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Background: Many screening and diagnostic methods are currently available for 
biliary atresia (BA), but the early and accurate diagnosis of BA remains a challenge 
with existing methods. This study aimed to use deep learning algorithms to 
intelligently analyze the ultrasound image data, build a BA ultrasound intelligent 
diagnostic model based on the convolutional neural network, and realize an 
intelligent diagnosis of BA.

Methods: A total of 4,887 gallbladder ultrasound images of infants with BA, 
non-BA hyperbilirubinemia, and healthy infants were collected. Two mask 
region convolutional neural network (Mask R-CNN) models based on different 
backbone feature extraction networks were constructed. The diagnostic 
performance between the two models was compared through good-quality 
images at the image level and the patient level. The diagnostic performance 
between the two models was compared through poor-quality images. The 
diagnostic performance of BA between the model and four pediatric radiologists 
was compared at the image level and the patient level.

Results: The classification performance of BA in model 2 was slightly higher 
than that in model 1 in the test set, both at the image level and at the patient 
level, with a significant difference of p  =  0.0365 and p  =  0.0459, respectively. The 
classification accuracy of model 2 was slightly higher than that of model 1  in 
poor-quality images (88.3% vs. 86.4%), and the difference was not statistically 
significant (p  =  0.560). The diagnostic performance of model 2 was similar to 
that of the two radiology experts at the image level, and the differences were 
not statistically significant. The diagnostic performance of model 2 in the test 
set was higher than that of the two radiology experts at the patient level (all 
p  <  0.05).

Conclusion: The performance of model 2 based on Mask R-CNN in the diagnosis 
of BA reached or even exceeded the level of pediatric radiology experts.
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1 Introduction

Biliary atresia (BA) is a serious hepatobiliary system disease. It 
is one of the more common causes of persistent obstructive 
hyperbilirubinemia in infancy, accounting for approximately 
25–30% worldwide (1). The clinical manifestations of BA in the 
early stage, consisting of infantile hepatitis, are very similar to those 
of non-BA hyperbilirubinemia children. Therefore, these two 
manifestations are difficult to distinguish, but the treatment is 
completely different. BA eventually requires surgery (2). However, 
most of the children with BA die of liver cirrhosis and liver failure 
within 2 years of age if effective treatment is not promptly provided 
(3). Therefore, an early and accurate diagnosis and differential 
diagnosis of BA in children with hyperbilirubinemia are of 
utmost importance.

Many screening and diagnostic methods are currently available 
for BA, but early and accurate diagnosis remains a challenge with 
existing methods (4). Traditional ultrasonography is the most 
commonly used non-invasive method to examine BA, has high 
diagnostic efficiency (5), and has the advantages of being non-invasive, 
simple, and inexpensive. A number of studies have shown that, in the 
ultrasound diagnosis of BA, the triangular cord sign exhibits high 
specificity but relatively low sensitivity. However, gallbladder 
abnormalities demonstrate high sensitivity and specificity (6, 7). The 
results of a meta-analysis also showed that gallbladder abnormalities 
are the most sensitive sign of an ultrasonographic diagnosis of BA, and 
the specificity is also high (8). However, radiologists often need 
extensive clinical experience to diagnose BA by ultrasound. In some 
areas with underdeveloped medical conditions, many children with 
BA are often missed and misdiagnosed because radiologists’ lack of 
experience in BA diagnosis.

The advantage of image recognition technology by artificial 
intelligence (AI) compared with traditional methods is that the 
computer does not rely on the experience of the operator, captures 
fine-structured lesions pixel by pixel without artificially setting 
features, automatically extracts features, and identifies and marks 
suspicious lesions, thereby overcoming the lack of professional 
knowledge of the operators and improving the diagnostic accuracy 
of rare diseases to a large extent (9). Convolutional neural network 
(CNN) is a type of feed-forward neural network that includes 
convolutional calculations and possesses a deep structure with 
inherent advantages in image recognition and processing (10). 
CNN uses the superposition of a series of convolution layers and 
pooling layers to effectively extract high-level representations of the 
original image from its pixels and train high-precision classifiers 
based on these representations. Its unique weight-sharing property 
and pooling layer greatly reduce the number of parameters that the 
CNN model needs to train, thus improving the efficiency of 
the training.

