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The current management of patients with multimorbidity is suboptimal, with 
either a single-disease approach to care or treatment guideline adaptations 
that result in poor adherence due to their complexity. Although this has 
resulted in calls for more holistic and personalized approaches to prescribing, 
progress toward these goals has remained slow. With the rapid advancement 
of machine learning (ML) methods, promising approaches now also exist 
to accelerate the advance of precision medicine in multimorbidity. These 
include analyzing disease comorbidity networks, using knowledge graphs that 
integrate knowledge from different medical domains, and applying network 
analysis and graph ML. Multimorbidity disease networks have been used to 
improve disease diagnosis, treatment recommendations, and patient prognosis. 
Knowledge graphs that combine different medical entities connected by 
multiple relationship types integrate data from different sources, allowing for 
complex interactions and creating a continuous flow of information. Network 
analysis and graph ML can then extract the topology and structure of networks 
and reveal hidden properties, including disease phenotypes, network hubs, 
and pathways; predict drugs for repurposing; and determine safe and more 
holistic treatments. In this article, we describe the basic concepts of creating 
bipartite and unipartite disease and patient networks and review the use of 
knowledge graphs, graph algorithms, graph embedding methods, and graph 
ML within the context of multimorbidity. Specifically, we provide an overview 
of the application of graph theory for studying multimorbidity, the methods 
employed to extract knowledge from graphs, and examples of the application of 
disease networks for determining the structure and pathways of multimorbidity, 
identifying disease phenotypes, predicting health outcomes, and selecting safe 
and effective treatments. In today’s modern data-hungry, ML-focused world, 
such network-based techniques are likely to be at the forefront of developing 
robust clinical decision support tools for safer and more holistic approaches to 
treating older patients with multimorbidity.
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1 Introduction

Multimorbidity, defined as the coexistence of two or more diseases 
in one individual, is a major health challenge globally because of its 
high prevalence (1, 2), complex care needs (3) and association with 
inferior healthcare outcomes (4–6). Current professional guidelines 
for disease management for patients with multimorbidity typically 
follow a single-disease approach to care that is either not adapted to 
the needs of persons with multimorbidity (7) or is poorly adhered to 
due to treatment guideline complexity (8). As a consequence, patients 
with multimorbidity often take five or more different medicines 
simultaneously, an accepted definition of polypharmacy (9, 10), and 
have a greatly increased risk of medication interactions, adverse drug 
reactions (ADRs), and poor health outcomes and quality of life (7, 
11–13). Compounding the problems of using a single-disease 
framework for care in this population is the fact that most guidelines 
are also based on empirical evidence obtained from randomized 
controlled trials (RCTs) using strict inclusion and exclusion criteria 
that exclude patients with multimorbidity, thereby perpetuating the 
lack of evidence for treating this highly complex and heterogenous 
population (14–16).

Personalized, or precision medicine, is a tailored approach to patient 
care where patients are stratified based on their clinical profile, with the 
key idea being that medical decision-making is based on individual 
profiles that also include clinical, molecular, and behavioral biomarkers 
(17). This approach has revolutionized the management of many 
conditions, most notably in oncology, but its use in the management of 
multimorbidity is limited (18), despite calls for more holistic and 
personalized approaches to prescribing (11). A limitation in its 
development has been a lack of availability or identification of appropriate 
methodologies that can fully harness the available information from 
highly interconnected multimodal sets of data. However, promising 
approaches to achieving precision medicine for multimorbidity have 
recently been identified and further developed. The application of graph 
databases to disease networks is gaining increased popularity as a 
method of studying complex disease relationships due to their natural 
ability to allow an intuitive visualization of heavily interconnected data 
and their increased performance and flexibility compared to using more 
traditional relational databases (19). Heterogeneous graph networks can 
be  used to integrate knowledge from different medical domains, 
including diseases and drugs, and incorporate their complex interactions 
(20), and machine learning (ML) methods, including graph neural 
networks, are now being applied to multimorbidity disease networks to 
improve disease diagnosis, treatment recommendation, and patient 
prognosis (21, 22).

In a landmark study in multimorbidity network analysis, a 
phenotypic disease network was created from the ICD-9 codes of more 
than 32 million inpatient claims to study disease progression (23). A 
wide range of disease connectivity existed, with illnesses progressing 
along the disease network and progression differing by gender and race. 
Such disease progression can be expected given that disease networks 

reflect underlying disease pathways and pathologies, with many diseases 
sharing common genes, proteins, environmental factors, and biological 
pathways (21, 24–27). The fact that patients develop diseases in 
phenotypic networks that are close to those they already have rather 
than by chance alone (28) also supports the concept of underlying 
molecular mechanisms that facilitate (or prevent) disease occurrence 
(28). Importantly for precision medicine, since proteins and genes 
associated with a specific disease tend to also cluster in the same 
network neighborhood, diseases driven by perturbations of these 
components are therefore also phenotypically similar, leading to similar 
responses when targeted by a therapeutic (20). Potential disruption of 
the disease network can also be achieved by targeting the network’s 
“hub” diseases for specific intervention (25, 28, 29) since such “hubs” 
are associated with patient outcomes (30) and the proteins that represent 
the disease “hubs” likely have a special biological role (29).

Establishing disease phenotypes and disease hubs within disease 
comorbidity networks are specific examples of many different 
approaches that exist for extracting information from multimorbidity 
networks in ways that can improve our understanding of complex 
disease–drug–patient networks and support holistic and personalized 
prescribing in multimorbidity (31). As a first step in the process, the 
visualization of disease–drug–patient information in the form of 
graphs provides an immediate and intuitive interpretation of different 
medical entities within a complex disease network whilst providing 
important context to the relationships. Beyond visualization, network 
analysis provides a range of powerful tools for understanding the 
complex structure of multimorbidity and for improving disease 
diagnosis and treatment. These include the extraction of graph 
features, graph embedding methods, graph ML, including graph 
neural networks for making predictions on unseen data, and 
knowledge graphs to uncover hidden relationships (Figure 1).

Table  1 provides an overview of the use of different methods 
commonly applied in the setting of disease comorbidity network 
analysis, as well as an evaluation of their strengths and limitations. 
Feature extraction algorithms capture properties of the graph nodes, 
such as their importance, closeness, and community membership, 
generating novel graph features for improving prediction with 
downstream outcome models. Similarity algorithms, such as random 
walks and kernels, enable a better understanding of the structure of 
the network. Graph embedding techniques capture the latent topology 
of a graph, including node similarity in the form of vectors for use in 
prediction models (20), and graph ML enables fully end-to-end 
models with graph data as input and node, edge, or subgraph 
prediction as output for data outside of the existing network (44, 45). 
The use of graph neural networks (GNNs) to date includes predicting 
drug–drug interactions (46), modeling polypharmacy side effects, and 
learning the temporal patterns of disease development in comorbidity 
networks (47). Finally, knowledge graphs can be used to make use of 
the known connections between drugs, proteins, and genes to uncover 
new associations between different entities for use in areas such as 
drug repurposing and disease diagnosis.
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The aim of this article is to provide a comprehensive overview of 
promising methodological approaches that could be applied to the 
management of multimorbidity. Specifically, we (1) describe the basic 
concepts of creating patient–disease, disease–disease, and patient–
patient networks and (2) describe the main features and use of graph 
algorithms, graph embedding methods, graph ML, and knowledge 
graphs for the study of patients with multimorbidity. Together, these 
enable network visualization, characterization of network structure, 
node embedding for downstream prediction, and transductive and 
inductive graph ML algorithms for end-to-end prediction using 
graphs as input data. Their ability to incorporate information from 
different medical domains, determine graph structure, and assist in 
disease phenotyping, prediction, and treatment recommendation 
open the gateway to the development of tools that can realistically 
provide robust clinical decision support tools for safer and more 
holistic approaches in the treatment of patients with multimorbidity.

