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Background: This study aimed to develop deep learning models using macular 
optical coherence tomography (OCT) images to estimate axial lengths (ALs) in 
eyes without maculopathy.

Methods: A total of 2,664 macular OCT images from 444 patients’ eyes without 
maculopathy, who visited Beijing Hospital between March 2019 and October 
2021, were included. The dataset was divided into training, validation, and 
testing sets with a ratio of 6:2:2. Three pre-trained models (ResNet 18, ResNet 
50, and ViT) were developed for binary classification (AL  ≥  26  mm) and regression 
task. Ten-fold cross-validation was performed, and Grad-CAM analysis was 
employed to visualize AL-related macular features. Additionally, retinal thickness 
measurements were used to predict AL by linear and logistic regression models.

Results: ResNet 50 achieved an accuracy of 0.872 (95% Confidence Interval [CI], 
0.840–0.899), with high sensitivity of 0.804 (95% CI, 0.728–0.867) and specificity 
of 0.895 (95% CI, 0.861–0.923). The mean absolute error for AL prediction was 
0.83  mm (95% CI, 0.72–0.95  mm). The best AUC, and accuracy of AL estimation 
using macular OCT images (0.929, 87.2%) was superior to using retinal thickness 
measurements alone (0.747, 77.8%). AL-related macular features were on the 
fovea and adjacent regions.

Conclusion: OCT images can be  effectively utilized for estimating AL with 
good performance via deep learning. The AL-related macular features exhibit a 
localized pattern in the macula, rather than continuous alterations throughout 
the entire region. These findings can lay the foundation for future research in the 
pathogenesis of AL-related maculopathy.
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1 Introduction

Axial length (AL) is a widely discussed parameter, significant not only for defining the eye’s 
refractive status but also due to its strong association with retinal and macular complications (1, 
2). The excessive elongation of AL, often exceeding 26.0 mm, is the dominant cause of an 
increased risk of posterior segment complications, including vitreous liquefaction, choroidal 
atrophy, retinoschisis, macular hole, and macular choroidal neovascularization (3). These 
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complications are vision-threatening and often result in irreversible 
and permanent vision damage if left untreated (4). In the past, it has 
not been clear whether there are pre-existing differences in macular 
structure among eyes with prolonged AL prior to the development of 
maculopathies, except a few studies have reported that AL was 
positively associated with central retinal thickness, but negatively 
associated with peripheral retinal thickness farther from the 
macula (5–8).

Artificial intelligence, specifically deep learning, has exhibited 
significant potential in medical imaging diagnosis and interpretation 
(9, 10). Deep learning allows systems to acquire predictive 
characteristics directly from an extensive collection of labeled images, 
eliminating the necessity for explicit rules or manually designed 
features (11). In recent research, deep learning models have been 
developed that demonstrate precise estimation of AL or refractive 
error using color fundus photographs (12–14). Additionally, Yoo et al. 
(15) have introduced a deep learning model that predicts uncorrected 
refractive error by utilizing posterior segment optical coherence 
tomography images, suggesting a potential association between AL 
and the sectional structure of the retina. Considering that a long AL 
is a significant risk factor for complications that can potentially impair 
vision, investigating the alterations in macular structure resulting 
from prolonged AL prior to the onset of maculopathies holds 
immense significance in guiding the clinical management and 
prognosis of patients with long AL eyes (4). However, the application 
of deep learning to estimate AL based on macular OCT images 
remains unexplored.

Gradient-weighted class activation mapping (Grad-CAM), a 
commonly employed approach for visualizing models, utilizes the 
gradient details that flows into the final convolutional layer of a 
convolutional neural network (CNN) to construct a heat map that 
unveils the pivotal regions that are most relevant for the decision-
making process (16). This study aimed to assess the capability of 
macular OCT images to estimate ALs of eyes without maculopathy 
using deep learning algorithms and visualize the cross-sectional 
alterations in macular structure resulting from the prolonged AL 
using Grad-CAM.