Therefore, in this study, deep learning algorithms were used 
to intelligently analyze the ultrasound image data of the 
gallbladder of children with BA, of those with non-BA 
hyperbilirubinemia, and of healthy infants, and information that 
is difficult to observe with human eyes was collected. Furthermore, 
the data were quantified, a CNN-based BA ultrasound intelligent 
auxiliary diagnostic model was built, and an intelligent diagnosis 
of BA was realized.

2 Methods

2.1 Overall design

Gallbladder ultrasound images of children with BA, of those with 
non-BA hyperbilirubinemia, and of healthy infants were collected and 
sorted; an auxiliary diagnostic model was built based on CNN; and 
the model was tested to compare the diagnostic performance between 
models 1 and 2. The diagnosis of the model with higher efficiency was 
compared with that of radiologists with different working years in the 
diagnosis of BA, and the gap in the diagnostic accuracy of BA between 
the model and pediatric radiologists was explored. This study was 
reviewed by the medical ethics committee of our hospital (Nos. 
EC-20231106-3 and HCHLL-2020-18), and the informed consent was 
signed by the family members of the children.

2.2 Study subjects

A total of 597 children with BA (BA group) and 534 children 
with non-BA hyperbilirubinemia were diagnosed and treated by 
five medical institutions in the Hunan Province from February 2016 
to May 2022, and 498 little healthy infants were also recruited. 
Healthy infants and infants with non-BA hyperbilirubinemia, 
involving a total of 1,032 subjects, were classified into the non-BA 
group. The diagnostic criteria were the following: BA was confirmed 
by intraoperative cholangiography and pathology. Children with 
non-BA hyperbilirubinemia were excluded from the BA group by 
using intraoperative cholangiography or conservative treatment 
and observed for 3–6 months until the jaundice subsided. All 
subjects were ≤ 90 days old. The age of infants in the BA group 
ranged from 5 to 90 days, with a median age of 50 days, including 
239 boys and 358 girls. The age of infants in the non-BA group 
ranged from 10 to 89 days, with a median age of 55 days, including 
572 boys and 460 girls.

2.3 Ultrasound images acquisition

Different ultrasonic diagnostic systems and different high-
frequency ultrasonic probes were used to obtain the largest long-
axis ultrasonic images of the gallbladder of all subjects, with each 
case containing three images, including 3,096 images of the non-BA 
group and 1,791 images of the BA group, for a total of 4,887 images. 
The ultrasonic diagnostic systems (probe) included Mindray 
Resona 7S (L14-5WU, L14-3WU, and L9-3U), Toshiba Aplio 500 
(14 L5, 12 L5), Philips Epiq 7C (L12-3), Siemens Sequoia (18 L6 and 
10 L4), and SuperSonic Aixplorer (SL10-2). Ultrasound images were 
directly exported from the ultrasonic diagnostic systems in JPG, 
TIF, BMP, or DICOM format. The image inclusion criteria were the 
following: (1) linear array probe, frequency > 8 MHz, rectangular 
imaging, scanning depth 4–6 cm and (2) clear image, resolution 
≥300 × 300 dpi; (3) no markers or scales in the image. The image 
exclusion criteria were the following: (1) convex array probe or 
frequency < 7 MHz; scanning depth > 6 cm or < 4 cm; (2) blurred 
image; (3) the absence of gallbladder; and (4) unclear 
disease diagnosis.
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2.4 Construction of the diagnostic model 
based on CNN

The computer uses the Ubuntu 16.0 operating system (CPU: 
i7-8750H, GPU: GTX1060, 6G). The intelligent diagnosis model has 
three main tasks: the detection of the gallbladder in the ultrasound 
image, the delineation of the region of the gallbladder pixel by pixel, 
and the diagnosis of BA in the gallbladder. Therefore, this study 
introduces the mask region convolutional neural network (Mask 
R-CNN) (11) as the main model architecture, and simultaneously 
completes the above-mentioned three tasks. The construction of the 
model is mainly divided into data preprocessing and labeling, feature 
extraction, region extraction and alignment, and finally mask 
segmentation and classification.

