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Background: Single-cell RNA sequencing (scRNA-Seq) provides new 
perspectives and ideas to investigate the interactions between different cell 
types and organisms. By integrating scRNA-seq with new computational 
frameworks or specific technologies, better Alzheimer’s disease (AD) 
treatments may be developed.

Methods: The single-cell sequencing dataset GSE158234 was obtained from 
the GEO database. Preprocessing, quality control, dimensionality-reducing 
clustering, and annotation to identify cell types were performed on it. RNA-
seq profiling dataset GSE238013 was used to determine the components of 
specific cell subpopulations in diverse samples. A set of genes included in the 
OMIM, Genecards, CTD, and DisGeNET databases were selected as highly 
plausible AD-related genes. Then, ROC curves were created to predict the 
diagnostic value using the significantly expressed genes in the KO group 
as hub genes. The genes mentioned above were mapped to the Coremine 
Medical database to forecast prospective therapeutic Chinese medicines, 
and a “Chinese medicine-ingredient-target” network was constructed to 
screen for potential therapeutic targets. The last step was to undertake 
Mendelian randomization research to determine the causal link between 
the critical gene IL1B and AD in the genome-wide association study.

Results: Using the scRNA-seq dataset, five unique cell clusters were 
discovered. These clusters were further subdivided into four distinct cell types 
using marker genes. The KO group showed a more substantial differential 
subgroup of macrophages than the WT group. By using the available 
datasets and PPI network analysis, 54 common genes were discovered. Four 
clusters were identified using the MCODE approach, and correlation analysis 
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showed that seven genes in those four clusters had a significantly negative 
correlation with macrophages. Six genes in four sets had a significantly 
positive correlation. Five genes had different levels of expression in the WT 
and KO groups. The String database was used to identify the regulatory 
relationships between the four genes (IL10, CX3CR1, IL1B, and IL6) that were 
finally selected as AD hub genes. Screening identified potential traditional 
Chinese medicine to intervene in the transformation process of AD, 
including Radix Salviae, ginseng, Ganoderma, licorice, Coptidis Rhizoma, 
and Scutellariae Radix, in addition to promising therapeutic targets, such as 
PTGS1, PTGS2, and RXRA. Finally, it was shown that IL1B directly correlated 
with immune cell infiltration in AD. In inverse variance weighting, we found 
that IL1B was associated with a higher risk of AD, with an OR of 1.003 (95% 
CI  =  1.001–1.006, p  =  0.038).

Conclusion: Our research combined network pharmacology and the 
scRNA-seq computational framework to uncover pertinent hub genes and 
prospective traditional Chinese medicine potential therapeutic targets for 
AD. These discoveries may aid in understanding the molecular processes 
behind AD genes and the development of novel medications to treat the 
condition.
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Mendelian randomization, network pharmacology, single-cell transcriptome 
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Introduction

The world’s population structure is changing due to increased life 
expectancy. Even though lifespans are increasing, not everyone is in 
excellent health. The current population has around 50 million 
dementia sufferers, the bulk of whom are elderly. By 2040–2050, 
100–130 million people are projected to have dementia, with 
Alzheimer’s disease (AD) accounting for over 70% of these cases (1, 
2). AD is a neurological illness that progressively worsens and impairs 
memory. Despite much scientific and clinical study, the prevention 
and treatment of AD have not advanced much (3). If effective 
treatments are not developed, AD might become a global Epidemic.

Typical tissue pathology characteristics of AD are abnormal 
primary fiber sedimentation of starch-like protein β (Aβ) and 
neurogenic fiber bonding of tau protein (4). In recent years, it has been 
shown that neuroinflammation and tissue-resident immune cells are 
critical participants in the pathogenesis of AD (5, 6). Brain-resident 
microglia are an essential component of the localized immune system 
in the central nervous system (CNS) and are closely related to the 
genetics and neuropathology of AD (7). Microglia, the brain’s primary 
immune cells, perform essential macrophage functions, including 
phagocytosis of protein aggregates and dead cell debris, cytokine/
chemokine signaling, immunological response, and surveillance. 
Microglia also carry out crucial neuroprotective parts, including 
trophic support for neurons, oligodendrocyte differentiation 
stimulation, and pruning and plasticity management of synaptic 
connections (8). With the recent identification of several AD risk 
locations near the immune gene, combined with the development of 
polyvalent stem cell-derived microglial cells and embedded mouse 
models, it is increasingly possible to study the mechanisms for the 