2 Materials and methods

2.1 Study design and overview

The data of this study were retrospectively collected from patients 
who visited the Department of Ophthalmology at Beijing Hospital 
between January 2019 and October 2021 and were scheduled for 
cataract surgery. Patients included in the study were required to 
be  aged 18 years or older and have undergone macular OCT 
examination and AL measurement. Eyes with evident macular 
abnormalities, such as macular edema, epiretinal membrane, macular 
hole, macular retinoschisis, and macular neovascularization, were 
excluded. Furthermore, images of poor quality were also excluded. 
The study followed the principles of the Declaration of Helsinki and 
received approval from the institutional review board at Beijing 
Hospital. Given the retrospective nature of the study, the requirement 
for written informed consent was waived.

In this study, OCT scans were acquired using the Spectralis OCT 
device (Heidelberg Engineering, Germany). Images scanned with a 

stellate scan model centered on the fovea were selected for model 
development. This scanning model comprises six scans that traverse 
the fovea, each spanning a length of 6 mm. Moreover, retinal thickness 
in various subfields was recorded using OCT. The macular region was 
divided into 9 subfields by employing three concentric circles centered 
on the fovea, with diameters of 1 mm, 3 mm, and 6 mm. The average 
thickness of the innermost ring defined the central retinal thickness 
(CRT). Furthermore, the inner (1–3 mm) and outer (3–6 mm) rings 
were subdivided into superior, nasal, inferior, and temporal subfields, 
designated as the parafovea and perifovea, respectively. AL 
measurements were obtained from the IOL Master 700 (Carl Zeiss, 
Germany).

2.2 Deep learning model and its training

Figure 1 presents the data management and the flowchart for deep 
learning models in this study. Two classic CNN models, ResNet18 and 
ResNet50, along with a Transformer-based model called Vision 
Transformer (ViT), were introduced to establish the relationship. The 
detailed description of the models used in this study was presented in 
Supplementary material 1. In the ViT architecture, the number of 
encoder blocks was reduced to 6 to prevent overfitting. The input size 
for the vision transformer is fixed at 224 * 224 to ensure a fair 
comparison across all models. The SGD (Stochastic Gradient Descent) 
method serves as the optimizer for all three models. AL measurements 
obtained by IOL Master 700 (Carl Zeiss, Germany) served as the 
ground truth for AL prediction. The prediction task is divided into a 
regression task and a binary classification task by adjusting the 
dimension of the output result for comprehensive evaluation. To 
improve accuracy and efficiency, we implement a transfer learning 
strategy using models pretrained on ImageNet. The salient areas of the 
feature maps in the latter layers of these models are visualized using 
the Grad-CAM interpretability method, which illustrates the 
contribution of each pixel to the final decision.

During training, we employ multiple data augmentation methods to 
enhance the model’s generalization ability. The random resize crop 
strategy is used to capture different parts of the image with varying scales. 
Furthermore, horizontal flipping, color jittering, gamma transformation, 
and random Gaussian noise are applied to augment the training samples 
for OCT data. Eventually, we implement the normalization to scale the 
training and testing input from 0 to 1. To expand the dataset, each case 
is considered independent and equipped with 6 OCT B-scans. This 
allows us to formulate a dataset with 2,664 images. The data split ratio for 
training, validation, and testing was 6:2:2, and the split was randomized 
based on the AL. The training set and validation set were combined, and 
a 10-fold cross-validation was conducted to demonstrate the reliability 
of the methods. In the 10-fold cross-validation, the training instances are 
divided into 10 equally-sized partitions with similar class distributions. 
Subsequently, each partition is sequentially employed as the test dataset 
for the classifier generated using the remaining nine partitions.

2.3 Statistical analysis

The classification task utilized the cross-entropy loss function, and 
various metrics such as sensitivity, specificity, area under the receiver 
operating characteristic curve (AUC), and accuracy were calculated 
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to evaluate performance. In the regression task, the MAELoss function 
was used as the loss function, and the mean absolute error (MAE) was 
used as the evaluation metric. The agreement between the actual and 
predicted AL was assessed using the Bland–Altman plot. The Y-axis 
represents the difference between the actual and predicted ALs, and 
the X-axis represents the average of the actual and predicted ALs. The 
mean difference (MD) and 95% limits of agreement (MD ± 1.96 
standard deviations) were calculated to assess the agreement.

