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Pterygium and subconjunctival hemorrhage are two common types of ocular

surface diseases that can cause distress and anxiety in patients. In this study,

2855 ocular surface images were collected in four categories: normal ocular

surface, subconjunctival hemorrhage, pterygium to be observed, and pterygium

requiring surgery. We propose a diagnostic classification model for ocular

surface diseases, dual-branch network reinforced by PFM block (DBPF-Net),

which adopts the conformer model with two-branch architectural properties

as the backbone of a four-way classification model for ocular surface diseases.

In addition, we propose a block composed of a patch merging layer and a FReLU

layer (PFM block) for extracting spatial structure features to further strengthen

the feature extraction capability of the model. In practice, only the ocular surface

images need to be input into the model to discriminate automatically between

the disease categories. We also trained the VGG16, ResNet50, EfficientNetB7,

and Conformer models, and evaluated and analyzed the results of all models on

the test set. The main evaluation indicators were sensitivity, specificity, F1-score,

area under the receiver operating characteristics curve (AUC), kappa coefficient,

and accuracy. The accuracy and kappa coefficient of the proposed diagnostic

model in several experiments were averaged at 0.9789 and 0.9681, respectively.

The sensitivity, specificity, F1-score, and AUC were, respectively, 0.9723, 0.9836,

0.9688, and 0.9869 for diagnosing pterygium to be observed, and, respectively,

0.9210, 0.9905, 0.9292, and 0.9776 for diagnosing pterygium requiring surgery.

The proposed method has high clinical reference value for recognizing these

four types of ocular surface images.

KEYWORDS

subconjunctival hemorrhage, pterygium, visual recognition, deep learning, computer
aided diagnosis

1 Introduction

Pterygium is a common ocular surface disease caused by overgrowth of fibro vascularity
in the subconjunctival tissue, resulting in invasion of the inner eyelid and outer cornea
(1). It is most prevalent in areas with high ultraviolet light; in some areas, 9.5% of the
pterygium patient population is associated with prolonged exposure to high ultraviolet
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light (2). Clinically, pterygium can be categorized into active
and fixed stages. In the fixed stage, the pterygium invades
the cornea to a lesser extent, with thin fibro vascular tissue
and a smooth, transparent cornea. In the active stage, the
pterygium severely invades the cornea, resulting in a cloudy
cornea, which if not properly controlled can obscure the pupil
and cause irritation and astigmatism, with a more serious effect
on vision and limited eye movement accompanied by pain
(3). In the medical field, the width of the pterygium (WP)
invading the cornea is commonly used as an indicator of
whether to operate; the patient is in the stage to be observed
when the width of invasion is less than 3 mm, and in the
stage to be operated when the width of invasion is greater
than 3 mm (4). Subconjunctival hemorrhage is also a common
ocular surface disease characterized by painless, acute, obvious
red, swollen hemorrhages in the absence of secretions under
the conjunctiva, which may evolve from punctate to massive
hemorrhages, rendering the underlying sclera invisible (5, 6).
Subconjunctival hemorrhage can be defined histologically as
bleeding between the conjunctiva and the outer layer of the
sclera, and the blood component will be found in the lamina
propria of the conjunctiva when the blood vessels under the
conjunctiva rupture (7). In contrast to pterygium, subconjunctival
hemorrhage is not vision-threatening and is predominantly found
in hypertensive groups over 50 years of age (8). Pterygium and
subconjunctival hemorrhage often cause uneasiness and anxiety
in patients; however, most cases do not require much medical
management in the early stages.

Traditional screening methods for ocular surface diseases rely
primarily on capturing anterior segment images using a slit lamp
for patient sampling, followed by clinical diagnosis by experienced
ophthalmologists for early screening and analysis. However, a
lack of ophthalmologists in remote areas with poor healthcare
resources means that screening for ocular surface diseases still faces
great difficulties.

