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Background: Targeted next-generation sequencing (tNGS) has emerged as a rapid 
diagnostic technology for identifying a wide spectrum of pathogens responsible 
for pulmonary infections.

Methods: Sputum samples were collected from patients unable or unwilling 
to undergo bronchoalveolar lavage. These samples underwent tNGS analysis 
to diagnose pulmonary infections. Retrospective analysis was performed on 
clinical data, and the clinical efficacy of tNGS was compared to conventional 
microbiological tests (CMTs).

Results: This study included 209 pediatric and adult patients with confirmed 
pulmonary infections. tNGS detected 45 potential pathogens, whereas CMTs 
identified 23 pathogens. The overall microbial detection rate significantly differed 
between tNGS and CMTs (96.7% vs. 36.8%, p  <  0.001). Among the 76 patients with 
concordant positive results from tNGS and CMTs, 86.8% (66/76) exhibited full or 
partial agreement. For highly pathogenic and rare/noncolonized microorganisms, 
tNGS, combined with comprehensive clinical review, directly guided pathogenic 
diagnosis and antibiotic treatment in 21 patients. This included infections caused 
by Mycobacterium tuberculosis complex, certain atypical pathogens, Aspergillus, 
and nontuberculous Mycobacteria. Among the enrolled population, 38.8% 
(81/209) of patients adjusted their treatment based on tNGS results. Furthermore, 
tNGS findings unveiled age-specific heterogeneity in pathogen distribution 
between children and adults.

Conclusion: CMTs often fall short in meeting the diagnostic needs of pulmonary 
infections. This study highlights how tNGS of sputum samples from patients who 
cannot or will not undergo bronchoalveolar lavage yield valuable insights into 
potential pathogens, thereby enhancing the diagnosis of pulmonary infections in 
specific cases.
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1 Introduction

Pulmonary infection stands as a prominent contributor to the 
global disease burden, resulting in substantial morbidity and mortality 
worldwide (1). Prompt identification of pathogens holds a crucial role 
in initiating timely and appropriate treatment, thereby enhancing 
clinical outcomes (2, 3). The prevailing diagnostic framework for 
pulmonary infection relies on physicians constructing a differential 
diagnosis from patient history, evaluating clinical presentations, 
interpreting imaging findings, conducting auxiliary tests, and 
subsequently employing microbiological assays to pinpoint causative 
agents. However, this conventional approach faces challenges in 
pathogenic diagnosis due to extended turnaround times, sensitivity, and 
the wide array of potential pathogens, encompassing bacteria, viruses, 
fungi, and atypical agents. Consequently, the etiology of pulmonary 
infections remains elusive in a substantial 19%–62% of cases (4–6).

Emerging as a technology with notable potential, targeted next-
generation sequencing (tNGS) addresses the limitations of 
metagenomic NGS (mNGS) by targeting the identification of a broad 
spectrum of pathogens. Earlier investigations have underscored the 
efficacy of mNGS in significantly expediting pathogenic diagnosis in 
pulmonary infections (7, 8). Nevertheless, widespread clinical 
adoption of mNGS has been impeded by its considerable cost, 
susceptibility to host nucleic acid interference, and separate detection 
of DNA and RNA. In combination with ultra-multiplex polymerase 
chain reaction (PCR) and high-throughput sequencing, tNGS allows 
simultaneous identification of multiple common pathogens. Although 
the number of detectable pathogens is fewer than that detected using 
mNGS, tNGS offers distinct advantages in terms of the cost and 
diagnostic process. A preliminary report has demonstrated the 
effectiveness of tNGS in detecting respiratory pathogens, at a quarter 
of the cost of mNGS (9). Furthermore, another study revealed 
comparable diagnostic performance between tNGS and mNGS in 
microbiological testing of bronchoalveolar lavage fluid (BALF) (10).

Both BALF and sputum are commonly used sample types from 
the lower respiratory tract. Sputum, due to its noninvasive collection 
procedure and high patient acceptability, proves to be  a more 
accessible option for early pathogenic screening than BALF. Therefore, 
sputum is often utilized for pathogen detection when obtaining BALF 
samples is infeasible or declined by patients. Consequently, tNGS of 
sputum holds promise as a pragmatic approach in such scenarios. 
However, the existing published evidence supporting the efficacy of 
sputum-based tNGS in patients with pulmonary infections is 
predominantly confined to small case series (11).