3 Results

3.1 AI models performance

Finally, a total of 2,664 images from 444 eyes (306 patients) were 
included in the model development. The mean age was 
69.02 ± 10.37 years. Among 444 eyes, 113 eyes (25.5%) were high 
myopic without maculopathy (AL ≥ 26.0 mm). Finally, 266 eyes (1,596 
images) were used for training (60%), 89 eyes (534 images) for 
validation (20%), and 89 eyes (534 images) for testing (20%). The 
mean age for the training, validation and testing set were 69.36 ± 10.52, 
67.89 ± 10.65, and 69.21 ± 9.63 years, respectively. Demographic 
characteristics of each dataset are summarized in Table  1. Three 
models (ResNet 50, ResNet 18, and ViT) were developed for the 
binary classification task of distinguishing AL ≥ 26.0 mm from others. 
The 10-fold cross-validation results showed the robust performance 

and high discriminative power of all three models, as illustrated in 
Table 2. On the test dataset, ResNet 18, ResNet 50, and ViT achieved 
AUC (95% Confidence Interval [CI]) values of 0.918 (0.886–0.951), 
0.929 (0.899–0.960), and 0.924 (0.892–0.955), respectively (as shown 
in Figure 2A). ResNet 50 and ResNet 18 had the same accuracy of 
0.872 (95%CI, 0.840–0.899), which was the highest among the models. 
ResNet 50 also exhibited the highest performance, with a sensitivity 
of 0.804 (95%CI, 0.728–0.867) and specificity of 0.895 (95%CI, 0.861–
0.923). Therefore, based on the classification results, particularly the 
AUC and accuracy, ResNet 50 was selected for further analyses.

The ResNet 50 model was employed for the regression task. The 
MAE for predicting AL on the test dataset was 0.83 mm (95%CI, 

FIGURE 1

Datasets and the architecture of the deep learning model. (A) Data management for model development. (B) The flowchart for deep learning.

TABLE 1 Summary of the demographical characteristics of training, 
validation, and test data sets.

Training set Validation set Test set

No. of eyes 266 89 89

No. of images 1,596 534 534

Age, year 69.36 ± 10.52 67.89 ± 10.65 69.21 ± 9.63

Sex, male, n (%) 121 (45.5%) 43 (48.3%) 41 (46.1%)

AL, mm 24.67 ± 2.19 24.73 ± 2.19 24.73 ± 2.33

AL < 26 mm 199 66 66

AL ≥ 26 mm 67 23 23

AL, axial length.
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0.72–0.95 mm). The predicted AL and actual AL had a linear 
relationship with an R2 of 0.763 in the ResNet 50 model (Figure 2B). 
Bland–Altman plots revealed a bias of 0.09 mm, with 95% limits of 
agreement ranging from −2.2 to 2.3 mm (Figure 2C). Prediction bias 
of 64.8% of the test dataset was less than 1 mm error (Figure 2D); while 
a calculation of relative bias revealed that 73.1% of the testing 
difference was within the range of 5% error and 96.5% within 
10% error.

3.2 Grad-CAM and model visualization

Grad-CAM was used to identify the regions within the original 
OCT images that the models relied on for their predictions. Figure 3 
shows representative OCT images with their corresponding 

Grad-CAM from the test set, which were correctly predicted. The heat 
maps revealed that AL-related macular features exhibit a localized 
pattern in the macula, rather than continuous alterations throughout 
the entire region. Both the region of retina and choroid were 
highlighted in the heat maps. For eyes with ALs < 26.0 mm, the CNN 
models predominantly relied on the curvature and shape of the fovea, 
whereas for eyes with ALs ≥ 26.0 mm, the models relied on the regions 
flanking the fovea, where the most obvious retinal curvature changes.

3.3 Predicting AL based on retinal 
thicknesses

The macular thickness of the eyes from the test set was recorded. 
ROC analyses and linear regression analyses were performed to 

TABLE 2 Performance of deep learning models for binary task (axial length  ≥  26.0  mm).