impact of human microglia cells on AD risk. A study suggests that cell 
therapy with stem cells may be therapeutically effective in preventing 
the pathogenesis of AD. Although many strategies have focused on 
using stem cells to regenerate damaged neurons, new studies have 
demonstrated stem cells’ immunomodulatory function, which 
regulates microglia’s activity state and mediates neuroinflammation. 
Thus, understanding the molecular mechanisms involved in brain 
homeostasis through the protective characteristics of mesenchymal 
stem cells (MSCs) could lead to remedial treatments for AD (9). 
Moreover, human-induced pluripotent stem cell-derived microglia are 
strongly correlated with the inheritance of Alzheimer’s disease and 
significant neuropsychiatric disorders (10). These studies have 
important implications for the discovery of AD mechanisms. Variants 
in the triggering receptor expressed on myeloid cells 2 (TREM2) had 
the highest effect on disease risk among these microglia-specific AD 
risk loci; the elevated risk is comparable to that of an APOE ε4 allele 
(11). Since microglia are the primary source of TREM2 expression in 
the central nervous system, this raises significant concerns regarding 
TREM2’s function in promoting microglia-specific processes linked 
to neurodegenerative disorders. TREM2, a member of the 
immunoglobulin superfamily, mediates responses to phospholipids, 
APOE, and several other possible stimuli at the plasma membrane by 
acting as a crucial component of the microglia sensitizer (12, 13). Tyro 
protein kinase binding protein (TYROBP/DAP12), a junctional 
protein that activates downstream signaling cascades, including SYK, 
ERK, PLCG2, and NFAT, is necessary for TREM2 to transduce the 
intracellular response. While TREM2 mutations causing total loss of 
function are closely linked to frontotemporal lobe dementia and 
Nasu-Hakola disease, AD-associated TREM2 mutations (such as 
R47H and R62H) are believed to cause partial loss of operation 
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because they occur within the ligand-binding domain (14). Although 
this link is unclear, some investigations have shown that two loss-of-
function TREM2 mutations, Q33X and W191X, may similarly alter 
AD risk (15). Nonetheless, research on TREM2 deletions has 
significantly improved our knowledge of TREM2 activity and 
uncovered significant distinctions between human and mouse cells at 
the late and early stages of illness (16, 17). It is critical to look into 
TREM2’s role in human microglia to comprehend better these 
characteristics and how they affect human illnesses (18). Although 
scRNA-seq technology was used in this study to understand AD 
heterogeneity and key cell populations in microglia-specific AD risk 
loci, it is now necessary to combine scRNA-seq with new 
computational frameworks or particular technologies to better 
understand its pathophysiology and molecular regulatory 
mechanisms, which may help to develop better AD treatments.

Therefore, we  investigated the expression characteristics and 
Possible regulatory mechanisms of immune-related genes in AD by 
combining single-cell scRNA-seq data with bioinformatics analysis of 
RNA-seq data. In addition, we  predicted promising therapeutic 
Chinese medicines through the database. We constructed a “Chinese 
medicine-ingredient-target” network to screen potential therapeutic 
targets, laying the foundation for developing RNA-based therapeutic 
strategies for AD.

Materials and methods

Downloading and processing of data

The single-cell transcriptome dataset GSE158234 was downloaded 
from the GEO database.1 The database contains 4 samples of Single-
cell comparison of WT and KO TREM2 microglia isolated from 
6 months-old WT and 5X-MITRG mice (18). It was also downloaded 
the 18 SORL1-WT samples and the 18 SORL1-KO samples RNA-seq 
dataset expression profiles GSE2380132 from the GEO database. 
We first use the R package “Seurat” (19) to download the original data 
for quality control and filtering. For the expression spectrum data set, 
we  obtain the observation information of the probe, map the 
investigation to the gene, remove multiple matches, and when various 
examinations match a gene, use the mean value as the gene expression, 
and finally get the gene expression spectrum. Additionally, AD-related 
genes were obtained from the DisGeNET database,3 the Comparative 
Toxicogenomics Database,4 the Genecards database5 and the OMIM 
database.6 We selected a group of genes shared by four databases as 
highly reliable AD-related genes.

1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158234

2 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE238013

3 http://www.disgenet.org/

4 http://ctdbase.org

5 www.genecards.org

6 https://www.omim.org

Dimensionality reduction analysis of 
single-cell data and identification of cell 
types

To obtain a reliable cell subgroup, we use the R package “Seurat” 
(19) to filter single-cell data for data processing, setting each gene to 
be expressed in at least 3 cells, each cell expressing at least 250 genes. 
By using the PercentFeatureSet function, we calculate the percentage 
of molecules and rRNA and make sure that every cell expresses >500 
genes and <4,000 genes, with a molecule content of <30%, with at least 
100 unique molecular identifiers (UMI) in each cell. Then, the data is 
naturalized, and highly variable genes are found using the 
FindVariableFeatures function. Finally, the cells are clustered 
(resolution = 0.1, dim = 30) using the FindNeighbors and FindClusters 
functions and visualized by the t-distribution random neighbor 
embedding (t-SNE). The marker genes for each cell are identified by 
the FindAllMarms function (logfc = 0.5, Minpct = 0.35) to determine 
the cell type of each cell.