2 Literature search

A non-exhaustive database search strategy was developed that 
identified relevant literature examples of network analysis being used 
in the study of multimorbidity. We searched the databases of PubMed 
Central, Semantic Scholar, Google Scholar, and arXiv (Cornell 
University) from inception to 31 August 2023 using the terms graph, 
network, graph database, network analysis, graph machine learning, 
graph representation learning, and knowledge graphs combined with 
the terms multimorbidity and comorbidity for selecting the study 
population of interest. We included network studies that were focused 
on either comorbidity, multimorbidity, or treatment for multimorbid 
populations, especially those developing unipartite disease 
comorbidity or patient similarity networks to develop improved 
prediction via the use of graph features or graph ML. We excluded 
studies that were not of an applied nature, review articles, and studies 
that were not focused on either improving prediction or precision 
medicine in a multimorbid population. For knowledge graphs, 
we selected publications linking diseases to drugs for the purpose of 

drug repurposing or precision medicine. The initial database search 
strategy is described in more detail in Supplementary Figure S1.

3 Network creation

3.1 Bipartite patient-disease networks

Biological networks typically include more than one type of 
entity (proteins, genes, diseases) with edges defined by relevant types 
of relationships; for example, patients and their diseases might have 
a relationship type “has-disease” to link patient and disease nodes. 
An example of a disease–patient bipartite graph is shown in Figure 2, 
with patients connected to disease chapters defined by the 
International Classification of Diseases, 10th Edition (ICD-10). The 
existence of an edge that connects two nodes demonstrates that a 
patient has a disease within the ICD-10 chapter, and equally, the lack 
of an edge between nodes demonstrates the lack of any patient–
disease relationship. Thus, the edges in the graph between the disease 
nodes (green) and patient nodes (blue) represent the disease 
diagnoses of the individual patients. A close inspection of the 
network reveals that patients in the center of the network have more 
comorbidities than patients at the edge of the network, and their 
closeness reflects a similarity in terms of both the number and nature 
of the diseases that they share. Among the disease chapter nodes, 
closer positioning of any two diseases reflects the increased likelihood 
of them being found in combination in the same patient than diseases 
that are more isolated from one another.

4 Similarity algorithms

4.1 Unipartite disease comorbidity network 
(DCN)

The proximity of diseases in a DCN likely reflects common 
disease-associated genes and shared molecular mechanisms and 

FIGURE 1

The use of network analysis for studying multimorbidity and developing a precision medicine approach to safe and effective prescribing for 
multimorbidity. The five major categories of network analysis each contribute to a precision medicine approach in multimorbidity.
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etiologies (27) including, for example, inflammation (48). Information 
on disease similarity within a disease network can therefore be used 
to assist in predicting disease and for developing precision medicine 
approaches to prescribing. To determine the presence and strength of 
disease–disease connections in the disease network, it is necessary to 
project the bipartite patient–disease network into a unipartite network 
consisting of only disease nodes and edge connections based on some 
way of measuring disease similarity. The first requirement for the 
presence or absence of an edge between two diseases is determined by 

whether any patient in the network has both diseases (49). The 
simplest and most widespread approach for extracting this edge 
backbone of bipartite projections is through the application of node 
similarity algorithms that compare all possible node pairs based on 
the nodes they are each connected to (33). An unconditional (or 
global) threshold weight is selected and applied to all edges in the 
unipartite projection, and edges are retained in the backbone network 
only if their weight in the unipartite projection exceeds this predefined 
threshold, which is most often set to zero. The node similarity 

TABLE 1 Methods used in network analysis and their uses, strengths, and limitations for disease comorbidity networks.

Method Uses Strengths/Limitations Example study

Network creation

Graphing packages and libraries Gephi, Neo4j, 

Python libraries: NetworkX, igraph

Bipartite disease network 

creation

Describes overall entities and complexity 

of their relationships

Predicting high-cost patients using a 

DCN with Gephi software and igraph for 

community detection (32).

Similarity algorithms

Jaccard similarity score, Overlap coefficient

Unipartite projection

Measuring graph similarity.

Describes the indirect connections 

between diseases. Also measures their 

strength.

Bipartite graphs in systems biology 

describing the projection process in detail 

(33)

Community detection algorithms

Louvain

Label propagation

Walktrap

Girvan-Newman

Phenotyping, subgraph 

detection

Automatically detect graph modules 

containing sets of nodes that cluster 

locally.

Different algorithms may detect different 

clusters.

Structural knowledge analysis and 

modeling of multimorbidity using graph 

theory-based techniques (34)

Feature extraction algorithms

Centrality algorithms:

Degree centrality

Eigenvector centrality

Page rank

Clustering coefficient

Describes network structure 

and identifies key nodes. 

Generation of novel graph 

features useful for disease 

prediction.

Requires building separate graphs for 

separate disease populations. Useful for 

disease prediction using supervised ML 

algorithms in the same population.

A PSN created from unipartite projection 

extracted several different centrality 

metrics that were all predictive of type 2 

diabetes (35).

Graph embedding algorithms

Kernels: k-walk, shortest path, Weisfeiler–

Lehman (WF). WF isomorphism test for 

assessing differences between graphs (36).

Non-negative matrix factorization (NNMF) 

(37)

Subgraph detection (graph 

kernels) and dimensionality 

reduction (NNMF) for

node embedding.

Network comparison (WF test).

Early methods used for node embedding.

Difficult to learn node embeddings with 

large graphs.

Test for differences in network structure 

of physiological variables during 

COVID-19. The clustering coefficient was 

disrupted (38). Aging and diseases 

changed the topology of the networks.

Shallow embedding methods

Diagnosis to Vector (Dx2vec)

Metapath2vec (39)

PageRank (Google)

Modern node embedding and 

classification algorithms.

Non-inductive: cannot build a model for 

application to new data points.

Ignores information of node properties

Predicting self-harm incorporating 

temporal diagnosis sequences (40).

Inductive graph ML models

HashGNN

GraphSAGE (41)

Node embedding, plus node 

and link prediction on unseen 

data.

The graphs used for prediction must 

be reasonably similar to those used for 

training.