This study endeavors to elucidate the potential utility of tNGS in 
the pathogenic diagnosis of pulmonary infections. Employing a tNGS 
assay targeting 153 pathogens (Supplementary Table S1), we sought to 
assess its clinical performance in comparison to conventional 
microbiological tests (CMTs). Furthermore, we aimed to shed light on 
the heterogeneity of pathogen distribution within the study population 
based on tNGS results.

2 Materials and methods

2.1 Study design

This retrospective case series involved the analysis of 234 sputum 
samples, collected between April and November 2022 at The First 

People’s Hospital of Qinzhou in China. These samples were subjected 
to both tNGS and CMTs. Investigators conducted a thorough review 
of clinical data related to each patient diagnosed with pulmonary 
infection who underwent both tNGS and computed tomography 
scans. The study received approval from the local Ethics Committee 
(approval number: 2022081) and was conducted in accordance with 
the 1990 Declaration of Helsinki and its subsequent amendments. All 
data utilized in this study were obtained anonymously and exclusively 
employed for analysis in this paper. The confidentiality of patient 
information was rigorously upheld, obtaining the patient 
informed consent.

The inclusion criteria for this study were as follows: (i) patients 
diagnosed with pulmonary infection; (ii) implementation of both 
tNGS and CMTs for pathogenic diagnosis; (iii) availability of 
complete clinical data; and (iv) patients who provided informed 
consent to participate. Exclusion criteria included: (i) patients 
declining sample collection for tNGS; (ii) sputum samples failing to 
meet the tNGS quality standards; and (iii) patients with incomplete 
clinical data.

2.2 Sample collection

Adequate and informative sputum sample collection hinges on 
proper instructions. Trained nurses guided patients to brush their 
teeth and rinse their mouth with saline in the morning, take a deep 
breath, and then forcefully expel sputum from the respiratory tract, 
making an effort to avoid contamination with oral and nasopharyngeal 
secretions. The samples were collected in sterile containers with secure 
lids. Patients were explicitly instructed that sputum from a forceful 
cough was required, and saliva should not be  introduced into the 
collection cup. For infants or young children unable to produce 
sputum through coughing, a disposable suction tube was employed to 
extract sputum under negative pressure. In cases where patients faced 
challenges in generating sputum through forced expectoration, 
alternative methods such as sputum induction and tracheal aspirate 
were considered. It is crucial to emphasize that all these procedures 
were exclusively conducted by physicians trained in accordance with 
specific collection protocols. Approximately 1–3 mL of sputum was 
collected and preserved at −20°C within 48 h for tNGS analysis. 
Additionally, residual sputum and blood samples from select patients 
were obtained for CMTs, including smear microscopy, culture, PCR, 
and serologic testing (Supplementary Presentation S1).

2.3 Targeted next-generation sequencing

2.3.1 Sample preparation
A volume of 650 μL of the sample was liquefied by combining it 

with an equal volume of 80 mmol/L dithiothreitol in a 1.5 mL 
centrifuge tube. The mixture was homogenized for 15 s using a vortex 
mixer. Meanwhile, a positive control and a negative control from the 
Respiratory Pathogen Detection Kit (KS608-100HXD96, KingCreate, 
Guangzhou, China) were set up to monitor the whole experiment 
process of tNGS.

2.3.2 Nucleic acid extraction
Subsequently, 500 μL of the homogenate was utilized for total 

nucleic acid extraction and purification via the MagPure Pathogen 
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DNA/RNA Kit (R6672-01B, Magen, Guangzhou, China), following 
the manufacturer’s protocol.

2.3.3 Library construction and sequencing
The library was constructed using the Respiratory Pathogen 

Detection Kit, and a no template control was set up to monitor the 
library construction and sequencing process. This process 
encompassed two rounds of PCR amplification. The sample nucleic 
acid and cDNA were employed as templates, and a set of 153 
microorganism-specific primers were selected for ultra-multiplex 
PCR amplification to enrich the target pathogen sequences, spanning 
bacteria, viruses, fungi, mycoplasma, and chlamydia. After the 
amplification, PCR products underwent purification with beads, 
followed by amplification using primers containing sequencing 
adapters and distinct barcodes. The quality and quantity of the 
constructed library were evaluated using the Qsep100 Bio-Fragment 
Analyzer (Bioptic, Taiwan, China) and Qubit 4.0 fluorometer 
(Thermo Scientific, Massachusetts, United  States), respectively. 
Generally, the library fragments exhibited sizes within the 
approximate range of 250–350 bp, and the library concentration was 
maintained at a minimum of 0.5 ng/μL. The concentration of the 
mixed library was reassessed and subsequently diluted to a final 
concentration of 1 nmol/L. Subsequently, 5 μL of the mixed library 
was mixed with 5 μL of freshly prepared NaOH (0.1 mol/L). Following 
brief vortexing and centrifugation, the library was incubated at room 
temperature for 5 min. The diluted and denatured library was 
subsequently subjected to sequencing on an Illumina MiniSeq 
platform using a universal sequencing reagent kit (KS107-CXR, 
KingCreate, Guangzhou, China). On average, each library yielded 
approximately 0.1 million reads, with a sequencing read length of 
single-end 100 bp.