2.4.1 Dataset division and preprocessing
A total of 179 cases were randomly selected from 597 BA children, 

with each case containing three images, resulting in a total of 537 
gallbladder ultrasound images. A total of 196 cases were randomly 
selected from 1,032 non-BA children, resulting in a total of 588 
gallbladder ultrasound images. All selected cases were used as the 
training set. The remaining cases were used as the test set (a total of 
3,762 images). A radiologist with 5 years of experience in pediatric 
ultrasound used LabelMe image annotation software to manually 
draw a label that included the entire gallbladder on the training set 
data, which was checked by another radiologist with more than 
15 years of experience in pediatric ultrasound to ensure that the labels 
were correct (Figure  1). The training set contained 621 Mindray 
Resona 7S images, 414 Toshiba Aplio 500 images, and 90 Philips Epiq 
7C images. The test set contains 2,775 images of Mindray Resona 7S, 
327 images of Toshiba Aplio 500, 42 images of Philips Epiq 7C, 582 
images of Siemens Sequoia, and 36 images of SuperSonic Aixplorer.

2.4.2 Image feature extraction, region extraction, 
and alignment

At this stage, two pre-training models were used to extract features 
from the images. Model 1 used Resnet-101 as the backbone feature 
extraction network. Model 2 used X-101-32x8d-FPN as the backbone 
feature extraction network.

ResNet-101 uses skip connections to avoid or weaken network 
degradation problems caused by gradient disappearance or gradient 
explosion during deep neural network model training. The feature 
map of the last layer had strong semantics after the extraction of the 
gallbladder ultrasound image by ResNet-101, thus finding the 
difference between the gallbladder and the surrounding tissue, thereby 
providing effective characteristic information for the detection of the 
gallbladder and the diagnosis of BA.

X-101-32x8d-FPN inherits the deep convolutional neural network 
and adopts the “bottom-up” convolution framework to continuously 
obtain more abstract semantics, as well as a “top-down” process to 
adapt to the detection of objects of different sizes. The feature maps 
used for each layer of prediction were integrated with features of 
different resolutions and different semantic strengths, which 
completed the detection of the gallbladder with the corresponding 
resolutions, ensuring that each layer had the appropriate resolution 
and strong semantic features.

After obtaining the feature map of the ultrasound image of the 
gallbladder, multiple candidate boundary boxes with different scales 

for each pixel on the feature map were first constructed based on the 
regional proposal network. Each bounding box was the candidate 
region of interest (ROI) containing the gallbladder. The ROI was then 
mapped back to the original ultrasound image and aligned using the 
ROI Align module.

2.4.3 Mask segmentation and classification
This stage includes three branches: ROI bounding box coordinate 

regression, ROI mask segmentation, and classifier. Bounding box 
coordinate regression completes the calculation of the coordinate 
offset of the ROI area. It is assumed that the current ROI frame to 
be processed is described by the vector X ,

 X x y w h� � �, , ,

where x  and y are the abscissa and ordinate of the center point of 
the box, whereas w and h  are the width and height of the box, 
respectively. Its corresponding true value is Y :

 Y Gx Gy Gw Gh� � �, , ,

If only the two transformations of translation and scaling were 
considered, the linear transformation Y WX=  can be used to model 
the relationship between the two transformations. As regards this 
study, the input X  was the feature map Φ after the fully connected 
network and the transformation amount t  between the current 
candidate box and the true value box passed in during the training:

 t t t t tx y w h� � �, , ,

The output was the transformation W ∗. Then, the loss function of 
the transformed network was expressed as follows:

 
L t W XReg

i

N
i

i� � � �� �| |�

ROI mask segmentation was designed to obtain the precise 
location of the gallbladder, and it was realized through a fully 
convolutional network. A mask with the same resolution as the source 
image was obtained based on the technology of the convolution 
mentioned above. The base Mask R-CNN model predicted masks 
based on a uniform 28 × 28 sized binary grid. It was difficult to 
accurately represent the effective information of the gallbladder in 
some cases due to the relatively low resolution of the mask of such size. 
This project used a discrete cosine transform mask (DCT-Mask) 
representation to realize the segmentation of the gallbladder (12).