Critical gene identification and protein–
protein interaction network analysis

The numerous ways that intersecting genes affect AD at the 
systemic level were discovered using the R package “WebGestalt” (20) 
to evaluate potential important gene sets for GO biological process 
(BP), cellular component (CC), molecular function (MF), and KEGG 
pathway enrichment. With the significance level set to p < 0.05, 
we displayed the data using the “ggplot2” package.

Using Cytoscape, we  performed a network analysis based on 
modules (21). To get network modules, we used the MCODE plugin 
(22), which detects closely linked protein clusters in the target 
network, with “degree cutoff = 2, maximum. Depth = 100, k-core = 2, 
and a cutoff value of node score = 0.2.” We obtained information on 
gene interactions from the String database,7 and we then used the 
plugin to identify protein clusters with a high degree of connectivity 
in the target network.

Mapping of cell subgroups

Reassess RNA-seq expression spectral data sets using the 
CIBERSORT algorithm (23), which uses the expression of labeled 
genes in each cellular subpopulation as a background for figuring out 
the ingredients of specific cellular subpopulations in various samples 
of the expression profile. The R package “Hmisc” was used to calculate 
further Pearson correlation coefficients and the importance of gene 
expression in connection to immune cells, and the R package 
“ComplexHeatmap” was used to show the results (24). Pearson 
correlation analysis was used to assess the differences between the WT 
and KO groups, and the significantly expressed genes in the KO group 
were ultimately chosen as hub genes. Pearson correlation analysis 
determined the importance of AD-related genes with immune cells. 
Examining the degree of correlation between two or more variables is 

7 https://string-db.org

https://doi.org/10.3389/fmed.2023.1335512
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158234
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE238013
http://www.disgenet.org/
http://ctdbase.org
http://www.genecards.org
https://www.omim.org
https://string-db.org


Wang et al. 10.3389/fmed.2023.1335512

Frontiers in Medicine 04 frontiersin.org

one of the most widely used statistical procedures (25). The product-
moment correlation coefficient, also known as the Pearson correlation 
coefficient (r), is one of the most commonly used statistical data (26). 
Correlation methods have been used in various situations in medical 
research. First, to determine whether a statistically significant positive 
or negative correlation exists between two or more variables. Second, 
the degree of statistical significance of the correlation is measured. 
Third, to determine the proportion of variability in the dependent 
variable (X) that can be  explained or “accounted for” by the 
independent variable (Y), and fourth, to test the goodness-of-fit of 
linear regression (25). The correlation method is used in a variety 
of situations.

Hub genes’ GSEA enrichment analysis and 
ROC curve construction

The GeneMANIA database8 is used to build networks of protein–
protein interactions (PPIs) (27). The database generates gene function 
hypotheses through functional analysis, rates gene lists, and ranks 
genes in order of importance. By identifying functionally linked genes 
and classifying them according to expected values based on genome-
wide and proteomic data, core gene networks for mechanistic study 
may be created.

The structure of the nomogram is effective for identifying clinical 
AD. The R package “rms” was used to determine the prediction 
efficacy based on candidate genes (28). Overall, we  obtained the 
expression profiles of each hub gene in RNA-seq profiling dataset 
GSE238013,The PROC package was used to evaluate the diagnostic 
predictive value of pivotal genes. Receiver operating characteristic 
(ROC) area under curve (AUC) and 95% confidence intervals (CI) 
were calculated to illustrate the diagnostic usefulness of AD testing 
and assessment of candidate genes. AUC >0.7 was regarded as the 
most straightforward diagnostic cost (29).

Traditional Chinese medicine prediction of 
probable therapeutic benefits

The traditional Chinese medicine (TCM) with potential 
interventional effects were identified using the Coremine Medical 
database,9 Standard screening with p < 0.05, and further screening 
based on the theoretical knowledge of TCM and the principle of 
everyday clinical use if the quantity of the drug is excessive (30). The 
active ingredients of the anticipated TCM were screened from the 
TCMSP database10 based on bioavailability (OB) ≥30% and drug-like 
properties (DL) ≥0.18, and the corresponding compounds’ targets of 
action were obtained. The UniProt database11 was used to de-weight 
and normalize the valid targets, and the de-weighted and normalized 
data were then imported into Cytoscape to create a network diagram 
of “Traditional Chinese Medicine-Ingredient-Target.” The top  20 

8 http://www.GeneMANIA.org

9 https://www.coremine.com

10 https://tcmsp-e.com/

11 https://www.uniprot.org/

targets were then screened and visualized using the degree algorithm 
in the CytoHubba plugin (31).