2.3.4 Bioinformatics analysis
Sequencing data were analyzed using the data management and 

analysis system (v3.7.2, KingCreate). The raw data underwent initial 
identification via the adapter. Reads with single-end lengths exceeding 
50bp were retained, followed by low-quality filtering to retain reads 
with Q30>75%, ensuring high-quality data. The single-ended aligned 
reads were then compared using the Self-Building clinical pathogen 
database to determine the read count of specific amplification targets 
in each sample. The reference sequences used for read mapping was a 
database curated from different sources, including Genbank database, 
Refseq database, and Nucleotide database from NCBI.1

2.4 Interpretation of tNGS results

In line with the experimental principle of targeted amplification 
of microbial sequences using specific primers, the amplicon coverage 
and normalized read count of detected microorganisms within the 
sample constituted the primary interpretation indicators. To categorize 
a microorganism as a potential pathogen, the following criteria were 
established: (i) bacteria (excluding Mycobacterium tuberculosis 
complex), fungi and atypical pathogen: amplicon coverage ≥50% and 

1 https://www.ncbi.nlm.nih.gov

normalized read count ≥10; (ii) viruses: amplicon coverage ≥50% and 
normalized read count ≥3, or normalized read count ≥10; (iii) 
Mycobacterium tuberculosis complex: normalized read count ≥1.

Subsequently, two experienced clinicians independently 
conducted a comprehensive assessment of the patient’s clinical data 
to determine the presence of pulmonary infection and the clinical 
relevance of potential pathogens. This assessment included the 
patient’s medical history, symptoms, imaging findings, tNGS results, 
and CMT outcomes. In cases of divergent interpretations, 
consultation with a senior physician was pursued to achieve 
a consensus.

2.5 Statistical analyses

Quantitative variables were represented as medians with 
accompanying ranges, while categorical variables were presented as 
counts with percentages. Statistical analyses were performed using 
SPSS 22.0 software (IBM, Armonk, NY, United States). A significance 
level of p < 0.05 was considered statistically significant.

3 Results

3.1 Patient characteristics

Initially, a total of 234 patients diagnosed with pulmonary 
infection and under-going tNGS were considered for review and 
potential enrollment in this study. Among them, 25 patients were 
subsequently excluded due to reasons including the absence of paired 
CMTs (n = 19), repetition (n = 4), and incomplete data (n = 2). 
Consequently, a definitive cohort of 209 patients met the stipulated 
enrollment criteria and underwent further analysis (Figure 1). The 
median age of this cohort was 4 years, with 141 (67.5%) of the patients 
being male. Comorbidity was identified in 61.7% of these patients. A 
majority of patients (180, 86.12%) had been exposed to antibiotics 
before sample col-lection (Table 1).

3.2 Pathogen detection using tNGS and 
CMTs

Among the 209 enrolled cases, a total of 45 potential pathogens 
were detected through tNGS, whereas CMTs identified 23 pathogens 
(Figure 2; Supplementary Table S2). The overall microbial detection 
rates for tNGS and CMTs were 96.7% (202/209) and 36.8% (77/209), 
respectively. Significantly, the detection rate of tNGS surpassed that of 
CMTs (p < 0.001). Of the total patients, 76 (36.4%) demonstrated 
positive results for both tNGS and CMTs, whereas 6 patients (2.9%) 
returned negative results in both methods. Additionally, 126 patients 
(60.3%) tested positive solely via tNGS, and 1 patient (0.4%) was 
positive exclusively via CMTs. Among the 76 double-positive patients, 
13 patients (6.2%) displayed complete consistency between tNGS and 
CMT results, whereas 53 patients (25.4%) exhibited partial 
consistency, and 10 patients (4.8%) showed complete inconsistency 
(Figure 3).

