCMEnergy_angle90_offset7”]-

1.1963[“GLCMEntropy_angle90_offset1”]-

0.6162[“InverseDifferenceMoment_AllDirection_offset1_SD”]-

1.3213[“InverseDifferenceMoment_AllDirection_offset7_SD”]-

3.6916[“InverseDifferenceMoment_angle135_offset7”]-

0.2776[“HighGreyLevelRunEmphasis_angle90_offset1”]

+0.8819[“LongRunLowGreyLevelEmphasis_AllDirection_offset4

_SD”]+4.2529[“RunLengthNonuniformity_angle90_offset7”].

Using similar feature reduction methods, 25 features from

the CT conventional dual-phase enhanced scan were finally

selected by specific methods listed in four steps: In the first

step, after applying the variance method (threshold: 1.0), the

792 features extracted by the conventional dual-phase enhanced

scan were reduced to 331 features. Next, we obtained a feature

count of 86 parameters by the Correlation_xx method (cutoff:

0.7). Then, General_Univariate_analysis was utilized to remove

54 features, and 32 radiomics features remained. Finally, the

remaining 25 features were obtained using the L1 method. A

correlation heat map (Figures 4A–H) revealed that strong positive

correlation radiomics features were sufficient to receive an

obviously differential diagnosis. Figure 3I shows the results of the

tenfold cross-validation method, and Figure 3J shows the results

of the LASSO regression analysis. The optimal parameters

are as follows: [“V_ClusterProminence_angle0_offset7”],

[“V_Correlation_angle0_offset4”],

[“V_GLCMEnergy_angle90_offset7”],

[“V_HaralickCorrelation_angle45_offset7”],

[“V_Inertia_AllDirection_offset4_SD”],

[“V_Inertia_AllDirection_offset7”],

[“V_InverseDifferenceMoment_angle0_offset7”],

[“V_GreyLevelNonuniformity_AllDirection_offset4_SD”],

[“V_Compactness2”], [“V_Maximum3DDiameter”],

[“A_ClusterProminence_angle90_offset7”],

[“A_ClusterShade_angle135_offset1”],

[“A_ClusterShade_angle45_offset4”],

[“A_ClusterShade_angle90_offset1”],

[“A_ClusterShade_angle90_offset7”],

[“A_GLCMEnergy_angle90_offset4”],

[“A_GLCMEntropy_angle45_offset4”],

[“A_HaralickCorrelation_angle135_offset4”],

[“A_HaralickCorrelation_angle90_offset7”],

[“A_Inertia_AllDirection_offset1_SD”],

[“A_HighGreyLevelRunEmphasis_AllDirection_offset7_SD”],

[“A_LongRunLowGreyLevelEmphasis_angle45_offset7”],

[“A_RunLengthNonuniformity_AllDirection_offset1”],

[“A_RunLengthNonuniformity_AllDirection_offset7_SD”],

[“A_ShortRunHighGreyLevelEmphasis_AllDirection_offset1_SD”].

Based on the above single-factor analysis and multifactor

analysis, a total of 25 most predictive features and coefficients

were identified for constructing the optimal radiomics signatures

in Model 2 (Figure 5B). The Rad-score was calculated using the

selected 25 features weighted as below: Rad-score (Model 2) =

3.1869 + 1.4625[‘‘V_ClusterProminence_angle0_offset7’’]-4.1270[

‘‘V_Correlation_angle0_offset4’’]+ 0.2540[‘‘V_GLCMEnergy_ang

le90_offset7’’]+ 2.3007[‘‘V_HaralickCorrelation_angle45_offset7’’

]+ 0.1652[‘‘V_Inertia_AllDirection_offset4_SD’’]-0.6157[‘‘V_Iner

tia_AllDirection_offset7’’]-1.3833[‘‘V_InverseDifferenceMoment_

angle0_offset7’’] + 0.8270[‘‘V_GreyLevelNonuniformity_AllDirec

tion_offset4_SD’’] + 0.7914[‘‘V_Compactness2’’]-0.0179[‘‘V_Max
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FIGURE 3

Continued
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FIGURE 3

(A–J) shows the correlation heat maps of Model 1 demonstrating correlations between features in the training and testing cohort. (K, L) shows the

results of the 10-fold cross-validation method and LASSO regression analysis, respectively, removing highly redundant features to obtain the optimal

features.
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FIGURE 4

Continued
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FIGURE 4

(A–H) shows the correlation heat maps of Model 2 demonstrating the correlations between features in the training and testing cohort. (I, J) show the

results of the 10-fold cross-validation method and LASSO regression analysis, respectively, removing highly redundant features to obtain the optimal

features.