Mean results of 10-fold cross validation Test set (95% CI)

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

ResNet 18 0.908 ± 0.048 0.898 ± 0.042 0.807 ± 0.107 0.997 ± 0.008 0.918 (0.886, 0.951) 0.872 (0.840, 0.899) 0.783 (0.704, 0.848) 0.902 (0.869, 0.929)

ResNet 50 0.932 ± 0.048 0.906 ± 0.033 0.920 ± 0.082 1.000 0.929 (0.899, 0.960) 0.872 (0.840, 0.899) 0.804 (0.728, 0.867) 0.895 (0.861, 0.923)

ViT 0.885 ± 0.075 0.884 ± 0.051 0.766 ± 0.151 1.000 0.924 (0.892, 0.955) 0.867 (0.836, 0.895) 0.693 (0.609, 0.769) 0.927 (0.897, 0.951)

FIGURE 2

Performance evaluation of deep learning models. (A) Classification performance of deep learning models to identify eyes with axial lengths ≥26.0  mm 
in the test dataset. (B) Correlations between actual and predicted axial length using the ResNet 50 model. (C) Bland–Altman plots for the real and 
predicted axial length using ResNet 50 in test dataset. (D) Prediction bias frequency distribution.

https://doi.org/10.3389/fmed.2023.1308923
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2023.1308923

Frontiers in Medicine 05 frontiersin.org

predict AL based on retinal thickness in different macular regions. The 
largest AUC value, 0.747, was obtained for CRT. The highest accuracy 
in distinguishing long AL eyes was 77.8%, achieved by using retinal 
thickness measurements in the perifoveal (3–6 mm) nasal quadrant 
(Supplementary material 2). However, both the AUC and accuracy 
were lower compared to deep learning models that utilized OCT 
images (p < 0.001). Linear regression analyses showed that the MAE 
values were 1.78 ± 1.25 mm and 1.57 ± 1.29 mm when using CRT and 
retinal thickness measurements from all nine regions to predict AL, 
respectively. These biases were also higher than those observed in deep 
learning models (p < 0.001).

4 Discussion

The present study demonstrated that deep learning models using 
macular OCT images can accurately estimate AL and differentiate eyes 
with long AL. The Grad-CAM analysis revealed that the deep learning 
models primarily relied on the foveal and adjacent regions, as well as 
the subfoveal choroid for AL estimation. This deep learning model 
was designed to estimate the AL based on macular OCT images. This 
study established a significant association between AL and macular 
structure, demonstrating the AL-related changes in the macular 

structure as imaged by OCT. These findings provide a solid foundation 
for research on the pathogenesis of AL-related structural maculopathy.

Previous studies have used fundus photos to estimate AL via 
developing deep learning models. Dong et al. (12) and Jeong et al. (17) 
reported the use of CNN models to estimate AL based on 45 degrees 
fundus photographs, achieving MAE values of 0.56 mm (95% CI, 
0.53–0.61 mm) and 0.90 mm (95% CI, 0.85–0.91 mm), and R2 values 
of 0.59 (95% CI, 0.50–0.65) and 0.67 (95% CI, 0.58–0.87), respectively. 
Oh et al. (14) developed an AL estimation model using ultra-widefield 
funds photos with an MAE of 0.74 mm (95% CI, 0.71–0.78 mm) and 
an R2 value of 0.82 (95% CI, 0.79–0.84). However, this study represents 
the first attempt to estimate AL using macular B-scan OCT images via 
deep learning. B-scan images provide cross-sectional views of the 
retina, offering improved visualization of retinal layers and their 
integrity (18). The theoretical foundation of this study lies in utilizing 
the potential alterations in macular structure associated with AL 
elongation to predict AL. Additionally, we also excluded the eyes with 
any maculopathy to investigate the changes in macular structure 
before the development of myopic maculopathy in eyes with long 
AL. In the current study, the MAE was found to be 0.83 mm (95% CI, 
0.72–0.95 mm) and the R2 was 0.763 in the regression task, while the 
classification model achieved an accuracy of 0.872 (95% CI, 0.840–
0.899) in identifying eyes with AL ≥ 26.0 mm. These findings suggest 

FIGURE 3

Representative OCT images and their heat map images.
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that macular structure changes in eyes with long AL occur 
independently of OCT-detectable myopic maculopathy, which aligns 
with clinical observations of a higher risk of the prevalence and 
progression of myopic maculopathy in eyes with longer AL (19, 20).