Predicting cellular functions from 

protein–protein interaction graphs (41).

Graph neural networks

Graph convolutional networks (GCN)

Graph attention networks (GAN)

Jumping knowledge network (JK-Net)

Message passing neural networks (MPNN)

Decagon algorithm; GCN for multi-relational 

link prediction.

Inductive graph ML techniques. Captures the higher order relationships 

within a graph.

High complexity

May not scale well.

Low interpretability and explainability.

Modeling polypharmacy side effects (42).

Knowledge graphs Knowledge discovery Open-source datasets created from 

publicly available datasets.

Hetionet:

47,000 nodes and 136 diseases Drug 

repurposing (43).

Disease prediction

Treatment recommendation

ML, machine learning; DCN, disease comorbidity network; PSN, patient similarity network.
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algorithm can be applied using either the Jaccard similarity score, the 
cosine similarity score, or the overlap coefficient as the similarity 
metric (Box 1).

Figure  3 illustrates the application of the Jaccard similarity 
algorithm to five patients sharing four different diseases. The diseases 
are indirectly connected to one another due to patients having more 
than one disease. For example, one patient has both hypertension and 
diabetes. Within the network, the relationship strengths (edge 
weights) are based on the number of patients sharing the same pair 
of diseases.

Figure 4 displays the DCN created from the real-world bipartite 
data in Figure 2 after the application of a bipartite projection using the 
Jaccard similarity score. All edges of the network have been retained 
by using a default Jaccard similarity cut-off score of ≥0. Some node 
pairs are more strongly connected, such as in the Circulatory and 
Abnormal Findings Disease chapters and the Genitourinary and 
Endocrine chapters. This is due to the fact that many patients share 
these disease pairs. Nodes toward the center of the network are 
typically more strongly connected and have a higher degree centrality 
since they are linked to more disease chapters. Some disease chapters, 
such as Health Services and Ear and Throat, are less well connected to 
other diseases and are therefore at the periphery of the network and 
have a smaller degree centrality.

4.2 Node similarity metrics

After establishing a network that contains all possible edges, further 
selection of which edges to retain is typically performed to eliminate 
disease–disease connections that are relatively weak and to focus instead 
on the most important disease connections to improve visualization and 
understanding. The use of the similarity cut-off score  ≥ 0 is one 
approach and includes setting the cut-off at a percentage of the 
maximum or at the mean similarity score. However, this is a somewhat 
arbitrary approach, and therefore more formal measures have been 
developed based on statistical metrics and significance. Box 2 describes 
some commonly used metrics used for measuring edge strength and 
determining the selection process. Each approach includes some form 
of adjustment to account for the prevalence of each disease (49). Two 
commonly used measures of edge strength are the relative risk (RR) and 
the Phi (ϕ) correlation. These each have their separate advantages and 
disadvantages, including biases toward either rare or highly prevalent 
diseases (32), and are therefore sometimes presented together. For 
example, when creating the phenotypic disease network (PDN) to 
explore disease progression using the ICD-9 codes from more than 32 
million inpatient claims, the strength of comorbidity relationships was 
quantified using both the RR and ϕ correlation, with edges retained 
based on a RR > 20 or a ϕ correlation >0.06 (23). The same approach was 
used when developing a comorbidity network to predict the risk of 
diabetes among hospital patients with the strength of the co-occurrence 
among diseases, resulting in 618 disease connections using a RR > 20 
and 2,515 disease connections for ϕ > 0.06 among 330 ICD-9 disease 
codes (50). The Phi correlation was trialed with different levels of 
statistical significance when developing comorbidity networks in the 
EpiChron study of patients with chronic obstructive pulmonary disease 
(COPD) and congestive heart failure (CHF) (28).

The disease co-occurrence correlation (CC) also attempts to 
reduce the potential bias created by disease prevalence and was used 

when generating a disease co-occurrence network to predict high-cost 
patient encounters on hospital admission (32). There remained 38,812 
statistically significant pair-wise co-occurrence relationships among 
2025 diagnoses at a network density of 0.019. The propensity score for 
being a high-cost patient was based on the CCxy edge weights and was 
predictive of high-cost patients (32).

However, a limitation of all the above approaches for determining 
edge strength is the lack of conditioning for other diseases beyond 
the pair being considered. To overcome this, the log odds ratios for 
disease–disease pairs can be  calculated using separate logistic 
regression models with the elastic net regularization penalty to limit 
the strength of the coefficients. Each model creates a single row of P-1 
coefficients for a P × P disease–disease edge matrix. When compared 
to non-conditioned edge weights, the conditioned network was 
smaller (509 vs. 589 disease nodes), easier to interpret, and 
associations appeared more clinically insightful. The edge density of 
the network was 0.02, the global transitivity was 0.24, the diameter 
was 10, and the average distance was 3.63 (51).

4.3 K-nearest neighbor (k-NN) and 
handcrafted similarity features

Several other approaches also exist to capture the similarity of 
nodes based on the nodes in the neighborhoods and their edges. 
Algorithm metrics include K-nearest neighbor scores (52) which 
allow for the identification of similar patients based on patient 
properties such as clinical characteristics, laboratory data, medications, 
and disease diagnoses. Other patient similarity approaches have been 
used for predicting disease based on matching an individual’s disease 
network with that of a DCN, including for diabetes prediction (49) 
and for future diseases (50). For diabetes prediction, the graph node 

BOX 1 Node similarity metrics.

The Jaccard similarity score and the Overlap coefficient measure node similarity 

based on their shared connections.

Jaccard similarity score

Given two vectors A and B used to represent node connections, the Jaccard 

Similarity is computed using the following formula:
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match score and the graph pattern match score, which assessed the 
similarity of nodes and edges, respectively, for a new patient with an 
existing diabetes network, were stronger predictors of diabetes than 
age, sex, and smoking/alcohol and provided an overall diabetes 
prediction accuracy of 86.22% (49). For future disease prediction, high 
levels of accuracy and recall (0.8593 and 0.4903, respectively) were 
obtained using measures of support and confidence from associative 
rules analysis (50).

5 Community detection

Following the creation of the DCN, community detection 
algorithms can be  applied to better understand the structural 
properties of the network and to elicit heterogeneous patient groups, 
an essential component of precision medicine. The existence of 
underlying shared pathophysiology results in many biological 
networks showing a high degree of natural clustering, with highly 
interlinked local regions in the network known as either modules, 
groups, or communities (33). Detecting and characterizing these 
modules is one of the most widely used applications in network 

analysis, and in biological networks, it can help explain the 
development and complex nature of biological systems (53, 54). 
Detecting these modules helps identify disease phenotypes, highlight 
opportunities for intervention and/or screening, and study the 
multimorbidity patterns that underlie primary diagnoses such as 
depression (48, 55), CHF (28), and COPD (56).