Random Mendelianization

Mendel’s randomization uses only data that is available in an open 
database. We  define SNP as IV and apply double-sample MR to 
investigate the causal link between the hub gene and AD risk. Hub gene 
information from a public GWAS data source. As a representative gene 
for Alzheimer’s disease, we chose the most important gene, IL1B, and 
conducted a Mendel randomized study. Data on IL1B can be obtained at 
https://gwas.mrcieu.ac.uk/datasets/?trait__icontains=interleukin-1%20
beta, and data on AD can be accessed at http://gwat.mrceu. Ac. Ak/
datesets/?Trait__ICONTAINS=Alzheimer's%27s%20disease. Reverse 
differential weighting (IVW) was used to assess the connection between 
hub gene levels and AD risk in the MR analysis based on the R package 
“TwoSampleMR.” MR-Egger was used in further sensitivity studies (32).

Results

Clustering and dimensionality reduction 
analysis

Supplementary Figure S1 describes the process diagram of the 
bioinformatics analysis of the study. Single-cell filtering and 
percentage-collection functions generate 1,210 genes. In 
Supplementary Figure S2A, the amounts of UMI and mRNA are 
significantly correlated. After quality control, the sample’s mRNS/
UMI/polymeric /rRNA content is evenly distributed 
(Supplementary Figure S2B). We  operate the data in a de-weight 
operation to ensure the effectiveness and feasibility of follow-up 
analysis. First, identify the high-variable genes in cells (which are 
interfering significantly in each cell), follow up only the highly 
modified genes that contribute to the dimension of the cell cluster, and 
only retain the contributing PCs for the identification of cell subgroups 
(Supplementary Figure S2C). Use the “ScaleData” function to scale all 
the genes taken from the scRNA-seq dataset GSE158234, then use 
PCA degradation to find the anchor point (Supplementary Figure S2D). 
Using the “FindNeighbors” and “FindClusters” algorithms, a cluster 
analysis of 1,210 genes revealed five clusters (Figure 1A). The maker 
gene divided These five clusters into four cell types (Figure 1B). The 
expression of the marker genes in the four cell types was discovered 
after screening the marker genes of the four cell types using the 
“FindAllMarkers” program (Figures  1C,D). KEGG enrichment 
showed that the four cell subtypes discovered using scRNA-seq study 
had significant heterogeneity (Figure 1E).

Screening of cell subpopulations

To search for subgroups of AD patient differences further, 
we assessed the number of identified cell types in the KO and WT 
groups from the GSE238013 dataset using the CIBERSORT approach 
(Figure 2A). The results showed that the frequency of macrophages in 
the KO group was more significant than that of the WT group 
(Figure 2B).
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FIGURE 1

AD samples of single-cell sequencing. (A) T-SNE plots of different subpopulations of 5 cell clusters. (B) The maker genes identify four cell types. 
(C) Heatmap showing the top 10 genes in 4 expressed cell types. (D) Expression of the top gene in different cell types. (E) Examining the KEGG 
enrichment of the four cell types.

FIGURE 2

Identification of differential cell subpopulations in RNA-seq datasets. (A) The KO and WT groups’ relative abundance of the identified cell types was 
calculated using the CIBERSORT method on the GSE238013 dataset. (B) Statistical diagrams of the four discovered cell types. **p  <  0.01.
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The discovery of genes associated with AD

Utilizing overlap analysis to look for genes linked to AD in the 
DisGeNET, CTD, Genecards, and OMIM databases, we  found 56 
overlapping genes (Figure 3A). The top 10 genes of 4 distinct cell types 
and the shared genes for AD were intersected to provide a significant 
gene, IL1B, classified as a macrophage (Figure 3B). The expression 
level of the gene IL1B in a single cell is shown in Figure 3C. According 
to the PPI analysis utilizing the String database, there were 54 
common genes for the subsequent investigation (Figure 3D).

Functional study of genes associated with 
AD

We conducted KEGG and GO enrichment analyses to explore 
these genes’ functional notes. BP enriches 1,000 terms (p < 0.05) for 
the GO functional notes of genes, with the result of the top 10 notes 
as shown in Figure 4A.CC is rich in 356 terms, with the results of the 
top 10 notes as shown in Figure 4B. Three hundred eighty-nine terms 
are abundant in MF, with the top 10 notes, as shown in Figure 4C. The 
analysis of the KEGG path enrichment shows that 181 paths have been 
enriched, with the top 10 notes as shown in Figure 4D.