imum3DDiameter’’]+ 3.5277[‘‘A_ClusterProminence_angle90_of

fset7’’] + 1.5561[A_ClusterShade_angle135_offset1’’’] + 0.3104[‘‘

A_ClusterShade_angle45_offset4’’] + 1.5868[‘‘A_ClusterShade_an

gle90_offset1’’]+ 2.7000[‘‘A_ClusterShade_angle90_offset7’’]-0.00

34[‘‘A_GLCMEnergy_angle90_offset4’’]-2.0308[‘‘A_GLCMEntrop

y_angle45_offset4’’] + 1.0889[‘‘A_HaralickCorrelation_angle135_

offset4’’]-0.4997[‘‘A_HaralickCorrelation_angle90_offset7’’]-0.238

6[‘‘A_Inertia_AllDirection_offset1_SD’’] + 1.5807[‘‘A_HighGrey

LevelRunEmphasis_AllDirection_offset7_SD’’]-2.7901[‘‘A_LongR

unLowGreyLevelEmphasis_angle45_offset7’’]+ 0.6788[‘‘A_RunLe

ngthNonuniformity_AllDirection_offset1’’] + 3.7087[‘‘A_RunLen

gthNonuniformity_AllDirection_offset7_SD’’] + 0.5963[‘‘A_Short

RunHighGreyLevelEmphasis_AllDirection_offset1_SD’’]

To comprehensively and intuitively demonstrate the

characteristics and differences of the dataset, we put together

the boxplots of radiomics scores for benign and malignant cases.

Based on all collected clinical dataset, Figure 6 shows that the

Rad-score was significantly upregulated in malignant patients

as compared to benign controls in both Model 1(CTN) and

Model 2(CTAV).

As shown in Table 2, the Wilcoxon rank sum test was used to

compare the Rad-scores of Model 1 andModel 2 for discriminating

SCC and SCH in both the training and testing cohorts (both P

< 0.001).

The process of constructing the three-period combined

Model 3 is presented as follows: The 10 optimal radiomics
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FIGURE 5

Histogram shows the 10 most predictive radiomics features obtained in Model 1 (A) and 25 most predictive radiomics features obtained in

Model 2 (B).

FIGURE 6

Boxplot of di�erentially Rad-score for malignant and benign case in Model 1 (A) and Model 2 (B).

TABLE 2 The Wilcoxon rank sum test of Rad-scores in Model 1 and Model

2 for training and testing cohorts.

Training cohort
(P-value)

Validation cohort
(P-value)

Model 1 < 0.001∗ < 0.001∗

Model 2 < 0.001∗ < 0.001∗

∗Indicates that the difference is significant.

signatures selected from Model 1 and the 25 optimal radiomics

signatures from Model 2 were considered, incorporating all

35 parameters to establish Model 3 (CTN+CTA+CTV)

using logistic regression for discriminating laryngeal SCC

and SCH.

3.3 Comparing the performance of the
three di�erent models

The corresponding performance evaluation criteria for

differentiating SCC and SCH contained AUC, accuracy, sensitivity,

specificity, PPV, and NPV for each model. In radiomic prediction

Model 1(CTN), the measured values of the training cohort were

0.883, 0.785, 0.645, 1.000, 1.000, and 0.648, while in the testing
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FIGURE 7

ROC curve of three Models (CTN, CTA+CTV, and CTN+CTA+CTV) in the training (A) and testing cohorts (B).

FIGURE 8

Calibration curve of three models (CTN, CTA+CTV, and CTN+CTA+CTV) in the training (A) and testing cohorts (B).

cohorts were 0.852, 0.792, 0.66, 1.000, 1.000, and 0.652. In radiomic

prediction Model 2 (CTA+CTV), the measured values of training

cohorts were 0.965, 0.91, 0.916, 0.9, 0.933, and 0.875, while in the

testing cohorts were 0.902, 0.805, 0.851, 0.733, 0.833, and 0.759. In

radiomic prediction Model 3 (CTN+CTA+CTV), the measured

values of training cohorts were 0.985, 0.944, 0.953, 0.929, 0.953,

and 0.929, while in the testing cohorts were 0.965, 0.857, 0.894,

0.8, 0.875, and 0.828, respectively. Among them, Model 3 has the

highest performance and can be used for predicting differential

clinical diagnosis.

We constructed the calibration curve to describe the degree

of calibration of the three models in the training (Figure 7A) and

testing (Figure 7B) cohorts, which illustrates that the closer the

calibration curves (red, green and blue) are to the standard curve
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FIGURE 9

Decision curve of three models (CTN, CTA+CTV, and CTN+CTA+CTV) in the training (A) and testing cohorts (B).

(black), the better the calibration capability of the model. As shown

in Figure 8, the actual prediction performance of the prediction

Model 3 has a good consistency.

We also established a calibration curve with a DCA curve for

evaluating three models in the training (Figure 9A) and testing

(Figure 9B) cohorts, which indicated that a larger area under the

decision curve indicated a better clinical practicability. As shown

in Figure 9, within the safe range, the DCA indicated that the net

benefit of the prediction was higher for all threemodels, withModel

3, exhibiting the highest net benefit, and the benefit rate of the

population would reach its maximum.