5.1 Modularity and community detection 
algorithms

Modularity is a common network metric used to describe the 
extent of clustering within the network and is defined as the 
fraction of the edges that fall within the given groups of nodes 
minus the expected such fraction if edges were distributed at 
random. Values range from −1 to +1. If positive, then the number 
of edges within groups exceeds the number expected based on 
chance (30) indicating the presence of community structure. A 
range of community detection algorithms exist with different 
approaches used to identify clustering, including using edge-
betweenness (Girvan–Newman), neighboring node labels (label 
propagation), maximizing the local modularity score (Louvain), 
and random walks (Walktrap). Since optimizing the modularity 
is a highly effective approach for detecting the possible divisions 
of a network (57), this was the basis for creating the Louvain 
algorithm (58). In a comparison of the Louvain, label propagation, 
Walktrap, and Girvan–Newman algorithms for clustering a large 
disease comorbidity network (34), the label propagation 
algorithm detected more than two times the number of 
communities than the Louvain, highlighting the value of 
considering multiple algorithms to fully examine network 
structure. In addition, aging also increased the number of 
clusters, revealing an increase in the different types and layers of 
multimorbidity burden that occur with aging (34). DCNs can 
have very high levels of modularity, reflecting the high degree of 
disease clustering among patients and the presence of disease 
phenotypes. Using a dataset of hospital admissions from Madrid, 
Spain, modularities ranging from 0.78 to 0.90 were observed, 
containing up to 60 different disease diagnosis communities (34). 
When predicting high-cost patients, after retaining edges that 
were significant, 120 non-overlapping communities were detected 
among 653 disease nodes using the Louvain algorithm, which 
included nine major disease groups (32).

To further assist with phenotyping, clinical measures are 
sometimes added as a separate node type into the disease–disease 
network prior to applying community detection algorithms. This 
approach was used to determine COPD phenotypes using 10 
clinically relevant variables (including age and forced expiratory 
volume) added to a network of 79 comorbidities (30). A community 
detection algorithm identified four modules that reflected 
meaningful syndromic patterns of COPD (older cardiovascular, 
younger current smokers with behavioral risk factors and 
psychiatric conditions, mild–moderate airflow obstruction with 
metabolic syndrome including high body mass index [BMI], 
gastro-esophageal reflux, osteoporosis, and degenerative joint 
disease), suggesting an opportunity for targeted screening (30). 
Additionally, the four modules identified among the non-COPD 
controls had distinctly different clinical phenotypes (cardiovascular, 

BOX 2 Statistical approaches for measuring edge strength.

Disease-disease relative risk

For a comorbidity network, the RR of observing a pair of diseases i and j affecting 

the same patient is given by:

 
RR

C N

P Pij
ij

i j
=

Where, Cij  is the number of patients affected by both diseases, N is the total 

number of patients in the population and Pi and Pj  are the prevalence of 

diseases i and j.

Disease-disease ϕ-correlation

For a disease comorbidity network, the Phi-correlation, which is Pearson’s 

correlation for binary variables, can be expressed mathematically as:
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Disease co-occurrence correlation

The formula for the co-occurrence correlation (CC) of two diseases, x and y is:

 CC
C
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�

�
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2 2

Where, Cxy  is the co-occurrence of disease x and y across patient encounters, 

Px and Py are prevalence of diseases x and y respectively.

Log odds ratio

For P diagnoses categories, a P×P weight matrix is created, with each off-diagonal 

element (logORij) representing the associations between diagnosis category i and 

diagnosis category j in the form of a log odds ratio. Using logistic regression with 

elastic net penalty (51), the logOR for some i, j pairs is set to zero indicating zero 

or undetectable associations.
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anxiety, and depression; older with cardiovascular risk; and high 
BMI with obstructive sleep–apnea).

5.2 Other clustering methods

5.2.1 Local clustering coefficient
Separately from community detection, which measures the overall 

level of clustering in a network, the level of local clustering around 
each node can be measured using the local clustering coefficient. This 

quantifies how likely it is that the neighbors of a node are also 
connected. The clustering coefficient of a node u is:

 
C

T u
u uu �

� �
� � � � �� �

2
1deg deg

where T(u) is the number of triangles through node u and deg (u) 
is the degree of u. It is based on the triangle count, where a triangle is 
a set of three nodes in which each node is related to the other two 

FIGURE 2

A bipartite graph network of patients (small blue circles) and their ICD-10 disease chapters (larger green circles). Patients who are closer to one another 
are more similar. For example, patients at the center of the network share more diseases than those at the edge of the network. Similarly, ICD-10 
disease chapters that are closer together are also more similar since they tend to co-occur in patients more often. From this single bipartite network, 
separate disease–disease and patient–patient networks can be created that reflect disease and patient similarity, respectively. The data are from a set 
of n  =  737 patients attending a hospital geriatric ward (39).

FIGURE 3

Creation of a unipartite disease–disease network from a bipartite disease–patient network using a node similarity algorithm. Diseases are indirectly 
related to one another in the bipartite patient network due to patients having more than one disease. More frequently shared disease pairs are more 
similar and are given a higher edge weight in the unipartite disease–disease network to reflect their stronger similarity. The node size reflects the 
number of patients with the named disease.
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nodes. Triangle counts can also be used to detect communities and 
measure their cohesiveness. In a univariate patient–patient network 
with diabetes and non-diabetes patients, there were 38 tightly 
connected communities, and the clustering coefficient was a 
significant predictor of future diabetes (35).

5.2.2 K-nearest neighbors
The K-nearest neighbors (K-NN) algorithm compares the given 

properties of each node, and the k nodes where these properties are 
most similar are the k-nearest neighbors. The input of this algorithm is 
a homogeneous graph and does not need to be connected. Instead, 
relationships are created between each node and its k-nearest neighbors, 
and a distance value for all node pairs in the graph is calculated based 
on node properties, for example, a patient’s age. When predicting length 
of stay (LOS), aggregated LOS functions (mean, SD, min, and max) 
were calculated for each patient using their K = 100 nearest neighbors in 
a patient similarity network and then used for predicting LOS (59).

5.2.3 Hierarchical clustering
The identification of clusters using hierarchical clustering 

based on similarity scores is an alternative way to reduce the 
dimensionality of datasets for predicting health outcomes, ensure 
adequate separation of clusters, and enable varying the number of 
clusters. This approach was used for predicting diabetes 
readmission and the severity of CHF (60). First, a DCN was created 
using the Jaccard similarity score for ICD-9CM codes, and then a 
distance matrix for the disease codes was created using the formula 
Distance DA,B = 1 − SA,B where SA,B is the similarity score for nodes 
A and B. The distance matrix was used as the dataset for 
hierarchical clustering using the inverse variance method. Patients 
were then given binary codes for each disease that matched a 
disease cluster. Using between 5 and 40 clusters considerably 
increased predictive accuracy for heart rate and blood pressure 
outcomes in CHF patients, with gains of between 10.7 and 22.1% 
in predictive accuracy for CHF severity of condition prediction 
and 4.65–5.75% in diabetes readmission prediction.