Recently, the increasing application of artificial intelligence
in ophthalmology has led to the rapid development of research
on intelligent ophthalmic diagnosis. Many researchers have used
deep learning algorithms to detect common fundus diseases
on fundus images (9–13). In addition, researchers have used
deep learning for the diagnosis of ocular surface diseases. In
2018, Zhang et al. implemented an interpretable and scalable
deep learning automated diagnostic architecture for four
ophthalmic diseases, including subconjunctival hemorrhage
and pterygium (14). In 2020, a team from the U.S. improved
VggNet16 and applied transfer learning to apply it to screening
for pterygium (15). In 2022, Wan et al. improved the U-Net++
segmentation algorithm and proposed a system to diagnose
and measure the progression of pterygium pathology (16).
To provide high-quality diagnostic services for ocular surface
diseases, we designed an automatic diagnostic model for
ocular surface diseases using deep learning techniques. The
proposed model simultaneously accomplishes the detection
of multiple diseases from ocular surface images and achieves
fast recognition with high accuracy. This capability is crucial
for early screening of ocular surface diseases in remote
areas where access to professional medical personnel and
equipment is limited.

2 Dataset description

The dataset used in this study was provided by the Affiliated
Eye Hospital of Nanjing Medical University, and contains color
images of the ocular surface with good image quality captured
by a professional ophthalmologist. To prevent the leakage
of patients’ personal information, the images do not contain
patients’ personal information, including but not limited to
age, sex, and name.

In this study, 2855 ocular surface images were collected
from patients of different age groups and sexes, including
1312 normal ocular surfaces, 251 ocular surface hemorrhages,
909 pterygiums to be observed, and 383 pterygiums requiring
surgery. Examples of the four types of ocular surface images
are shown in Figure 1. The camera used was a Canon
DSLR, model Canon EOS 600D, with diffuse illumination
from a slit lamp and an image resolution of 5184 × 3456.
The quality of the images was verified by a professional
ophthalmologist. We followed the guidelines proposed by Yang
et al. (17).

3 Materials and methods

Currently, image classification algorithms based on deep
learning are primarily composed of convolutional neural networks
or visual transformer modules. Convolutional neural networks
were first proposed by Lecun et al. (18), and several representative
modeling algorithms have subsequently emerged. Among them,
the residual network architecture proposed by He et al. (19)
is an important milestone in the field of computer vision
that solves the problem of network training difficulty owing
to gradient vanishing and gradient explosion in convolutional
neural networks. The vision transformer (20), proposed by
researchers at Google Brain, is an image classification algorithm
based on the transformer model that allows images to be
viewed as sequences and uses a self-attention mechanism
to extract features. Traditional convolutional neural networks
perform excellently in the field of image processing; however,
the convolutional kernel limits its receptive field and may
ignore global information in the image. The transformer can
consider all the pixels in the image simultaneously, thus capturing
global information more reliably. We adopted the conformer
model as the main body, which combines the convolutional
neural network and transformer models by parallel fusion to
fuse local and global features effectively (21). In addition,
we propose a structural feature extraction block composed
of a patch merging layer and a FReLU layer (PFM block),
which improves the conformer to further differentiate between
pterygium to be observed and pterygium to be operated.
We propose this dual-branch network reinforced by PFM
block (DBPF-Net).

3.1 Network structure

In computer vision, local and global features are an important
pair of concepts that have been extensively studied in the
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FIGURE 1

Examples of ocular surface samples. (A) Normal ocular surface; (B) subconjunctival hemorrhages; (C) pterygium to be observed; and (D) pterygium
requiring surgery.

long history of visual feature description. Local features
characterize local regions of images and are represented by
compact vectors in local image domains (22); global features
include contour representations, shape descriptors, and object
representations at long distances (23). Local features provide
information about the details in the image, whereas global
features provide information about the image as a whole.
Using both local and global features helps improve the
model performance. In deep learning, a convolutional neural
network collects local features in a hierarchical manner through
convolutional operations and retains local cues as feature maps,
and a vision transformer aggregates global representations in
compressed plots by cascading self-attention modules. The
conformer efficiently fuses local and global features through
concatenation and bridging.