Cytoscape also examined module-based networks and used 
mature MCODE algorithms to locate module-based network protein 
clusters in the target network. The results showed that the MCODE 
algorithm obtained 4 clusters (Figure 4E).

Using a web-based computational 
framework for pharmacology, identify the 
hub genes

Based on the MCODE algorithm, four clusters were obtained 
using the R package “Hmisc” to analyze the correlation of the genes 
with the macrophages in the four clusters. Six genes in the four clusters 
(ITPR3, VCP, IL6, PDCD1, EGR2, MUC1) are significantly positive 
correlation to macrophages. In comparison, 7 genes (CD36, HTT, 
RENBP, IL10, CX3CR1, NOTCH1, IL1B) are significantly negative 
correlation to macrophages (Figure 5A). Five highly expressed genes 
(HTT, IL10, CX3CR1, IL1B, and IL6) from the KO group are 
ultimately selected for further study after bar diagrams are used to 
demonstrate the differential expression of these 13 highly associated 
genes in the WT and KO groups (Figure 5B). The linkages between 
the five interact genes were discovered using the String database. As 
can be observed, four genes (IL10, CX3CR1, IL1B, and IL6) that are 
directly regulated by one another function as AD hub genes 
(Supplementary Figure S1).

GeneMANIA, GSEA enrichment analysis, 
and diagnostic value assessment

The PPI network and the connections of IL10, CX3CR1, IL1B, and 
IL6 are shown in Figure 6A. According to the GeneMANIA study, 
these pathways are closely associated with the immunological 

FIGURE 3

Identification of AD-related genes. (A) A Venn diagram illustrates four datasets’ gene intersections related to AD. (B) The top 10 genes from each cell 
type are shown in a Venn diagram as genes related to AD. (C) T-distribution-based random embedding for IL1B. (D) The protein–protein interaction 
(PPI) network for 54 genes linked to AD.
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inflammatory response. The enrichment scores of each gene in several 
KEGG pathways were also examined using ssGSEA, and the findings 
indicate that most of them have direct regulatory linkages (Figure 6B).

Next, we built a Nomogram to support four possible center genes 
(Figure 6C). We created a ROC curve to assess the specificity and 
sensitivity of each gene used to diagnose the disease. It is followed by 

FIGURE 4

Functional enrichment analysis of AD-related genes. (A) Biological processes enrichment. (B) Cellular component enrichment. (C) Molecular function 
enrichment. (D) KEGG pathway enrichment. (E) There were a total of 4 crucial clusters in the MCODE-based network.

FIGURE 5

Important genes in the core cluster are identified. (A) Study of four gene clusters and macrophages in correlation. (B) The bar graph displays 13 
significantly linked genes’ differential expressions in the WT and KO groups. *p  <  0.05, **p  <  0.01, and ****p  <  0.001.
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IL1B (AUC 0.99, CI 0.96–1.00), IL10 (AUC 0.89, CI 0.88–0.90), 
CX3CR1 (AUC 0.87, CI 0.75–1.00) and IL6 (AUC 0.77, CI 0.61–0.93). 
The results showed that all hub genes had potential diagnostic value 
for AD (Figure 6C).

TCM prediction of probable therapeutic 
benefits

Supplementary Table S1 demonstrates that to find prospective 
therapeutic TCM, four genes were connected to the Coremine 
Medical database (see footnote 9). According to a study of Chinese 
medical theory, Salvia miltiorrhiza, Ganoderma lucidum, and ginseng 
have several effects, including enhancing blood circulation, reducing 
blood lipids and antioxidants, accelerating blood circulation, and 
removing blood stasis. Glycyrrhiza glabra can strengthen the spleen, 
enhance qi, and efficiently expel heat and remove poisons. Scutellaria 
baicalensis and Rhizoma coptidis help dry moisture and diarrhea and 
detoxify and eliminate heat. The above TCMs are often used in the 
Chinese medicine clinic to treat AD for subsequent analysis (33–38). 
The active ingredients and targets for the six traditional Chinese 
medications indicated above were discovered using the TCMSP 
database. Altogether, 3,259 targets and 328 active compounds were 
found. In the Uniprot database, the targets of the components 
mentioned above were genetically de-emphasized and normalized, 
and a network diagram of “Chinese medicine-component-target” was 
created (Figure 7A). Using the CytoHubba Plugin “Degree” algorithm, 
marks of the first 30 are screened and presented in different color 
stratifications. The active ingredients of the above 6 TCMs are mainly 
involved in the regulation of prostaglandin-endoperoxide synthase 1 
(PTGS1), prostaglandin-endoperoxide Synthase 2 (PT GS2), retinoid 
X receptor, alpha (RXRA), cholinergic receptor and other genes such 
as muscarinic 1 (CHRM1), nitric oxide synthases 2 (NOS2), estrogen 

receptor 1 (ESR1), which may be a potential drug to interfere with the 
pathological development of AD (Figure 7B).