Bacteria were identified in 184 patients (88.0%) via tNGS, whereas 
CMTs detected bacteria in 44 patients (21.1%). Streptococcus 
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pneumoniae was the most frequently detected bacterium, accounting 
for 34.9% of total positive detections, followed by Haemophilus 
influenzae (29.2%), Staphylococcus aureus (29.2%), H. haemolyticus 
(24.4%), and Moraxella catarrhalis (23.4%).

Viruses were detected in 176 patients (84.2%) by tNGS and in 21 
patients (10.1%) by CMTs. The predominant virus detected was 
human rhinovirus (HRV, 39.7%), followed by cytomegalovirus (CMV, 
24.4%), human herpesvirus 7 (HHV-7, 23.9%), Epstein–Barr virus 
(EBV, 19.1%), and HHV-6 (15.3%).

Fungal detection was observed in 56 patients (26.8%) through 
tNGS and in 10 patients (4.8%) through CMTs. Candida albicans 
constituted 22.0% of positive detections, followed by Pneumocystis 

jirovecii (6.2%), Aspergillus fumigatus (1.9%), Candida tropicalis 
(0.5%), and Rhizopus microsporus (0.5%).

Atypical pathogens were identified in 16 patients (7.7%) by tNGS 
and in 13 patients (6.2%) by CMTs. This category included 
Mycoplasma pneumoniae (7.7%), Ureaplasma parvum (1.9%), and 
Chlamydia trachomatis (0.5%). Notably, among the 16 patients with 
confirmed M. pneumoniae infection, 12 exhibited positive tNGS 
results, and 13 exhibited positive serum IgM, with 9 patients 
demonstrating an overlap between the two.

Additionally, measles virus was detected through tNGS in 2 
patients who had been vaccinated within 1 month; however, measles 
was not considered as a diagnostic consideration. Four 
microorganisms were solely identified via CMTs: Elizabethella 
meningosepticum, Burkholderia cepacian, S. epidermidis, and 
C. tropicalis. Each of these microorganisms was detected in only 1 
patient within the study population, with the latter two not falling 
within the detection range of tNGS.

3.3 Heterogeneity of pathogen spectrum 
between children and adults

Within this study, notable heterogeneity was observed in the 
sputum pathogen spectrum when comparing children 
(age < 18 years) and adults (age ≥ 18 years) (Figure 4). Based on the 
proportion of positive detections, the predominant bacteria species 
among children were S. pneumoniae, H. influenzae, S. aureus, 
H. haemolyticus, and M. catarrhalis. In contrast, in adults, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, 
and Stenotrophomonas maltophilia were more prevalent, occupying 
higher ranks in the pathogen spectrum. Among children, the most 
frequently identified virus was HRV, followed by herpes viruses 

FIGURE 1

Flow diagram of the study.

TABLE 1 Baseline characteristics of the 209 patients enrolled.

Characteristic Value (n =  209)

Median age, years 4 (0–97)

Distribution, n (%)

< 18 149 (71.3)

≥ 18 60 (28.7)

Gender, n (%)

Male 141 (67.5)

Female 68 (32.5)

Comorbidity, n (%)

Yes 129 (61.7)

No 80 (38.3)

Antibiotic exposure, n (%)

Yes 180 (86.1)

No 29 (13.9)
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[CMV > HHV-7 > EBV > HHV-6 > herpes simplex virus 1 (HSV-1)], 
respiratory syncytial virus (RSV), human mastadenovirus (HAdV), 
and human parainfluenza virus (HPIV). For adults, herpes viruses 
played a predominant role, with EBV and HSV-1 taking higher ranks 
(EBV > CMV = HSV-1 > HHV-7 > HHV-6). Additionally, C. albicans, 
P. jirovecii, and A. fumigatus were more frequently detected in adults, 
whereas atypical pathogens were exclusively detected in children. 
Statistically significant differences were evident between children 
and adults in terms of upper respiratory tract infection (p = 0.003), 
chronic obstructive pulmonary disease (COPD, p < 0.001), 
bronchiectasis (p < 0.001), diabetes (p < 0.001), tumors (p = 0.003), 

sepsis (p < 0.001), respiratory failure (p < 0.001), severe pneumonia 
(p < 0.001), and hospital stays (p < 0.001, Table 2).