The classifier completed the discrimination of the gallbladder, 
both positive and negative. In this part, the ROI candidate region 
extracted above was passed through two fully connected layers for 
feature fusion, then the classification probability of each category was 
calculated through the softmax function, and, finally, the classification 
probabilities were compared with each other to evaluate the category. 
The corresponding loss of the network was the common cross-entropy 
loss, recorded as LCls . When the mask for each ROI was calculated to 

https://doi.org/10.3389/fmed.2023.1308338
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Duan et al. 10.3389/fmed.2023.1308338

Frontiers in Medicine 04 frontiersin.org

simplify the training and testing, it was necessary to first determine its 
category and then calculate the sigmoid cross-entropy loss of a single 
category based on the information of its category, which was denoted 
as LMask . In summary, the loss function used in the network training 
in this study was expressed as follows:

 L L L LTotal Reg Cls Mask� � �

2.5 Model training

The training was based on the fivefold cross-validation method after 
setting all the parameters to avoid the impact of the division of the dataset 
on the results, and the gradient descent method was used to minimize the 

above loss for optimization. First, the training set was randomly divided 
into five parts: four were used as training data one after another and the 
remaining one was used as test data for experiments. The corresponding 
results were obtained for each test, and the average of the five results was 
used as an estimate of the accuracy of the algorithm. Finally, the trained 
network was used to extract the gallbladder region of the test images and 
to distinguish between positive and negative BA.

2.6 Model testing

Since radiologists usually need to review multiple images of the 
same patient before providing a diagnosis, in this stage, the test set was 
used to evaluate the trained model at the image level and the patient 
level. The flowchart of the gallbladder image analysis is shown in 

FIGURE 1

Label of the gallbladder with LabelMe software. (A) Marked pictures of the gallbladder in the same patient with biliary atresia. (B) Marked pictures of the 
gallbladder of the same patient with non-biliary atresia hyperbilirubinemia. (C) Marked pictures of the gallbladder of the same healthy infant. The biliary 
atresia group is marked in green, and the non-biliary atresia group is marked in red.
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Figure 2. The classification result of the model was considered correct 
when the model had an image classification probability of >0.5 at the 
image level. The classification results of the model at the patient level 
were considered correct when the average classification probability of 
the three images of the same patient exceeded 0.5 and the classification 
results were consistent with the actual results; otherwise, the results 
were considered as incorrect (Figure 3).

Different hospitals have different ultrasound brands, and different 
styles of ultrasound images have different background noise, which may 
affect the classification accuracy of the model. Therefore, the classification 
accuracy of the two models among different brands of ultrasound images 
was compared at the image level and the patient level.

Most hospitals store their image data in picture archiving and 
communication systems (PACS) to save data storage space, but the 
quality of most PACS compressed images (lossy coding) is reduced. 
Therefore, 103 gallbladder ultrasound images of BA patients and 110 
gallbladder ultrasound images of non-BA infants from the PACS of 
other hospitals were retrospectively collected to evaluate the 
recognition and classification performance of the two models in the 
poor-quality images, with one image for each case. These images were 
compressed by the PACS, and the image size was reduced by 
approximately 39%. The storage space occupied by the image was 
reduced by approximately 84%, and the image quality was significantly 
reduced. These poor-quality images were used to evaluate the 
diagnostic accuracy of the two models.

2.7 Comparison of the diagnostic 
performance between model and 
radiologists

The model with higher diagnostic accuracy and more stable 
performance was chosen to compare with the diagnosis of radiologists. 
All the pictures in the test set were cut out to remove redundant 
information, and the images were randomly numbered at the image level 
and the patient level. Two radiologists (radiologists A and B) with more 
than 5 years of clinical experience in the diagnosis of pediatric abdominal 
ultrasound and two radiologists (experts C and D) with more than 
15 years of experience in the diagnosis of pediatric abdominal ultrasound 
were invited. In the absence of the child’s information, the four radiologists 
provided a diagnosis based on the images of the test set according to the 

visible morphological information of the gallbladder, including a 
gallbladder length of ≤15 mm, a gallbladder width of <5 mm, a width ratio 
of 5.2, unfilled gallbladder, irregular shape, rigid gallbladder wall, mucosa 
not smooth and intact, and diverticular changes. The interval between 
two reviews was 2 weeks to avoid the impact of memory on the 
classification results. The results of the diagnosis were compared with the 
classification results of the model.