5.2.4 Temporal phenotyping
To predict incident CHF and 1-year hospitalization among 

patients with CHF and COPD, novel temporal graph phenotypes were 
created by combining disease diagnosis and drug class data (61). 
Nodes in the graph represented medical events in the electronic health 
record (EHR), including disease diagnosis and drug prescribing, and 
directed edges represented the temporal sequence between events, 
which were weighted by frequency. The temporal phenotype graphs 
were embedded as vector representations, which were then used in 
support vector machine algorithms. Accuracies of area under the 
curve (AUC) = 0.73 and AUC = 0.72 were achieved for prediction of 
1-year hospitalization after CHF and for early prediction of CHF, 
respectively, which were both higher than three alternative baseline 
methods. Different temporal phenotypes were identified for 
hospitalization and incident CHF, with differing disease and 
medication “hubs” for each phenotype.

5.3 Unipartite patient-patient similarity 
network

Another approach to patient phenotyping involves developing 
unipartite patient–patient networks, also known as a patient similarity 
network (PSN). These networks consist of only patient nodes that are 
extracted from the bipartite patient–disease graph based on their 
shared diseases. The shared edges of the PSN are created based on the 
same similarity algorithms described for the creation of the 
DCN. Novel graph-based features can be generated for each patient 
node, including community membership, once a community 
detection algorithm has been applied to the PSN. These communities 
can be considered to reflect clinical phenotypes since the modules will 
be based on patients with a common set of shared diseases. In addition 
to clustering using community detection algorithms, clustering can 
also be  performed based on only the node’s (patient) properties, 
including demographic information and clinical characteristics. The 
resulting set of communities from the different medical domain data 

FIGURE 4

A DCN after application of a node similarity algorithm to the disease–patient network in Figure 2. The unipartite projection is created using the 
resulting Jaccard similarity scores, with all edges of the disease–disease network being retained (Jaccard similarity score  >  0). The width and the color 
intensity of the network edges reflect the Jaccard similarity score. The color of the nodes is based on a community detection algorithm that identified 
two broad disease clusters among this geriatric population. The size of the nodes reflects the number of connections (degree centrality) for the disease 
chapter.
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can then be used for downstream tasks, including risk prediction. 
Alternatively, separate PSNs can be used as input for heterogeneous 
graph neural networks (46).

The development of a PSN was used for the prediction of future 
diabetes, with 38 communities detected from a weighted unipartite 
projection with edge weights inversely proportional to the degree 
(number of connections) of each node (62). The network modularity of 
0.57 with an average clustering coefficient of 0.808 reflected highly 
connected communities (35). Although cluster membership was not 
used in the prediction models, eigenvector centrality, closeness 
centrality, and the clustering coefficient were important predictors of 
diabetes, indicating that the similarity of patients based on shared 
diseases can assist with diabetes diagnosis. When predicting LOS in 
older patients with chronic disease, the K-NN algorithm was applied to 
a PSN created using the Jaccard similarity score to detect the K = 100 
nearest neighbors. For each node (patient), aggregated LOS functions 
(mean, SD, min, and max) were then calculated based on their 
neighbors and used with baseline information and features from a DCN 
to predict LOS (59). The PSN features accounted for 33.1% of the feature 
importance for LOS prediction using a random forest algorithm that 
achieved an R2 = 0.347.

5.4 Bipartite similarity network

A third network that projects the patient–patient similarity 
relationships and the patient–disease relationships can be created 
as a basis for phenotyping. Community clusters are formed for 
patients and diseases together, allowing meaningful naming of the 
patient clusters. In Figure 5, a patient similarity network and a 
patient–disease network are combined into a single graph, and a 
community detection algorithm is then applied to identify 
modules. The level of patient similarity is reflected by the darkness 
of the patient–patient edges; patients in the center of the network 
are generally less similar than those at the periphery of the 
network. Node sizes indicate the number of diseases each patient 
has. Some patients form clusters related to a single disease. Patients 
with blood or skin diseases (yellow dots) all have more than one 
disease chapter diagnosis and are centered toward the center of the 
network and spread around many different diseases.

6 Graph feature extraction algorithms

Beyond node similarity and community detection algorithms, 
many other graph algorithms exist that can be used for developing 
novel features from networks that reflect the importance and influence 
of nodes in a network. These graph features can then be used for 
downstream prediction with ML classification algorithms.

6.1 Graph centrality algorithms

Centrality algorithms determine the importance of nodes in a 
network in relation to their influence in maintaining the structure of 
the network and their relevance to information flow across the 
network. They include measures of centrality (degree, betweenness, 
closeness, and eigenvector) and page and article rank (see Box 3 for 

mathematical definitions of common centrality algorithms). More 
detailed definitions of centrality algorithms have been described 
elsewhere (33).

The structural basis of a system is often loosely defined as being 
either a hierarchical, random, or scale-free network (29) with the latter 
defined by the degree distribution having a power-law tail such that 
P(k) ~ k–γ, where γ is called the degree exponent. In the context of 
multimorbidity, a scale-free network suggests the existence of central 
disease “hubs” that provide stability to the network and likely play a key 
pathogenic role in disease progression (63). Formal testing for the 
existence of a scale-free network can be performed using Vuong’s test 
to compare log-normal, exponential, and Poisson distributions and to 
determine the likely existence of disease “hubs” that could be targeted 
for intervention (28), an idea supported by the observation that node 
centrality measures are often strong predictors of health outcomes. For 
example, degree centrality, eigenvector centrality, closeness centrality, 
and betweenness centrality from a unipartite patient network defined 
by their shared diseases were each significant predictors of incident 
diabetes (35). Similarly, highly connected diseases in a COPD 
comorbidity network were strongly associated with important patient-
related outcomes, including mortality, pulmonary rehabilitation, 
quality of life, acute exacerbations, and hospitalization (30). The “hubs” 
identified in a network will likely vary according to the level of disease 
classification used (three-digit vs. four-digit ICD-9 codes) as well as the 
degree of adjustment used in selecting the edges to be retained (51). In 
an intensive care unit (ICU) patient network, the top 10 nodes by 
degree were very different in networks that did or did not adjust for 
other conditions when calculating edge strength odds ratios (64).

As a rule-of-thumb, researchers sometimes refer to the 20% of 
nodes in a network with the highest degree as the “hubs,” although this 
is an arbitrary definition since a scale-free property implies that such 
networks do not have any inherent threshold beyond which nodes are 
“hubs” (29). When examining the structure of COPD networks, the 
latter were found to be  scale-free in comparison to non-COPD 
patients, highlighting the existence of centrally important diseases 
within the COPD network (30). Specifically, approximately one-third 
of the comorbidities possessed two-thirds of the edges.

6.2 Closeness and betweenness centrality 
algorithms

Closeness centrality indicates how closely a node is linked to all 
other nodes and therefore reflects the degree of likely contagion of a 
disease to other comorbid diseases. Betweenness centrality evaluates 
how many shortest paths a particular node has between pairs of other 
nodes. Nodes with a high betweenness centrality are often called 
bottlenecks (29). In the context of comorbidity, diseases with high 
betweenness are also strong candidates for targeted therapeutic 
interventions since they act like bridges connecting other diseases and 
are likely to increase the multimorbidity burden of patients.