3.4 Clinical impact of tNGS

It is important to highlight that within this study, standard 
reference results for pathogenic diagnosis were unavailable because of 
the absence of qualified BALF samples for detection and the lack of 
quality evaluation for individual sputum samples. Nevertheless, 
through the application of tNGS, several highly pathogenic and rare/

FIGURE 2

Distribution of potential pathogens in the study cohort and the respective contributions of tNGS and CMTs for pathogen detection.
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noncolonized microorganisms were identified and deemed clinically 
relevant within the context of pulmonary infection and final diagnosis. 
This determination was established through comprehensive reviews 
based on patient history, symptoms, and imaging findings. Notably, 
tNGS results directly influenced antibiotic treatment decisions in 21 
patients, including 12 patients with M. pneumoniae infection, 4 
patients with A. fumigatus, 3 patients with M. tuberculosis, 1 patient 
with M. abscessus, and 1 patient with C. trachomatis. Analysis of 
treatment records for all 209 patients revealed that treatment 
adjustments were made for 81 patients based on tNGS results, while 
128 were not altered. The majority of unadjusted cases were associated 
with prior empirical medications that effectively covered the detected 
pathogens. Furthermore, the average experimental turnaround time 
(TAT) for tNGS was 20.2 h, notably shorter than the 2–5 days required 
for CMTs. This demonstrated that tNGS offered rapid and stable TAT 
compared to CMTs, which were substantially affected by presumed 
pathogens and the detected methods.

4 Discussion

The emergence of mNGS has ushered in significant advancements 
in the realm of infectious disease diagnosis, particularly within the 
domain of pulmonary infections. mNGS has been embraced by the 
medical community as a supplementary diagnostic method alongside 
CMTs, due to its ability to swiftly, accurately, and comprehensively 
identify pathogens compared to CMTs. However, the considerable 
cost associated with mNGS has posed a substantial hurdle to its 
widespread clinical applicability (12–14). This constraint has spurred 
the development and clinical adoption of tNGS. Notably, tNGS does 
not merely reduce expenses, but rather, it strikes a balance between 
cost and detection capabilities. Our previous study indicated that the 
tNGS technology employed here exhibits comparable performance to 
mNGS in detecting respiratory pathogens while reducing costs by 

three-quarters (9), highlighting the potential utility of tNGS in 
pathogenic diagnosis.

Within this study, we aimed to explore the clinical utility of 
tNGS for diagnosing pulmonary infections in a patient population 
unable or unwilling to undergo BALF and to compare its efficacy 
against CMTs. Accordingly, we employed a tNGS assay targeting 
153 pathogens to evaluate its detection performance in sputum 
samples, addressing concerns related to sample collection, testing 
costs, TAT, and accessibility. Among the enrolled patients, tNGS 
identified a greater number of potential pathogens (45 vs. 23), 
encompassing common or clinically relevant respiratory pathogens, 
including bacteria, viruses, fungi, and atypical pathogens. 
Moreover, tNGS exhibited a higher positive detection rate 
compared to CMTs (96.7% vs. 34.0%). These findings underscore 
the reality that a considerable portion of patients may harbor 
potential pathogens that remain undetected despite undergoing 
CMTs. Furthermore, among the 76 patients exhibiting positive 
results for both tNGS and CMTs, a substantial 86.8% demonstrated 
either complete or partial consistency between the two methods. 
This evidence underscores the promising potential of tNGS in these 
patients. However, interpreting tNGS results presents significant 
challenges. A growing body of evidence suggests that the respiratory 
tract is not a sterile environment and potentially pathogenic 
microorganisms are ubiquitous (15). The acquisition of noninvasive 
or minimally invasive sputum samples from the lower respiratory 
tract is prone to contamination by a patient’s own endogenous 
upper respiratory tract flora (16, 17). Given that pulmonary 
infections often arise from the patient’s own flora (18), such 
contamination can complicate the interpretation of tNGS results in 
sputum samples. The central question remains: does the presence 
of potential pathogens indicate colonization or infection? If 
infection is present, does it affect the upper or lower respiratory 
tract? However, in most cases, definitively determining whether a 
specific microorganism has caused infection based solely on 

FIGURE 3

Consistency of pathogen detection results between tNGS and CMTs.
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sputum sample detection is impractical (19). Ultimately, the 
conclusive judgment relies on a comprehensive analysis of the 
patient’s clinical context and the physician’s expertise. In this 

context, tNGS provides more insights into pathogen information 
compared to CMTs. Since tNGS can simultaneously detect multiple 
pathogens at one time, it greatly improve the diagnostic efficiency 

FIGURE 4

Heterogeneity in the pathogen spectrum between children and adults.
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and assist clinicians to improve the differential diagnosis and 
identification of mixed infections.