2.8 Statistical analysis

Statistical analysis was performed using the SPSS software (version 
22.0, IBM Corp., Chicago, IL) and MedCalc Statistical Software version 
15.2.2 (MedCalc Software bvba; 2015). 1The ratio of the intersection 
and union (IoU) of the predicted frame and the real frame evaluated 
whether the extraction of the gallbladder area was successful or not; an 
IoU of ≥0.5 indicated that the gallbladder area was successfully 
extracted, and the extraction efficiency was calculated. ROC was used 
to evaluate the diagnostic performance of the model and the radiologist 
on BA, and the sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and accuracy were calculated 
according to the Youden index. The comparison of the diagnostic 
accuracy of the model between different brands of ultrasound images 
was performed using the χ2 test or Fisher’s exact probability test. The 
comparison of the diagnostic accuracy between the model and 
radiologists was performed using the χ2 test or Fisher’s exact probability 
test. A value of p of <0.05 was considered statistically significant.

3 Results

3.1 Automatic extraction of the model on 
the gallbladder images

Model 1 accurately extracted the gallbladder region in 3,729 
images of the test set, and the extraction efficiency was 99.1% 
(3,729/3,762). However, 155 images showed a false alarm rate of 4.1% 

1 http://www.medcalc.org

FIGURE 2

Flowchart of the intelligent analysis of gallbladder images. BA, biliary atresia; CNN, convolutional neural network; IDCT, inverse discrete cosine 
transform.
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(155/3,762). False alarm means that, in the same image, the model 
accurately detects the real gallbladder, but some non-gallbladder areas 
were also considered as the gallbladder. Model 2 accurately extracted 
the gallbladder region from 3,742 images, and the extraction efficiency 
was 99.5% (3,742/3,762). Nevertheless, 141 images showed false 
alarms, with a rate of 3.7% (141/3,762). Images with invalid extractions 
were considered as misinterpreted (Figure 4).

3.2 Classification results of BA by different 
models in the test set

The classification performance of model 2 for BA was slightly higher 
but statistically significant than that of model 1 in the test set, both at the 

image level and at the patient level (p = 0.0365 and p = 0.0459, 
respectively). At the image level, the AUC of model 2 was 0.913, with a 
sensitivity, specificity, PPV, NPV, and accuracy of 88.5, 91.2, 83.4, 94.1, 
and 90.3%, respectively. At the patient level, the AUC of model 2 was 
0.956, with a sensitivity, specificity, PPV, NPV, and accuracy of 89.0, 92.5, 
85.8, 94.4, and 91.3%, respectively (Table 1; Figures 5, 6).

3.3 Classification accuracy of the two 
models on different brands of ultrasound 
images in the test set

Model 1 had a statistically significant classification accuracy of 
ultrasound images among different brands at the image level 

FIGURE 3

Recognition results of the model at the patient level. The purple circle in the figure represents the recognition result of a single image as non-biliary 
atresia. The blue–green circle represents the recognition result of a single image as biliary atresia. (A) Ultrasound images of the gallbladder of the same 
patient with biliary atresia. The recognition result shows that the average probability of biliary atresia is approximately 0.64, and the recognition result is 
correct. (B) Ultrasound images of the gallbladder of the same patient with non-biliary atresia and hyperbilirubinemia. The model recognition result 
shows that the average probability of non-biliary atresia is approximately 0.70, and the recognition result is correct. (C) Ultrasound images of the 
gallbladder of the same healthy infant. The model recognition result shows that the average probability of biliary atresia is approximately 0.62, and the 
recognition result is incorrect.
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(P1 = 0.001). Model 2 had similar accuracy in the classification of the 
ultrasound images of different brands, but the difference in the 
comparison of these different brands was not statistically significant 
(P2 = 0.331). No significant difference at the patient level was found in 
the classification accuracy among ultrasound images of different 
brands in either model 1 or model 2 (P1 = 0.224, P2 = 0.895) (Table 2).

3.4 Ability of the model in classifying the 
compressed image

The classification accuracy of model 2 in PACS compressed images 
was approximately 88.3% and was slightly higher than that of model 1 
(86.4%), but the difference was not statistically significant (χ2 = 0.339, 
p = 0.560). According to the diagnostic performance and robustness of the 
model, model 2 was chosen for subsequent comparisons.