The results showed that the accuracy of AL estimation using 
macular OCT images (87.2%) was superior to using retinal thickness 
measurements alone (77.8%) in the same study sample. This can 
be attributed to the detailed structural information available in B-scan 
images (18). The Grad-CAM analysis revealed that for eyes with ALs 
shorter than 26.0 mm, the deep learning models primarily relied on 
the fovea, while for eyes with AL greater than or equal to 26.0 mm, the 
models showed a preference for regions mainly on either side of the 
fovea. These findings are consistent with a deep learning model for AL 
estimation using color fundus photos reported by Dong et al. (12). In 
their study, the heat map analysis demonstrated that eyes with ALs 
shorter than 26.0 mm predominantly utilized signals from the foveal 
region in the fundus photos, while those with AL greater than 26 mm 
primarily relied on signals from the extrafoveal region (12).

Clinical studies have demonstrated that eyes with high myopia, 
characterized by an AL exceeding 26.0 or 26.5 mm, were more likely 
to develop traction maculopathy, such as macular hole and 
maculoschisis (4, 21, 22). Furthermore, Park et al. (23) found that the 
development of myopic traction maculopathy was associated with the 
foveal curvature, which were calculated based on the retinal pigment 
epithelium hyper-reflective line in OCT images including the fovea. 
Based on the visualization results obtained from our OCT-based AL 
estimation model, we speculate that the highlighted regions in the heat 
maps indicate areas where the changes in retinal curvature are most 
pronounced (24). In addition, our results also suggested that structural 
changes in the macula caused by axial elongation exhibit a localized 
pattern, primarily concentrated at the fovea and the areas where the 
retinal curvature changes the most significantly, rather than displaying 
continuous alterations throughout the entire region. Besides retina, 
the choroid from the corresponding regions were also highlighted in 
the heat maps. Previous studies have reported that AL was negatively 
associated with choroidal thickness in both young and elderly people 
(25, 26), indicating the choroidal atrophy with the elongation of 
AL. These findings can explain the involvement of choroid in the heat 
maps when predicting AL in this study. These findings will be helpful 
for further research on the pathogenesis and prevention of AL-related 
structural maculopathy.

Several limitations should be  noted in this study. First, the 
sample size is relative small. To minimize the impact of potential 
sources of bias, we specifically enrolled subjects from a solitary 
ophthalmological clinic and utilized images acquired using the 
identical imaging machine. Consequently, the recruitment of 
additional samples was constrained. Advancements in model 
predictive performance can be expected when more samples are 
gathered and analyzed. Second, due to the limited number of eyes 
with short AL in this study, only two groups (whether AL longer 
than 26.0 mm) were defined in the classification model 
development. Nevertheless, this limitation is unlikely to undermine 
the overall findings, as the focus of this study was on the deep 
learning model’s performance in distinguishing eyes with elongated 
AL. Third, it is important to note that we  excluded eyes with 
OCT-detectable maculopathy as our aim was to identify 
AL-specific macular characteristics prior to the onset of myopic 
maculopathy. Therefore, caution should be  exercised when 

generalizing these findings to eyes with existing maculopathy. 
Lastly, the current model was developed based on the macular 
B-scans centered on the fovea by the stellate 6-scan pattern, which 
scans from 6 different directions. Since OCT B-scans centered on 
the fovea exhibit the similar imaging pattern, it is very likely that 
the deep learning model developed in this study would 
be applicable to macular OCT B-scans scanned by other pattern 
centered on the fovea or OCT scans from different manufacturers. 
However, further research and verification are needed to validate 
the generalization of the model. Additionally, it’s worth noting that 
this model was developed using adult eyes with a mean age of 
69 years. Considering that the macula develops and axial length 
increases in children and teenagers, additional studies are required 
to develop models based on younger age groups.

5 Conclusion

This study developed a deep learning model using macular OCT 
images to estimate AL and identify eyes with long AL, achieving good 
performance. The AL-related macular features exhibit a localized 
pattern, primarily concentrated in the central fovea and adjacent 
regions, suggesting that these specific areas may serve as the initial 
sites for macular alterations caused by AL elongation. These findings 
have significant implications for further research on the pathogenesis 
of AL-related structural maculopathy.
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