Another primary objective of this study is to investigate the 
distinctions in the pathogen spectrum between children and adults 
through the analysis of sputum samples. This endeavor provides 
valuable insights into the likely potential pathogens or colonizing flora 
prevalent among patients of varying ages. Bacterial infections 
exhibited a diverse age-related pattern. Numerous respiratory bacteria 
establish colonization in the respiratory tract of asymptomatic 
individuals and can subsequently opportunistically lead to pulmonary 
infections. This pattern is observed in organisms such as 
S. pneumoniae, H. influenzae, and S. aureus among children, and 
K. pneumoniae, A. baumannii, and P. aeruginosa among adults (20–
23). A comprehensive 11-year surveillance study of respiratory 
infectious diseases conducted by the Chinese Center for Disease 
Control and Prevention validated our findings. This study identified 
specific age thresholds for the detection rates of various bacteria: 
9 years for S. pneumoniae, 6 years for H. influenzae, 2 years for 
S. aureus, 16 years for K. pneumoniae, and 40 years for P. aeruginosa 
(no data available for A. baumannii). In relation to DNA viruses, 
especially herpesviruses detected in this study, distinct age patterns 
were observed among different types. However, except for CMV, the 
clinical implications of detecting HSV, EBV, HHV-6, and HHV-7 in 
the respiratory tract remain unclear, and they rarely lead to pulmonary 
infections. Existing research suggests that herpesviruses may reactivate 
in patients with severe infections, malignancies, and transplant 
recipients, with implications for prognosis and mortality (24–27). In 
contrast, the age patterns associated with RNA viruses, atypical 
pathogens, and fungi are comparatively straightforward. We observed 
that HRV, RSV, HAdV, HPIV, and M. pneumoniae were predominantly 
detected in children, potentially because of their comparatively lower 
immunity levels than adults and increased opportunities for 
transmission within school environments (28). Fungal infections were 
more prevalent in adults, which may be  linked to the complex 
comorbidities and infection severity typically found in this age group. 

Conditions such as COPD, bronchiectasis, diabetes, malignant 
tumors, sepsis, and severe pneumonia are all high-risk factors for 
invasive fungal diseases (29, 30). In alignment with prior research, 
these outcomes underscore the presence of age-specific heterogeneity 
in the distribution of respiratory microorganisms. This heterogeneity 
may play a role in differentiated tNGS interpretation and the 
identification of relevant pathogens.

While tNGS demonstrated superior detection performance for 
potential pathogens in sputum samples, our study findings 
underscore the importance of interpreting positive results with 
caution. Nonetheless, when integrated with comprehensive clinical 
analysis, tNGS proves valuable for identifying highly pathogenic and 
rarely colonizing microorganisms, such as M. tuberculosis, certain 
atypical pathogens, Aspergillus, and nontuberculous Mycobacteria. 
Such pathogens are typically less susceptible to colonization. 
Moreover, treatment adjustments were made in response to tNGS 
results for 38.8% (81/209) of patients, with tNGS directly guiding 
antibiotic treatment in 10.0% (21/209) of patients. Patients with 
unidentified pathogens may benefit from the insights provided by 
tNGS. Subsequent larger-scale clinical studies are essential to further 
elucidate the role of tNGS in clinical diagnosis and treatment of 
pulmonary infections.

This study has several limitations that warrant consideration. 
First, the absence of standard reference results for pathogenic 
diagnosis prevented the calculation of sensitivity and specificity for 
tNGS, thus hindering a comprehensive assessment of its diagnostic 
performance. Second, distinguishing between microbial colonization 
and infection posed significant challenges because the current tNGS 
technology lacks uniform standards for pathogenic diagnosis. Third, 
the sample size was relatively small, and the study duration was 
limited, potentially affecting the robustness of the results.

In conclusion, our study underscores the clinical utility of 
sputum-based tNGS in the pathogenic diagnosis of pulmonary 
infections among patients who are not candidates for bronchoalveolar 
lavage. The findings demonstrate that tNGS yields a notably higher 
positive detection rate compared to CMTs, which aids in the early 
identification of potential pathogens, particularly those that are highly 
pathogenic or rarely colonize. This technology also supports clinical 
treatment decision-making. Additionally, the study reveals age-specific 
heterogeneity in the distribution of pathogens, indicating the necessity 
for distinct interpretations of tNGS results among patients of varying 
ages. Nonetheless, further research is imperative to establish clear 
indications, criteria for sample selection, and guidelines for result 
interpretation in the context of tNGS.
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p value
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44 (29.5) 6 (10.0) 0.003
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