3.5 Performance of model 2 and 
radiologists in the diagnosis of BA at the 
image level

The diagnostic performance of model 2 at the image level in the 
test set was higher than that of the two radiologists with 5 years of 

clinical experience, and the differences were statistically significant (all 
p < 0.0001). The diagnostic performance of model 2 was similar to that 
of the two radiology experts with 15 years of clinical experience, and 
the differences were not statistically significant (Table 3; Figure 7).

3.6 Performance of model 2 and 
radiologists in the diagnosis of BA at the 
patient level

The diagnostic performance of model 2 at the patient level in the 
test set was higher than that of the four pediatric radiologists, and the 
differences were statistically significant (all p-values were < 0.05) 
(Table 4; Figure 8).

4 Discussion

This study described the use of a training set with a relatively small 
sample size to construct and train an intelligent model based on Mask 
R-CNN that simultaneously detected the gallbladder in ultrasound 
images, segmented the gallbladder, and classified and diagnosed BA 
according to gallbladder characteristics. The performance of the 
model in the classification of BA in the test set with a relatively large 

FIGURE 4

Diagram of the false alarm. (A) Gallbladder extraction in a non-biliary atresia infant. The model accurately and automatically extracted the gallbladder 
organs and revealed a false alarm. The model incorrectly considered the duodenal cavity located below the gallbladder as the gallbladder (lower purple 
circle). (B) Gallbladder extraction in a patient with biliary atresia. The model accurately and automatically extracted the gallbladder organ and revealed a 
false alarm. The model incorrectly considered the hepatic vein located above the gallbladder as the gallbladder (above the blue–green circle).

TABLE 1 Interpretation results of different models for BA in the test set.

Model AUC 95% CI p-value Sensitivity Specificity PPV NPV Accuracy

Image level

AI model 1 0.901
0.889, 

0.913
0.0365

87.2% 90.7% 82.4% 93.4% 89.5%

AI model 2 0.913
0.903, 

0.924
88.5% 91.2% 83.4% 94.1% 90.3%

Patient 

level

AI model 1 0.940
0.924, 

0.956
0.0459

88.3% 91.8% 84.3% 94.0% 90.6%

AI model 2 0.956
0.943, 

0.969
89.0% 92.5% 85.8% 94.4% 91.3%
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FIGURE 5

ROC of the performance of different models in classifying biliary atresia at the image level.

FIGURE 6

ROC of the performance of different models in classifying biliary atresia at the patient level.
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sample size was similar to or even higher than that of pediatric 
radiology experts. In addition, the model still had good classification 
performance when the image quality was poor.

The diagnostic accuracy of radiologists on BA is highly 
correlated with their knowledge and clinical experience of the 
disease. Radiologists generally need to rely on visual senses to find 
the gallbladder when they diagnose BA based on the ultrasound 
images of the gallbladder, to determine the extent of the organ in 
the image, to perform the necessary measurements on the 
gallbladder, and to finally make a diagnosis based on the current 
imaging characteristics and their clinical knowledge. The above 
process includes three tasks: detection, segmentation of the 
gallbladder, and diagnosis of BA. However, actually, radiologists 
have a certain degree of subjectivity when interpreting the disease 
due to the influence of factors such as their experience, the course 
of the disease, and the type of pathology, and there is a lack of 
specific quantitative standards. Mask R-CNN has the advantage of 
automatic image segmentation and is one of the most pragmatic 
picture segmentation procedures (11). Therefore, this study 
introduced the Mask R-CNN model, which designs a unique three-
branch structure to automatically and simultaneously complete the 
three tasks mentioned above after extracting the features of the 
image based on the CNN model.

In this article, we used the Mask R-CNN model in the ultrasonic 
diagnosis of biliary atresia. Compared to traditional convolutional 
neural network models, Mask R-CNN is more suitable for the research 
in this article. The main reasons are as follows: First, BA intelligent 
diagnostics based on ultrasound images requires two stages: object 
detection and diagnostic classification. When using traditional CNN 
methods, independent detection and diagnostic models need to 
be designed separately, while Mask R-CNN is a multitasking model 
that can simultaneously perform object detection and classification 
using only one model. Second, compared to traditional CNN, Mask 
R-CNN adds structural designs such as ROI Align and Mask branches 
to the model, enabling the model to intelligently diagnose ultrasound 

images more quickly and accurately. This model largely avoided the 
influence of subjective factors.