The risk of AD is causally related to IL1B

No SNP was a weak instrumental variable in the studies taken into 
inclusion. The causal effect of each SNP variation on AD is shown in 
Figures 8A,B. We investigated the relationship between IL1B levels 
and AD. Using the IVW method, we found that IL1B was associated 
with a higher risk of AD, with an OR of 1.003 (95% CI = 1.001–1.006, 
p = 0.038). The MR-Egger method could not show significant statistical 
significance (OR = 1.005, 95% CI = 0.999–1.011, p = 0.091). With the 
margin of MR Egger’s regression not detecting horizontal pluralism 
(p = 0.942) and the Funnel diagram’s causal impact being broadly 
symmetrical, further indicating that pluralism does not have biased 
causal effects (Figure 8C). Following the systematic removal of each 
SNP, as shown in Figure 8D, we once again conducted MR analysis on 
the remaining SNPs. The findings were consistent, indicating a robust 
causal connection between the outcomes of all SNP computations. 
Additionally, this suggests that the IL1B level and AD do not include 
any apparent SNPs and that the validity of earlier MR findings 
is maintained.

Discussion

Traditional molecular biology investigations have partly 
uncovered the pathogenic underpinnings of AD in earlier studies, but 
further research is required. The development of scRNA-seq 
technology can provide new insights into the pathological 
development process of AD. This study found four major cell types in 
the AD model induced by TREM2-KO (CRISPR-modified TREM2) 

FIGURE 6

GSEA analysis and ROC curve of hub genes. (A) PPI network establishment. (B) IL10, CX3CR1, IL1B, and IL6 GSEA analysis. (C) Nomogram and ROC 
curves for every hub gene.
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induction: mononuclear cells, macrophages, microglia cells, and NKT 
cells. Notably, in the expression of the AD model induced by CRISPR 
modification to eliminate the SORL1 gene (SORL1-KO), the 
proportion of macrophages in the KO sample is significantly higher 
than in the WT sample. One study (39) showed that the absence of 
SORL1, as well as mutations of the AD gene of joint chromosome 
appearance, APP, in the amygdala protein precursor protein and 
PSEN1/2, caused the disease to converge through early endocrine 
expansion, which is a marker of the cellular pathology of AD. SORL1 
acts in conjunction with the reverse recording transport complex, 
which can regulate the recovery of APP from the endosome, thereby 
causing endosome swelling and APP error processing, suggesting that 
one of the roles of SARL1 is to promote the endorphins degradation 
and clearance pathway of neurons. As highly phagocytic cells, 
Peripheral macrophages can also migrate to the brain in cultivation 
cells and animal models and have a higher ability to remove the Aβ 

fibril (40, 41). Simard created a chimeric mouse model by irradiate-
treating APP/PS1 mice and injecting bone marrow cells into their 
blood. They then utilized this model to demonstrate that peripheral 
macrophages, as opposed to microglia, were more effective in 
removing Aβ fibril phagocytosis (42). Therefore, increasing 
macrophage cells is essential to eliminating AB fiber in 
AD. We investigated AD-related gene targets. We discovered that IL1B 
was highly expressed in macrophages and had significant interactions 
with several genes relevant to AD, suggesting that IL1B could be the 
crucial gene. We developed an IL1B-based disease-specific regulatory 
network for a set of AD-related genes. GO functional enrichment 
study showed that these genes influence signaling receptor binding, 
enzyme binding catalysis, response to stimuli, plasma membrane 
component, and other GO enrichment pathways. We  discovered 
substantial gene–gene interaction. These genes are also prevalent in 
many signaling pathways, including those connected to inflammatory 

FIGURE 7

Prediction of potential therapeutic TCM related to AD. (A) TCM-ingredient-target network diagram. (B) Predicting key targets for TCM intervention in 
AD progression.
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bowel disease (IBD), Parkinson’s disease, and Alzheimer’s disease. 
These results suggest that these genes regulate several essential and 
complex disease processes.