6.3 Eigenvector centrality algorithms

Diseases with high eigenvector centrality are those conditions 
related to more influential diseases, which may help in indicating 
which disease pairs are causally related (34). When predicting 
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hospital LOS from a multimorbidity network (MN) of older 
patients, an eigenvector centrality (EVC) score for patients 
obtained by summing the EVC of their disease nodes was an 
important factor in predicting LOS, improving the R2 by 18.7% 
beyond patient clinical and demographic data (59). In a DCN with 
120 communities including nine major disease groups, EVC scores 
improved overall accuracy, sensitivity, and specificity, which were 
69.52, 78.81, and 69.02%, respectively, for predicting high-cost 
patients (32). Degree centrality, eigenvector centrality, closeness 
centrality, betweenness centrality, and the clustering coefficient, 
from separate unipartite patient–patient and disease–disease 
networks, together considerably improved prediction accuracy for 
diabetes (AUC = 0.911) (35). Eigenvector centrality (measuring 

patient influence in the network), closeness centrality (measuring 
the closeness to other patients), and age had the highest Gini 
feature importance.

6.4 Aggregated network features

It is also informative to describe a network using graph 
parameters that capture the overall size, topology, and complexity 
of the network. These include the total node count, total edge 
count, modularity, number of communities, network diameter, 
graph density, average degree, path length, and clustering 
coefficient. The graph density in an undirected network is the total 
number of edges divided by the total number of possible edges, 
indicating the degree of possible transition between nodes. It is 
useful for comparing network structures and can be compared 
using a z-score test with bootstrapped or jack-knife standard errors 
created using resampling of the graph vertices (64). Network 
diameter is the average number of edges between two nodes, and 
average path length is a measure of node closeness obtained by 
measuring the shortest path between a node and all other nodes in 
the graph. Each of these parameters was described when creating 
a patient similarity network to predict the risk of type 2 diabetes 
(35). Average path length, average degree, and network diameter 
were determined when developing different multimorbidity 
networks across the lifespan (34). In COPD and CHF 
multimorbidity disease–disease networks, different graph densities 
were obtained for men and women (0.249 and 0.180, respectively) 
as well as different average degrees (25.9 and 17.5, respectively), 
demonstrating the high, although still differing, level of 
connectivity of diseases for patients in these populations (28). 
Similarly, the network density for COPD patients displayed unique 
disease–disease links and was much higher than that of non-COPD 
patients, with 79 nodes and 428 links versus 56 nodes and 149 links 
(30). Other measures used to describe bipartite networks (with 
nodes U and V) include linkage density D = L(|U| + |V|), 
connectance (the fraction of all possible links (L) that are realized, 
C = L/(|U| × |V|)), generality G = L/|U|, vulnerability V = L/|V|, and 
web asymmetry W = (|V|–|U|)/(|U| + |V|) (33).

7 Graph embedding (graph 
representation learning)

Traditional ML and deep learning techniques generally 
perform well when applied to medical data due to the regular 
tabular data structure, which provides high translational invariance 
to new data. However, graphs, including patient and disease 
networks, are typically irregular in shape and high-dimensional. 
To become suitable for analysis, a graph must therefore 
be transformed into fixed-dimensional vectors that can be used as 
new features for node and edge prediction. Graph representation 
learning aims to obtain low-dimensional vector representations of 
graph entities (e.g., nodes, edges, subgraphs, etc.) whilst preserving 
graph structure, semantics, and entity relationships, which requires 
specifying non-linear transformation functions (20). Thus, the 
embedding is optimized to ensure that nodes with similar network 
neighborhoods are also close in the vectorial space (and algebraic 

BOX 3 Common centrality algorithms.

Degree centrality

Degree centrality, also known as the node of a degree, is the simplest measure of 

node centrality and is a count of the number of nodes linked to the node. It can 

be interpreted as the ability of a node to catch and to propagate information flow 

through the network. A normalized form of the degree centrality is computed as:

Normalized degree centrality (u) =
degree u

N
� �

�1
where N is the size of the network (number of nodes).

Eigenvector centrality

Eigenvector centrality rests on the concept of a node being more important if it 

has important neighboring nodes since connections to these influential nodes 

will increase the influence of the given node. The influential effect is modeled by 

making the degree of each node proportional to the average centralities of its 

neighbors. For the adjacency matrix A, where Auv = 1 if node u is connected 

to node v, the eigenvector centrality for node u is:

1
,Ax = x, u = 1, 2

n

u uv v
v

x A xλ
=

= ∑

where, λ is a unique positive eigenvalue.

Closeness centrality

According to closeness centrality, a node is crucial if it has small, shortest-path 

lengths to all other nodes. The centrality closeness of the node u, Cc (u), is defined as:

( )cC  (u) 1
,v Nd u v

∈

=
∑

where, N is the set of nodes in the network and d (u, v) is the shortest-path length 

between u and v.

Betweenness centrality

Betweenness centrality considers a node as important when it lies on many 

shortest-paths between other nodes. The betweenness centrality of the node u, 

Cb (u), is defined as:

( )
bC  (u) st

sts v t

uσ
σ≠ ≠

= ∑

where, � st u� �  is the number of shortest-paths between s and t that contain u, 

and σ st  is the shortest-path between s and t.
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operations performed in this learned space reflect the network’s 
topology). In biological networks, this also reflects the local 
hypothesis that, for example, highly similar pairs of protein 
embeddings suggest similar phenotypic consequences. Similarly, 
the shared-components hypothesis requires that two nodes with 
significantly overlapping sets of neighbors should have similar 
embeddings, owing to shared message passing with, for example, 
highly similar disease embeddings implying shared disease-
associated cellular components (20). Graph embedding models 
include graph kernels, matrix factorization-based models, shallow 
models, as well as deep neural network models, and non-Euclidean 
models that allow end-to-end prediction using the graph as input 
data (65) (Figure 1).

7.1 Graph kernels

Graph kernels were an early method used to learn graph 
embeddings by considering the similarity of surrounding nodes. 
Graph kernels aim to compare graphs or their substructures (e.g., 
nodes, subgraphs, and edges) by measuring their similarity, which is 
what lies at the core of the unsupervised learning of graphs. There are 
several strategies to measure the similarity of pairs of graphs, such as 

graphlet kernels, WL kernels, random walk, and shortest paths. The 
main idea of graphlet kernels is to count the number of different 
graphlets with the same size in a graph (65, 66).