The results of this experiment showed that the accuracy of 
gallbladder region extraction was more than 99% independent of the 
model and its backbone feature extraction network, suggesting that 
the Mask R-CNN model has a high accuracy rate in image target 
extraction. Research by Wu et al. (13) shows that the accuracy of 
target extraction was similar using the Mask R-CNN model, 
independent of the backbone feature extraction network ResNet-101 
or X-101-32x8d. Mariachiara Di Cosmo et al. (14) collected and 
marked 246 wrist ultrasound cross-sectional images and developed 
a Mask R-CNN model to segment the median nerve directly on the 
wrist ultrasound cross-sectional images. Their results showed good 
performance in both detection and segmentation. Our results agree 
with theirs.

Our results showed that model 2 was slightly better than model 
1 in terms of classification accuracy in the test set, both at the image 
level and at the patient level, suggesting that X-101-32x8d-FPN was 
more appropriate to the classification of the model as the backbone 
feature extraction network. Our results also showed that model 2 
performed slightly better than model 1  in classifying ultrasound 
images of different brands. Interestingly, certain brands of ultrasound 
images were not provided to train the model in the model training 
phase. However, the model still accurately classified these unfamiliar 
images in the model testing phase. What is more interesting is that the 
accuracy of model 2 was still as high as 88% when it was tested with 
poor-quality ultrasound images, although the diagnostic accuracy of 
the two models slightly decreased. This result indicated that the model 
constructed using Mask R-CNN still had good classification 
performance for poor-quality images, and the algorithm performance 
was relatively robust. The reasons might be as follows: ResNet-101 is 
a typical bottom-up deep convolutional neural network. The shallow 
network has a high resolution and learns the detailed features of the 
image. The deep network has a low resolution and learns semantic 
features. The higher the level, the greater the abstraction of the 

TABLE 2 The diagnostic accuracy of the two models on different brands of ultrasound images in the test set.

Brand Image level Patient level

n Model 1 Model 2 n Model 1 Model 2

Mindray Resona 7S 2775 89.6% 90.3% 925 90.7% 91.1%

Siemens Sequoia 582 86.8% 90.0% 194 87.6% 91.2%

Toshiba Aplio 500 327 94.2% 90.8% 109 94.5% 91.7%

Philips Epiq 7C 42 88.1% 90.5% 14 85.7% 100%

SuperSonic Aixplorer 36 100% 100% 12 100% 100%

p-value 0.001 0.331 0.224 0.895

TABLE 3 Performance of model 2 and radiologists in diagnosing BA at the image level.

Method AUC 95% CI p-value Sensitivity Specificity PPV NPV Accuracy

AI model 2 0.913 0.903, 0.924 88.5% 91.2% 83.4% 94.1% 90.3%

Radiologist A 0.830 0.816, 0.844 <0.0001 85.4% 80.7% 68.8% 91.7% 82.2%

Radiologist B 0.787 0.771, 0.803 <0.0001 80.9% 76.5% 63.2% 88.9% 78.0%

Expert C 0.912 0.901, 0.923 0.8317 93.1% 89.3% 81.3% 96.3% 90.6%

Expert D 0.914 0.904, 0.925 0.8699 93.2% 89.7% 81.9% 96.4% 90.9%
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features, the smaller the size of the feature map, and small-sized 
objects are easily missed (15). The location and size of the gallbladder 
in this study were different, and the deep residual convolutional 
network was relatively easy to false alarms, making the detection 
results inaccurate and affecting the classification accuracy of the 
model. The X-101-32x8d-FPN has a characteristic pyramid structure 
that includes both bottom-up and top-down aspects. It still abstracts 
the data layer by layer from the bottom up to obtain the corresponding 
semantic information. The top-down process involves upsampling the 
abstract, semantically strengthening the high-level feature map, and 
then connecting the feature horizontally to the previous layer feature. 
The characteristic pyramid structure makes the feature map used for 
each layer of prediction incorporate features of different resolutions 
and different semantic strengths (16, 17). Thus, it is better to detect 
gallbladder targets of different sizes than ResNet-101 as a feature 
extraction and classification model (18, 19). Therefore, model 2 was 
slightly better than model 1  in terms of object extraction 
and classification.