The overall architecture of the conformer is shown as
the backbone in Figure 2A, which is mainly composed of
ConvTrans blocks. The stem block, consisting of a 7 × 7
convolutional layer with stride 2 followed by a 3 × 3 max
pooling layer with stride 2, is used to extract the initial local
features, which are then fed into the two branches. The internal
structure of the ConvTrans block is shown in Figure 2B. This
consists of the convolutional neural network (CNN) branch
on the left and the transformer branch on the right, with
the feature interactions between them accomplished by the
upsampling and downsampling branches. The local features
extracted from the CNN branch are transformed into the form
of patch embeddings for the transformer branch through the
downsampling branch; the global features extracted from the
transformer branch are transformed into the form of feature
maps for the CNN branch through the upsampling branch.
The downsampling operation of the downsampling branch is
performed through the max pooling layer, whereas the upsampling
operation of the upsampling branch is performed through bilinear
interpolation. In every ConvTrans block except for the first one,
there are upsampling and downsampling branches for feature
exchange.

The core of the transformer branch is multi-head self-attention
(24), as shown in Figure 2C. Multi-head self-attention is a
technique that introduces multiple heads into the self-attention
mechanism, which is used to process sequential data and assign
a weight to each element in the sequence to better capture
the relationships between them. In the traditional self-attention
mechanism, only one head is used to compute the attention
weights. In contrast, the multi-head self-attention mechanism
introduces multiple heads, each of which has its own weight

calculation system to learn different semantic information, thus
improving the expressive power of the model.

The input sequence X is first subjected to three different
linear transformations to obtain the representations of Q (query),
K (key), and V (value). Subsequently, Q, K, and V are divided
into multiple heads, denoted Qi, Ki, Vi. Then, for each head,
the attention weights are computed separately by computing
the dot product of Qi and Ki and then performing softmax
normalization. Next, a weighted summation is performed on Vi
using the attention weights to obtain the attention output for
each head, which is concatenated and linearly transformed to
obtain the final multi-head self-attention output. The calculation
procedure is shown in Eqs 1–4, where WQ ∈ Rdmodel×dmodel , WK ∈

Rdmodel×dmodel , WV ∈ Rdmodel×dmodel , WQ
i ∈ Rdmodel×dk , WK

i ∈

Rdmodel×dk , WV
i ∈ Rdmodel×dv , andW0

∈ Rhdv×dmodel

Q = XWQ;K = XWK;V = X (1)

MultiHead (Q,K,V) = Concat
(
head1, ..., headh

)
Wo (2)

headi = Attention (QWQ
i ,KWK

i ,VWV
i ) (3)

Attention (Qi,Ki,Vi) = softmax(
QiKT

i√
dk

) Vi (4)

The PFM block comprises two novel layer structures: the
patch merging (25) and flexible rectified linear unit (FReLU) non-
linear activation layers (26). The operating principles for these
are shown in Figures 2D, E, respectively. Patch merging acts
as downsampling for resolution reduction, which is a similar
operation to pooling; however, unlike pooling, patch merging
does not lose feature information. FReLU is a context-conditional
activation function that relies on the local information of the center
pixel to obtain pixel-level constructive capabilities. It operates on
a localization of the feature map through a parameter-learning
convolution kernel, compares it with the center pixel point, and
takes the maximum value. This provides each pixel with an
option to view the contextual information, which enables spatial
structure extraction of the feature map. Formally, the joint action
of multiple FReLUs can provide a wider selection of information
for each pixel, which helps focus on the structural features
of the pterygium and differentiate effectively between the two
subclasses of pterygium. The structure of the PFM block is shown
in Figure 2F, where the downsampling operation is performed
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FIGURE 2

Model structure. (A) DBPF-net; (B) ConvTrans block; (C) multi-head self-attention; (D) schematic of patch merging; (E) schematic of the FReLU
activation function, which can be expressed as Y = MAX(X, T(x)); and (F) PFM block.

by patch merging, followed by a 1 × 1 convolutional layer to
change the number of channels. Finally, non-linear activation
is performed by the FReLU activation function, which is in
line with the design concept of traditional convolutional neural
networks.