Four modules were created from the genes using network module 
analysis. The four modules were investigated for connections to 
macrophages. Seven genes (CD36, HTT, RENBP, IL10, CX3CR1, 
NOTCH1, IL1B) were significant negative correlation associated with 
macrophages, while six of them (ITPR3, VCP, IL6, PDCD1, EGR2, 
MUC1) were substantial positive correlation connected with 
macrophages. Five genes (HTT, IL10, CX3CR1, IL1B, and IL6) 
differently expressed in the KO group were discovered after the 
significant association genes were further differentially expressed in 
the WT and KO groups. Four of these genes (IL10, CX3CR1, IL1B, 
and IL6) were chosen as the AD hub genes since it was found via the 
string database that they had a direct regulatory link. Interleukin 
(IL)-10 is a crucial immunomodulatory cytokine with pleiotropic 
immunosuppressive properties that can be produced by a variety of 
leukocyte subpopulations and is influenced by these subpopulations’ 
effects on signaling pathways and transcriptional networks (43). 
Depending on the expression of its receptor, IL-10 has anti-
inflammatory solid effects on different immune system cells (44). The 
generation of antibodies by B cells has been found to increase in 
response to interleukin-6 (IL-6), a 26-kD secretory protein. Later, it 
was shown that IL-6 collaborates on several tasks with other cytokines 
in the IL-6 family via the same IL-6 signaling transducer, gp130. Cells 
are activated in various ways by IL-6 receptors on membranes and in 
soluble form (45). Interleukins are released by leukocytes and 
activated microglia. Macrophage and neutrophil activity are 

stimulated by interleukin, which also promotes T-lymphocyte-
mediated toxicity. It has several receptors, including the IL-6 receptor, 
which promotes neuronal cell survival at ordinary concentrations but 
may cause neurodegeneration at high levels. Mutations in IL-6 may 
raise the risk of AD. Additional receptors include IL1B, IL-9, IL-17, 
IL-15, and IL-10. By inhibiting the activity of several proinflammatory 
mediators, IL-10 acts as an anti-inflammatory molecule. IL-18 sparks 
interferon-gamma synthesis. Each of them contributes in some way 
to the neuroinflammation that leads to AD, either directly by 
producing neurotoxicity or indirectly by activating inflammatory 
mediators (46). Chemokines are chemotactic cytokines that mediate 
AD and encourage chemotaxis in the brain. Chemokines are classified 
into four families: CXC, CC, CX3C, and C. One of the many crucial 
glial cell communication axes that maintain microglia homeostasis is 
CX3CR1 and its neuronal ligand CX3CL1 signaling, and loss-of-
function variants of CX3CR1 have been associated with worsening 
Braak staging, neurodegeneration, as well as decreased survival in 
patients with AD and ALS (47). Microglia and macrophages gather 
in the vicinity of amyloid plaques. These activated cells release 
cytokines, including interleukin, which have proinflammatory 
properties and hasten the neuroinflammatory processes in the brain 
that lead to AD (48). Next, we built a Nomogram to support four 
possible center genes and created an ROC curve to assess the 
specificity and sensitivity of each gene used to diagnose the disease. 
The results showed that all hub genes have potential diagnostic 
value for AD.

Since pro-inflammatory cytokines and their receptors are the 
leading cause of neuroinflammation in AD, inhibiting cytokine 