4 Discussion and conclusion

Radiomics is an emerging field of image analysis with potential

applications for diagnosis, treatment response, and prognosis

evaluation in cancer patients via computer-aided diagnosis

(CAD) technology, which solved many clinical problems, reduced

misdiagnosis rate, and decreased the radiologist workload (18). In

our study, radiomics used computational algorithms to convert

medical imaging information into high-resolution quantitative

mineable “big data” and aimed to further build a more reliable

predictive and differential diagnosis model (19).

A multicenter study by Zhang et al. (20) showed that different

machines and different CT scanning parameters might influence

the radiomics result. Therefore, CT image data extraction is the

basis of radiomics. It is important to note that CT scanning

parameters could be consistent for radiomics analysis, in which

the CT images were collected uniformly. We were doubtful that

different CT scanning parameters might affect the radiomics

optimal features and prediction model establishment.

The radiomics features of the entire primary larynx-occupying

lesion were extracted from the CT images of the arterial,

venous, and non-contrast phases, which have a positive effect

on establishing a differential diagnosis model for discriminating

SCC and SCH. We concluded that the AUC, accuracy, sensitivity,

specificity, PPV, and NPV of the optimal Model 3 in training

cohorts for differentiating SCC and SCH were 0.985, 0.944,

0.953, 0.929, 0.953, and 0.929, respectively, while in the testing

cohorts were 0.965, 0.857, 0.894, 0.8, 0.875, and 0.828, respectively.

Based on the research results, a comprehensive comparative

analysis of the consequences of these three models revealed that

the amalgamation of characteristic parameters from the plain-

arterial-venous combined model provided more optimal radiomics

parameters than from the plain model or arterial-venous combined

model alone. Thus, Model 3 based on arterial-venous-plain

combined scan phase of CT has good discriminative performance

with high sensitivity and specificity in SCC and SCH.

Additionally, we collected related important clinical

characteristics of all patients, including age, gender, smoking

status, and alcohol consumption. Among them, smoking status

and alcohol consumption were the major risk factors leading

to the high incidence of laryngeal cancer. Among the enrolled

patients, 209 patients had a smoking history and 45 patients had

no smoking history. We analyzed that long-term smokers are more

susceptible to developing laryngeal cancer, taking into account

consistent smoking initiation and current smoking status. In terms

of alcohol consumption, 202 patients had a drinking history and

52 patients have no drinking history. Similarly, we found that

long-term drinkers are more susceptible to developing laryngeal

cancer, taking into account the drinking start times and current

drinking quantity. Therefore, clinicians will be able to advise their

patients to quit smoking and drinking, thereby extending overall

patient survival time (21, 22).

Chen et al. (23) evaluated the use of venous-phase CT images

to develop a radiomics model, a deep learning model, and a

combined model to predict preoperative staging in stratifying

patients with laryngeal carcinoma. The authors demonstrated that

the combined model performed significantly capability than a

radiologist in stratifying patients into stage I–II and stage III–

IV. The AUCs, which indicated model diagnostic performance,

assessed the accuracy of a model. The radiomics model, DL

model, and combined model for distinguishing staging ability in

the test set were 0.704 (95% CI: 0.588–0.820), 0.724 (95% CI:

0.613–0.835), and 0.849 (95% CI: 0.755–0.943), respectively. This
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study confirmed the application value of radiomics in accurate

preoperative staging of laryngeal cancer. Kang et al. (24) developed

a radiomics nomogram to analyze 114 patients with advanced

laryngeal cancer after induction chemotherapy. The experiments

demonstrated that the Rad-score was an independent predictor.

In addition, clinical factors were incorporated to build radiomics

nomogram which predicted the pathological response and overall

survival. This study proved that CT radiomics nomogram possesses

the best predictive property in the pathological response after

induced chemotherapy and overall survival. Therefore, we fused

plain scan and conventional dual-phase enhanced scanning to the

radiomics model to improve the predictive performance.

While the radiomics models are promising in clinical practice,

there are several key limitations to this study that require attention.

First, themodel was established based on the single-center nature of

the research that lacked prospective multicenter external validation

of our findings. Second, we only collected the CT examination

images; however, not collect MRI data, which may cause potential

data bias. Finally, the number of clinical samples size is relatively

limited, which expanded sample size to further research.

To the best of our knowledge, with the supplement of related

important clinical characteristics, Model 3 based on arterial-

venous-plain combined scan phase of CT has important clinical

significance in distinguishing SCC from SCH. In conclusion,

our results demonstrated that radiomics could provide valuable

information and play an important role in preoperative diagnosis

and clinical treatment to guide clinicians to develop individualized

treatment programs (25, 26).
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