We designed the PFM block to further differentiate between
the similar cases of pterygium to be observed and pterygium
requiring surgery. The relationship between the spatial structure
of the pterygium and the cornea is particularly important in the
medical field, where the depth of pterygium invasion into the
cornea is usually used as a discriminator. Relying on the basic
lossless downsampling of patch merging and the spatial structure
feature extraction of the FReLU activation function, the bottom-
layer feature map output from the first 3× 3 convolutional layer in
the ConvTrans block is passed to the top-layer feature map through
the two processes of the PFM block, which causes the network
to focus on extracting the spatial structure features. The overall
architecture of DBPF-Net is shown in Figure 2A.

3.2 Data division and pre-processing

The original dataset used in this study consisted of 2855
ocular surface images. Considering the reliability of the model’s
performance on the validation set and its generalization on the
test set, we divided the dataset into training, validation, and test

sets in a ratio of 7:1:2. In the original dataset, there is generally
only one image for an eye, and images from the same eye only
appear inside one dataset (i.e., training set, validation set, test
set). The number of samples for each category in each subset is
shown in Table 1. Owing to the different difficulties in obtaining
samples for each image category, the number of samples for the four
categories is not balanced, which may lead to the model focusing
excessively on categories with a large number of training samples
and lack of attention to categories with a small number of samples.
Therefore, we used enhancement methods to reduce the impact of
data imbalance, including image bilinear interpolation stretching,
random horizontal flipping, random small-angle rotation, central
region cropping, and normalization. The purpose of these steps was
to minimize the influence of the upper and lower eyelids during
training while preserving the conjunctiva. These augmentation
techniques do not eliminate the pathological regions present in
the original images, such as hemorrhages on the conjunctiva and
pterygium invading the cornea.

3.3 Model training

We used the Adam optimization algorithm (27) during model
training, with a weight decay of 0.0005. The training batch size
was 4, the total number of training iterations was 90, and the
initial value of the learning rate was 0.0001. Two cross-entropy loss
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TABLE 1 Data division.

Category Train Validation Test Total

C0 919 131 262 1,312

C1 176 25 50 251

C2 637 91 181 909

C3 269 38 76 383

Total 2001 285 569 2,855

C0, C1, C2, and C3, respectively, represent normal ocular surface, subconjunctival
hemorrhages, pterygium to be observed, and pterygium requiring surgery.

functions were used to supervise the classifiers of the two branches
separately, and the importance of the loss function was identical
for both. The learning rate was adjusted dynamically using the
cosine annealing strategy (28), which helps prevent the model from
falling into local optimal solutions during the training process, as
well as to avoid the impact of sudden learning rate changes on the
training process. In addition, we selected VGG16 (29), ResNet50
(19), EfficientNetB7 (30), and conformer models to compare the
classification results, all of which used ImageNet pretrained model
parameters as initial conditions.

The central processor used in our experiments was a 3.6 GHz
Intel i7-7700, and the graphics processor was an NVIDIA RTX
2080Ti with 11 GB of RAM. The operating system was Windows 10,
the programming language was Python 3.6, and the deep learning
framework was Pytorch 1.7.

3.4 Model evaluation indicators

This study is a multi-categorization task, and we evaluate
the effectiveness of the model from two perspectives. The first
approach involves evaluating the overall performance of multi-
class classification using the kappa coefficient, which demonstrates
consistent agreement. The calculation of the kappa coefficient is
based on the confusion matrix, and its value typically ranges from 0
to 1. A higher kappa coefficient indicates a higher level of agreement
between the model’s evaluation and the diagnostic assessment by
experts. The formula for the kappa coefficient is as follows:

k =
po − pe
1− pe

(5)

pe = =
a1 × b1 + a2 × b2 + ...+ ac × bc

n× n
(6)

where po is the sum of all correctly classified samples divided by
the total number of samples, ai is the number of true samples in
category i, and bi is the number of predicted samples in category i.