FIGURE 8

The Mendelian randomization experiment results. (A) A scatterplot demonstrating how IL1B raises the likelihood of AD. (B) A forest plot showing the 
causal relationship between each SNP and the risk of AD. (C) A funnel plot shows the overall variability of the MR assessments of the effect of IL1B on 
AD. (D) A leave-one-out figure showing how IL1B and the risk of AD are related causally.
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gene expression and blocking or binding to their receptors could 
be a better therapeutic option for treating AD. TCM has various 
active components that may act on multiple targets simultaneously 
and provide synergistic therapy in AD patients, considering the 
complicated and multifactorial pathophysiology of the illness, 
making it safer than synthetic drugs with single-target action (49). 
In light of this, six Chinese medicines, Including Radix Salviae, 
ginseng, Ganoderma, licorice, Coptidis Rhizoma, and Scutellariae 
Radix, were included in the Coremine Medical database. A network 
pharmacological study was carried out to investigate further the 
mechanism of action of these six herbs in treating AD. It was shown 
that these herbs functioned mainly by modulating the genes of 
PTGS1, PTGS2, RXRA, CHRM1, NOS2, and ESR1. In a study by 
Chong et al. (45), six Radix Salviae components were examined to 
see how they affected these critical aspects of AD. The results 
showed that each ingredient might lessen A’s toxicity. In addition 
to reducing A aggregation, tanshinones I, IA, IIA, and crypto 
tanshinone all exhibit protective effectiveness against A-induced 
cellular damage. When comparing resistance to tanshinic acid 
A-induced cytotoxicity and resistance to A-aggregation, crypto 
tanshinone and tanshinic acid A showed comparable working 
concentrations. This observation implies that the capacity of tannic 
acid A and cryptotanshinone to inhibit A-aggregation is the 
primary cause of their protective effects against A-induced 
cytotoxicity. The main cytokine produced by Th17 cells, IL-17, 
attaches to its receptor, activates signaling pathways inside cells, 
and causes the release of many proinflammatory molecules, 
including IL-6, which exacerbates neuroinflammation (50). The 
JAK/STAT system contributes to neuroinflammation in AD 
through excessive activation. When IL-6 activates JAK2 and JAK3, 
STAT is phosphorylated by JAK3, and apoptosis in the 
mitochondrial pathway is initiated, leading to mitochondrial 
dysfunction in AD (51). Ganoderic acid A may minimize the 
imbalance of the Th17 / Tregs axis and the neuroinflammatory 
effects in AD mice, according to Zhang’s et al. research (37). The 
fundamental mechanism involves the JAK/STAT signaling pathway, 
which Th17 cells suppress. Many of the active components found 
in ginseng, including ginsenosides, polysaccharides, amino acids, 
and polyacetylene, have therapeutic benefits in treating AD, 
according to contemporary medical studies. In China, ginseng has 
been used to treat dementia for thousands of years. Ginsenosides 
have been shown to alter synaptic plasticity and the cholinergic 
system, reduce A exacerbation and tau hyperphosphorylation, and 
have anti-neuroinflammatory, antioxidant, and anti-apoptotic 
properties in the treatment of dementia, among other things, by 
Wang et  al. (36). Additionally valuable for treating AD are 
ginsenosides, oligosaccharides, polysaccharides, and ginseng 
proteins found in ginseng. Licorice reduces microglia activation 
and inflammation in lipopolysaccharide (LPS)-induced 
neurotoxicity via inhibiting the AP1 and NF-kB pathways. When 
neurological diseases like Alzheimer’s are accompanied by 
inflammation, this inhibition halts the neurotoxic process (52). 
Additionally, it has been shown that licorice improves in vivo 
cognitive signs of Alzheimer’s disease. Licorice has been shown to 
have anticholinesterase properties that may counteract the amnesic 
effects of scopolamine and diazepam. Anticholinesterase medicines 
often treat Alzheimer’s disease (53). According to Jin’s et al. research 
(34), baicalin reportedly prevented microglia from activating, 

decreased neuroinflammation, and postponed neuronal loss; 
inhibition of NLRP3 inflammatory vesicles and blocking of the 
TLR4/NF-B signaling pathway may also play a role in baicalin’s 
therapeutic action on AD. To investigate changes in sphingolipid 
metabolism in the brains of APP/PS1 mice following Huanglian 
changes in APP/PS1 rats’ cerebrospinal fluid after HLJDD treatment 
and in BV2 microglia triggered by A25-35. The findings showed 
that HLJDD significantly improved abnormal sphingolipid 
metabolism in vivo and in vitro. As indicated, the results show that 
the study’s conclusions on drug prediction are reliable, compatible 
with actual clinical situations, and consistent with TCM’s 
knowledge of AD. However, specific mechanisms remain unclear 
and need further research. The present study indicated that TCM 
would affect PTGS1, PTGS2, RXRA, CHRM1, and NOS2 targets 
via network pharmacology to prevent and regulate AD, which 
might provide a beneficial path for future investigations on TCM 
in AD. However, the results from bioinformatics analysis alone are 
far from satisfactory and must be confirmed by several studies.

Finally, using a two-sample MR analysis based on several 
GWAS data on IL1B (exposure) and AD (outcome), we looked at 
studies showing causal relationships between IL1B levels and AD 
risk. This MR study suggests that higher IL1B levels may be directly 
associated with an increased risk of AD. Although reverse causality 
and other systemic flaws that affect the results of traditional 
observational research are eliminated by MR, fundamentally, MR is 
similar to prospective randomized controlled trials (RCTs). The 
high precision of genotyping may successfully stop regression 
dilution caused by inaccurate testing. We only included patients 
from European populations to exclude potential confounding 
variables between IL1B and AD that the SNP could have brought 
about. To verify the stability of the results, we  also performed 
MR-Egger regression tests, but we could not detect any evidence of 
directed-level pleiotropy.

Conclusion

In summary, the present study describes the four cell types in AD 
through scRNA-seq analysis, integrates the systemic computational 
framework of network pharmacology and Single-cell sequencing, 
identifies the diagnosis genes of AD Interleukin and chemokines, and 
identifies potential TCMs and therapeutic targets that may interfere 
with the development of AD pathology, laying the basis for developing 
RNA-based AD therapy strategies.
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