The results of this experiment showed that the classification 
performance of model 2 at the image level was similar to that of the 
two pediatric radiology experts. However, the classification 
performance of model 2 at the patient level was better than that of the 
two pediatric radiology experts. This result revealed that the 
classification accuracy of the model was good. The classification 
accuracy is expected to play a certain auxiliary role in the diagnosis by 
pediatric radiologists with insufficient clinical experience in practical 
work. In addition, it narrowed the diagnostic gap between radiologists 
with different work experience and levels, which might be because the 
DCT was introduced in the mask representation stage. The 
low-precision binary gridded mask representation was replaced by a 
high-resolution vectorized mask representation after the DCT. The 
vectorized mask in the prediction process was restored to the original 
mask first. Then, the recovered mask was transformed from the 
frequency domain back to the two-dimensional image space with the 
two-dimensional inverse DCT (IDCT). Therefore, this method had 
higher accuracy than most methods (12). Zhou et al. (20) used deep 

FIGURE 7

ROC of the performance of model 2 and radiologists in diagnosing biliary atresia at the image level.

TABLE 4 Performance of model 2 and radiologists in diagnosing BA at the patient level.

Method AUC 95% CI p-value Sensitivity Specificity PPV NPV Accuracy

AI model 2 0.956 0.943, 0.969 89.0% 92.5% 85.8% 94.4% 91.3%

Radiologist A 0.840 0.815, 0.864 <0.0001 86.8% 81.1% 69.7% 92.5% 83.1%

Radiologist B 0.788 0.761, 0.816 <0.0001 81.1% 79.8% 63.4% 89.4% 80.2%

Expert C 0.916 0.899, 0.934 0.0001 95.7% 87.6% 79.4% 97.6% 90.3%

Expert D 0.935 0.919, 0.950 0.0252 96.2% 90.8% 83.9% 97.9% 92.6%
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learning to build an intelligent diagnosis model for BA. The sensitivity, 
specificity, and area under the ROC curve of BA diagnosis in the 
external verification set were better than the diagnostic performance 
of human radiologists. Nguyen et al. (21) used CNN to build an AI 
model to distinguish thyroid nodules as benign or malignant in 298 
patients. The results showed that the overall classification accuracy of 
the model reached 90.88%. Yang et al. (22) used CNN to build an AI 
model for the auxiliary diagnosis of ultrasonic liver space-occupying 
lesions. The results showed that the diagnostic accuracy, sensitivity, 
and specificity of the model for benign and malignant liver space-
occupying lesions were higher than those of a senior physician with 
15 years of clinical experience. Pravat et al. (23) developed a Mask 
R-CNN model based on reinforcement deep learning for the real-time 
recognition of laryngeal cancer through the collection and annotation 
of a dataset of 541 laryngeal cancer images. The results showed that 
the diagnostic accuracy of laryngeal cancer is 98.99%. Our results 
agreed with those of the above studies, suggesting that the AI 
diagnostic model based on CNN has high diagnostic accuracy in 
imaging diagnosis.

The limitations of this study are the following: (1) The sample 
size of this study was small, and the data were far from enough. 
Therefore, our future plan is to collect more forward-looking data 
and use methods such as random rotation, flipping, and adjustment 
of brightness, contrast, and saturation to perform data amplification, 
as well as testing and verifying this model and continuously 
optimizing it and (2) the data included in this study were only 
represented by gallbladder ultrasound images, without combining 

them with clinical data such as liver function and stool color. Thus, 
our future plan is to design and build a new combination model 
based on the ultrasonic image features extracted by CNN and the 
clinical time series data features extracted by recurrent neural 
network to further improve the performance of the model in 
ultrasound diagnosis and antidiastole.

In conclusion, the BA intelligent diagnostic model based on Mask 
R-CNN accurately and automatically extracted the gallbladder and 
identified BA. Its diagnostic performance reached or was even greater 
than that of pediatric radiology experts. The good classification 
performance of model 2 suggests the potential of this non-invasive, 
convenient, and intelligent method to proceed and be  tested in 
clinical trials.
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