Another approach is to convert a multi-classified problem into
multiple independent binary classification problems. For example,
to identify the normal ocular surface, the normal ocular surface
is labeled as a positive sample, whereas the three categories
of subconjunctival hemorrhage, pterygium to be observed, and
pterygium requiring surgery are labeled as negative samples. To
calculate the evaluation indicators for the binary classification
problem, the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) samples were first
obtained from the confusion matrix, and then the accuracy (ACC),

sensitivity (SE), specificity (SP), and F1-score (F1) were calculated.
Accuracy indicates the proportion of correctly diagnosed samples
to the total number of samples; sensitivity indicates the proportion
of samples predicted to be positive and actually positive to the
proportion of all actual positive samples; specificity indicates
the proportion of samples predicted to be negative and actually
negative to the proportion of all actual negative samples; and
F1-score is defined as the harmonic average of accuracy and
sensitivity, which is meaningful for datasets with unbalanced
samples.

ACC =
TP + TN

TP + FN + TN + FP
(7)

SE =
TP

TP + FN
(8)

SP =
TN

TN + FP
(9)

F1 =
2TP

2TP + FP + FN
(10)

Receiver operating characteristics (ROC) curves are commonly
used to analyze the classification performance of different models,
owing to their visualization features. The area under the ROC
curve (AUC) was used to evaluate the classification accuracy.
Generally speaking, an AUC value of 0.50–0.70 is regarded
as a low diagnostic value, 0.70–0.85 is regarded as a general
diagnostic value, and 0.85 and above is regarded as a good
diagnostic value.

4 Results

In this study, 569 ocular surface images were randomly selected
as a test set containing 262 images of a normal ocular surface, 50
images of subconjunctival hemorrhage, 181 images of pterygium to
be observed, and 76 images of pterygium requiring surgery. The
model with the best accuracy on the validation set was considered
the optimal model for evaluating the performance of the models
on the test set.

The best diagnostic results of each model on the test set are
presented in Figure 3, in the form of confusion matrices.

The purpose of this study was to correctly diagnose four
categories of ocular surface images: normal ocular surface,
subconjunctival hemorrhage, pterygium to be observed and
pterygium requiring surgery. To demonstrate the performance
of the models clearly, we quantified their evaluation indicators,
with results as listed in Table 2. These evaluation indicators are
calculated according to Eqs 5–10.

In summary, the DBPF-Net model achieved high sensitivity and
specificity values, indicating that it performs well in differentiating
between positive and negative samples, which is valuable for clinical
diagnoses that require accurate identification and differentiation
of different disease categories. In addition, its high F1-score and
kappa coefficient indicate that the model has excellent classification
performance when the data are unbalanced, and high consistency
with the evaluation of the expert diagnostic group. The ROC curves
for each model with the best accuracy are shown in Figure 4.
Moreover, we used Grad-CAM (31) to analyze the region of interest
of the models for the ocular surface images, as shown in Figure 5.
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FIGURE 3

Confusion matrix for each model. (A) VGG16; (B) ResNet50; (C) EfficientNetB7; (D) Conformer; and (E) DBPF-Net.

5 Discussion

Ocular surface diseases have received worldwide attention as
a common public health problem. The variety and complexity
of these diseases are important factors that should not be
ignored in their diagnosis. Therefore, diagnosis and treatment
require doctors with rich experience and professional knowledge

to be able to determine the condition accurately and take
appropriate treatment measures. Currently, the lack of
specialized ophthalmologists in areas with a high prevalence
of ocular surface diseases leaves many patients without
timely diagnosis and treatment. Therefore, it is important to
develop an automatic diagnostic model for initial screening
and diagnosis.
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TABLE 2 Evaluation indicators for each model in each category.