7.2 Matrix factorization-based models

Although graph kernels work well on small graphs, they have 
limitations in learning node embeddings when working with large and 
complex graphs. Matrix factorization models are based on singular 
value decomposition to find eigenvectors in the latent space, thereby 
reducing the high-dimensional matrix of graphs (e.g., adjacency 
matrix, Laplacian matrix) into a low-dimensional space. The 
advantages of matrix factorization-based models include the small 
data requirements to learn embeddings in comparison to other 
methods, such as neural network-based models. They also provide 
good graph coverage for the proximity of all nodes in the graph. 
However, the computational complexity of matrix factorization is high 
for large graphs with millions of nodes due to the time it takes to 
decompose the matrix into a product of small-sized matrices. 
Importantly, models based on matrix factorization cannot handle 
incomplete graphs with unseen and missing values, and matrix 
factorization-based models can also not learn generalized vector 

FIGURE 5

A dual relationship network obtained from projecting both patient–patient similarity relationships and patient–disease relationships. Patient similarity is 
reflected by the darkness of the patient–patient edges. Node sizes indicate the number of diseases each patient has. Communities were detected 
using the Louvain community detection algorithm.
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embeddings, which are required for node and edge prediction of 
new data.

7.3 Shallow models (DeepWalk, Node2vec)

Shallow models involve compression of the N × N adjacency 
matrix of the N graph nodes into 2-D embedding vectors (an N × 2 
matrix) using a neural network with a single hidden layer. Larger real-
world networks with millions or even billions of nodes will typically 
have more than two dimensions (128–256 or higher) to represent 
larger real-world graphs. This approach provides a much lower 
dimensional feature space and an effective solution for graph-related 
downstream tasks. Various shallow models have been proposed to 
learn embeddings with different strategies to preserve graph structure. 
These typically implement a sampling technique to capture graph 
similarity, a Euclidean distance function to measure embedding 
similarity, and an optimization procedure such as a shallow neural 
network that minimizes the loss function between the graph and 
embedding similarity functions (20). DeepWalk and Node2Vec were 
two pioneer models to use shallow neural networks and allow 
preservation of the node neighborhoods based on random walk 
sampling, which could capture global information in graphs (65). The 
main idea of the random walk strategy is to gather information about 
the graph structure to generate paths that can be treated as sentences 
in documents. A graph node neighbor is randomly selected, a walk is 
made to that neighbor, and this continues until sufficient node 
sequences are obtained. The distances between node representations 
in the embedding space correspond to the frequency with which a 
particular node is visited in random walks originating from another 
node. The random pathways are converted into sequences, which are 
then clustered into similar nodes. Due to its purely random nature, 
DeepWalk had limitations in capturing graph structure, which were 
resolved using Node2vec, which used a biased random walk sampling 
process with two parameters (p and q) to adjust the random walks. 
This allowed the model to capture more information on the graph 
structure both locally and globally by introducing constraints when 
deciding on the subsequent nodes visited.

7.4 Non-Euclidean models

Most existing graph embedding models aim to learn embeddings 
in Euclidean space, which may not deliver good geometric 
representations and metrics. Recent studies have shown that 
non-Euclidean spaces are more suitable for representing complex 
graph structures. The non-Euclidean models can be categorized as 
hyperbolic, spherical, and Gaussian (65).

8 Graph machine learning

Shallow embedding methods are termed transductive algorithms 
since although they capture the semantics of domain data to offer a 
defined interpretation, they can only learn and return embedded 
values for their training data. Obtaining the embedding vector for 
unseen data is not possible. Shallow models such as DeepWalk and 
Node2Vec also mainly work well on homogeneous graphs and 

generally ignore information about the attributes/labels of nodes that 
could be  informative for graph representation learning. Inductive 
node embedding algorithms include graph neural networks (GNNs) 
and non-GNNs. The latter include GraphSAGE, FastRP (using 
random projection and matrix operations), and HashGNN (hashing 
function architecture).

8.1 Graph neural networks

Graph neural networks (GNNs) are a deep learning family of 
models introduced in 2005 after it was hypothesized that since 
information can be  represented naturally using graphs, it should 
be possible to process graph structure data directly rather than using 
the traditional approach of node embedding, in which information 
may be lost (67). However, since the aim of GNNs is to aggregate the 
information from graph structures, which consist of non-Euclidean 
data structures, GNNs still borrow ideas and methods from graph 
embedding and also from convolutional neural networks, in which the 
data are passed through a series of layers to learn new representations 
(68). Graph embeddings in GNNs are generated via (neural) message 
passing over a series of propagation layers; each layer passes neural 
messages based on messages passed in the previous layer. This is 
followed by the aggregation of messages among neighboring nodes 
and the updating of representations, in which a non-linear 
transformation is applied using the aggregated message and the 
embedding from the previous layer. A myriad of GNN architectures 
define different messages, aggregation, and update schemes to derive 
deep graph embeddings (20).

In contrast with methods for shallow network embedding, GNNs 
generate representations of the graph components that capture the 
graph network topology and the node features (69) enabling fully 
end-to-end prediction of node properties, edges, clustering, and 
similarity. GNNs also capture higher order and non-linear patterns 
through multi-hop propagation within several layers of neural 
message passing. Their weaknesses include high complexity, scaling 
difficulties, and low interpretability and explainability. The current 
research and application domains of GNNs have considerably 
increased in the last 12 years due to the growing interest in graph 
structure data mining (65) and they have more recently become more 
widely used in graphical analysis due to their excellent performance. 
In medicine, GNNs are seen as an emerging field for medical 
diagnosis, treatment, and disease prediction (22). Examples of their 
use to date include predicting drug–drug interactions (43), modeling 
polypharmacy side effects, and learning the temporal patterns of 
disease development in comorbidity networks (47). In the latter, the 
mapping of patient histories to edge weights to model temporal 
representations of disease trajectories enabled the simultaneous 
prediction of diseases and a better understanding and representation 
of disease pathology. Several forms of graph NNs now exist, including 
graph convolutional networks (GCN) that induce informative latent 
feature representations of nodes. The embedded vectors of each node 
are the transformed and weighted sum of the feature vectors of its 
neighbors. The deeper the network, the larger the neighborhoods, 
such that global information rather than purely local information is 
disseminated to each graph node to learn better node embeddings. 
Other graph NNs include graph attention networks (GAT), graph 
isomorphism (GIN), JK-Net (jumping knowledge network), and 
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message passing neural networks (MPNN) (70) that are designed to 
integrate existing medical data with known medical ontologies.

8.1.1 Example: predicting self-harm
A disease–disease comorbidity network of 938 diseases was 

combined with patient information and a novel Diagnosis to 
Vector (Dx2vec) embedding model to develop a deep neural 
network (DNN) for predicting self-harm (40). The comorbidity 
network was created using 2,323 self-harm cases and 46,460 
controls for a 1:20 ratio. The embedding model simultaneously 
represented the diagnoses, the comorbidity patterns among 
diagnoses, and the temporal patterns of historical inpatient 
admissions for each patient as low-dimensional feature vectors. 
The DeepWalk embedding algorithm was first used to capture the 
closeness of diseases in the network, and max-pooling was then 
used to capture the most distinct features of the embedded diseases 
at each episode. These embedding vectors are then fed into a long 
short-term memory (LSTM) unit to learn the final Dx2vec 
embedding and capture both the temporal patterns of multiple 
inpatient admission episodes and the topology of the comorbidity 
network. The Dx2vec embedded vector was concatenated with the 
indicators of diagnoses, age, and gender of the patients, and this 
final vector was then fed into a deep neural network (DNN) to 
generate a risk prediction model for self-harm in the next 
12 months. An accuracy of AUC = 0.89 compared with a baseline 
DNN that did not have access to the graph network of AUC = 0.85. 
The sensitivity of the Dx2vec and baseline models were 0.72 and 
0.65, respectively.