Models Evaluation indicators C0 C1 C2 C3

VGG16 Sensitivity 0.9987± 0.0017 0.96± 0.0163 0.9152± 0.0213 0.8947

Specificity 0.9945± 0.003 1.0 0.9759± 0.0012 0.9702± 0.0084

F1-score 0.9962± 0.0015 0.9795± 0.0084 0.9306± 0.0103 0.8577± 0.0229

AUC 1.0 1.0 0.9944± 0.0008 0.991± 0.0018

Kappa 0.9319± 0.0105

Accuracy 0.9548± 0.007

ResNet50 Sensitivity 0.9949± 0.0017 1.0 0.9281± 0.0078 0.8859± 0.0223

Specificity 0.9967 1.0 0.9742± 0.0042 0.9756± 0.0028

F1-score 0.9955± 0.0008 1.0 0.9359± 0.0021 0.8668± 0.0090

AUC 1.0 1.0 0.9960± 0.0001 0.9931± 0.0012

Kappa 0.9389± 0.0022

Accuracy 0.9595± 0.0014

EfficientNetB7 Sensitivity 0.9962 1.0 0.9355± 0.0051 0.9517± 0.0123

Specificity 1.0 1.0 0.9879± 0.0024 0.9763± 0.0019

F1-score 0.9981 1.0 0.9539± 0.0026 0.9041± 0.006

AUC 0.9999 1.0 0.9909± 0.0006 0.9860± 0.0009

Kappa 0.9568± 0.0024

Accuracy 0.9712± 0.0016

Conformer Sensitivity 0.9962± 0.0031 0.9933± 0.0094 0.9668± 0.0078 0.8903± 0.0223

Specificity 0.9967± 0.0026 0.9987± 0.0008 0.9776± 0.0044 0.9892± 0.0038

F1-score 0.9962± 0.0015 0.9901 0.9597± 0.0033 0.9082± 0.0031

AUC 0.9999 1.0 0.9958± 0.0002 0.9934± 0.0006

Kappa 0.9583± 0.0033

Accuracy 0.9723± 0.0021

DBPF-Net Sensitivity 0.9962± 0.0031 1.0 0.9723± 0.009 0.9210± 0.0186

Specificity 0.9989± 0.001 0.9987± .0008 0.9836± 0.0048 0.9905± 0.0034

F1-score 0.9974± 0.0017 0.9934± 0.0046 0.9688± 0.0025 0.9292± 0.0079

AUC 0.9989± 0.0006 1.0 0.9869± 0.0109 0.9776± 0.0155

Kappa 0.9681± 0.0022

Accuracy 0.9789± 0.0014

C0, C1, C2, and C3, respectively, represent normal ocular surface, subconjunctival hemorrhages, pterygium to be observed, and pterygium requiring surgery. The variable was expressed as the
mean± standard deviation.

The application of artificial intelligence to the field of medical
image processing has been based on traditional convolutional
neural networks and has achieved remarkable research results in
recent years. The emergence of vision transformers has confirmed
the advantages of global features in image recognition, and a variety
of deformation models have been derived (25, 32, 33). The DBPF-
Net model proposed in this study selects the conformer as the
backbone of the four-way classification model for ocular surface
diseases. Compared with other models, the conformer’s ability to
extract and fuse global and local features gives it better feature
extraction capability. In addition, we propose a PFM block for
enhancing the conformer’s extraction of spatial structural features
to differentiate further between the two pterygium categories.

Several research groups have investigated the classification and
diagnosis of ocular surface diseases. Elsawy et al. (34) employed an

improved VGG19 model to classify corneal diseases automatically,
achieving an overall F1-score in excess of 86%. Zhang et al.
(14) implemented an automated diagnostic architecture with
deep learning interpretability and scalability, achieving over 95%
accuracy for pterygium. Xu et al. (35) Proposed a computer-aided
pterygium diagnosis system based on EfficientNetB6 with transfer
learning, achieving a sensitivity of 90.06% for pterygium to be
observed and 92.73% for pterygium requiring surgery. Huang et al.
(36) developed a deep learning system for pterygium grading,
using a classification algorithm to categorize pterygiums from
non-pterygiums, and then a segmentation algorithm to segment
pterygiums for grading, achieving sensitivities ranging from 80 to
91.67%. These studies exclusively employed CNN models without
specific disease-targeted feature modules. Our study focused on the
practical situation of whether or not patients with pterygium need

Frontiers in Medicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2023.1309097
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1309097 December 22, 2023 Time: 15:58 # 8

Wan et al. 10.3389/fmed.2023.1309097

FIGURE 4

Receiver operating characteristics curves for each model. (A) Normal ocular surface; (B) subconjunctival hemorrhage; (C) pterygium to be observed;
and (D) pterygium requiring surgery.

FIGURE 5

Heat maps of the models for subconjunctival hemorrhage, pterygium to be observed, and pterygium requiring surgery.

surgery. The proposed DBPF-Net achieved an accuracy of 97.89%
for the four categories, demonstrating promising results. In our
experiments, we compared it with three other representative CNN
models and the original conformer model.

As shown in Figure 3 and Table 2, the overall evaluation
indicators of DBPF-Net were generally higher than those of the
other models. Among the test results for all models, evaluation
indicators for the normal ocular surface and subconjunctival
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hemorrhage categories reached a high level, mainly because
of the sufficient number of samples in the normal ocular
surface category and the significant characteristics of the
subconjunctival hemorrhage category. The test results for the
categories of pterygium to be observed and pterygium requiring
surgery demonstrate that the conformer model exhibits superior
discriminative ability compared to VGG16 and ResNet50, While in
comparison with EfficientNetB7, each of the two was dominant.
Compared to the conformer model, DBPF-Net showed an
improvement of 0.55% in sensitivity, 0.6% in specificity, and 0.91%
in F1-score for the category of pterygium to be observed. For the
category of pterygium requiring surgery, DBPF-Net achieved an
increase of 3.07% in sensitivity and 2.1% in F1-score. Overall,
DBPF-Net showed further improvement in pterygium diagnosis
compared with Conformer. Although the proposed method has
a slightly lower AUC than Conformer, the proposed method
outperforms in terms of the F1 Score. The heat map shown in
Figure 5 demonstrates that DBPF-Net focuses on the area of
hemorrhage in the category of subconjunctival hemorrhage, the
area of pterygium tipping into the cornea in the category of
pterygium to be observed, and the area of pterygium approaching
the center of the cornea in the category of pterygium requiring
surgery. The heat maps generated by VGG16, ResNet50, and
EfficientNetB7 indicate that their attention on the lesion area
is not adequately concentrated, as well as on the pupil area. In
comparison, Conformer exhibits a similar focus area to DBPF-Net,
the latter is more focused.

Our study has some limitations. First, the dataset used in this
study has a limited number of samples and an uneven number
of samples per category, which leads to poorer generalization and
precision for categories with fewer samples. Second, the hardware
configuration of the experimental platform in this study was
ordinary, and the model performance was limited by the amount
of GPU RAM. In the future we will continue to collect datasets,
improve the model to increase its accuracy, and consider a method
of semantic segmentation of images to assist in classification.

6 Conclusion

In this paper, we propose DBPF-Net, a model that achieves
high classification performance on four categories of ocular surface
images: normal ocular surface, subconjunctival hemorrhage,
pterygium to be observed, and pterygium requiring surgery. This
model is hopefully to achieve initial screening for ocular surface
diseases in remote areas where access to professional medical
personnel and equipment is limited. In addition, we hope to help
reduce the workload of medical personnel in primary care facilities.
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