8.2 Heterogeneous graph NNs

Although GNNs can be applied to disease comorbidity networks 
to learn their structural nature, such graphs are homogeneous, 
consisting of only disease nodes, and fail to capture the heterogeneous 
nature of medical data, which includes demographic information, 
laboratory results, medication prescriptions, medical imaging, and 
text from patient note codes. Heterogeneous medical domain graphs 
consist of different medical entities connected by multiple relationship 
types to enable the merging of data from different sources and the 
creation of a continuous flow of information.

8.2.1 Example: disease prediction
The ability to predict separate ICD-9 disease diagnosis codes 

in ICU patients was examined using a heterogeneous graph 
similarity neural network (HSGNN) (46). A heterogenous graph 
consisting of multiple medical entities is first transformed into 
multiple similarity subgraphs using the different meta-paths 
(visit–disease–visit, medication–visit–patient, disease–visit–
medication) contained within the initial overall heterogeneous 
graph. From the separate subgraphs, a new graph is learned using 
similarity matrices and meta-path importance from the subgraphs. 
In this way, the structural information relating to relationships 
between medical entities present in the original graph was 
maintained, and the initial separation into homogeneous graphs 
also prevented the over-smoothing of the data. Finally, the new 
overall graph is fed into the GNN. The HSGNN outperformed 
other baseline GNN models when applied to more than 46,000 

patients in the MIMIC-III dataset, improving the AUC for ICD-9 
classification disease diagnosis at both the patient level and at the 
visit level (46).

8.2.2 Example: diabetes prediction
The clinical diagnosis of diabetes was modeled by building a 

multi-relational graph using patient demographics, laboratory 
features, medications, and the interactions between them, as well 
as two other graphs based on node characteristics and the higher 
order semantics of the nodes. These three graphs were then 
combined into a heterogeneous network (with multiple node and 
edge types), which was jointly optimized using GNNs in disease 
prediction (71). The model markedly improved the AUC for 
diabetes prediction from 76% using a standard GNN to 92%, 
demonstrating that division of the multi-relational graph into 
separate components could create a higher order semantic graph 
that incorporates complex interactions between medical entities 
and improves disease prediction.

8.2.3 Example: a heterogeneous GNN for online 
disease diagnosis based on symptoms

A heterogeneous GraphNN named the Healthcare Graph 
Convolutional Network (HealGCN) harnessed the complex 
interactions between users, symptoms, and diseases in EHR data 
to develop a disease diagnosis service for online users, including 
primary care doctors and patients (72) that incorporated a graph-
based symptom retrieval system (GraphRet) to provide a list of 
relevant alternative symptoms. The model showed around a 5% 
improvement in accuracy compared to baseline models including 
GraphSAGE and Med2Vec, which ignore the complex interaction 
types between nodes.

8.2.4 Example: a heterogeneous graph for 
predicting adverse drug reactions

A heterogeneous GNN was developed to improve the prediction 
of post-marketing adverse drug reactions by learning node 
representations of a heterogeneous drug–disease graph from 12 years 
of healthcare claims data (73). The GNN aggregated the information 
of each drug/disease node, and the weighted sum of neighboring node 
features in previous GNN layers were used as node features for 
subsequent layers. The performance of the algorithm for predicting 
drug–ADR pairs was superior to that of a logistic regression model 
and neural network (AUC = 0.795 vs. 0.631 and 0.739, respectively). 
Combining several forms of the algorithm also predicted ADRs not 
present in the database.

9 Knowledge graphs

9.1 Knowledge graphs for precision 
medicine

A knowledge graph (KG) has been defined as a graph of data 
intended to accumulate and convey knowledge of the real world, 
whose nodes represent entities of interest and whose edges represent 
the different relations between these entities (74). The term 
knowledge graph was first coined by Google in 2012 when they 
developed them for use in their next-generation search engines, 
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which recognized not only the objects in a search but also the 
relationship between them (75). In addition to being widely adopted 
for use in natural language processing tasks (76), KGs are used for 
varied purposes in the biomedical domain, including studying gene 
interactions, disease phenotypes, drug interactions, patient diagnoses, 
and patient–treatment predictions (20). In addition to combining 
information across different medical domains, including drugs, 
genes, proteins, and diseases, an important advantage of using KGs 
in the context of precision medicine is their inherent ability to 
constrain the vast solution space when dealing with multimodal 
health data for prediction (29, 77). KGs can also reveal insights into 
the pathology of diseases since disease comorbidity reflects the 
shared molecular mechanisms or environmental factors between 
diseases (27). For example, KGs were used to make novel gene–
disease predictions for autism spectrum disorder (24). Within 
multimorbidity, KGs have the potential to accelerate a precision 
medicine approach to healthcare by efficiently combining knowledge 
from multiple datasets, including those relating genes, proteins, 
molecules, drug compounds, and diseases, to develop a better 
understanding of comorbidities or specific diseases. By further 
integrating patient clinical records into networks, graph 
representation learning of EHRs, and knowledge databases, we can 
generate predictions for disease and treatments tailored to individual 
patients that reduce the risk of ADRs (20, 73, 78).

9.1.1 Example: treatment recommendation with 
reduced adverse drug reactions

To customize medication recommendations for patients with 
complex health conditions and reduce drug–drug interactions, the 
Graph Augmented Memory Network (GAMENet) integrated a 
drug–drug knowledge graph with longitudinal patient EHR data. 
It was trained end-to-end using a GCN to provide both more 
effective and safer personalized recommendations, including a 
reduction in drug–drug interactions from 7.5 to 3.9% (78). 
GAMENet also outperformed baseline models in predicting a 
patient’s current set of treatments (AUC = 0.69) among 1,058 test 
patients from the MIMIC-III dataset receiving an average of 
14 medications.

9.1.2 Example: adverse drug reaction prediction
The detection of ADRs was developed using 12 years of healthcare 

claims data to create a heterogeneous KG of prescription and disease 
codes in combination with a GNN. Proximity-based node embedding 
was obtained for the drugs and diseases using the Skip-gram model, 
which also captured temporal sequences. This was fed to a GNN that 
leveraged multilayer message passing to predict ADRs (73). Newly 
described drug–ADR pairs were predicted with high probability 
(0.972–0.985).

9.1.3 Example: medication recommendation
Shallow embedding models were used for medication 

recommendation by developing a network of MIMIC-III patients, 
medicines, and medical knowledge (ICD-9 ontology and DrugBank). 
Recommendations were generated based on link predictions for a 
bipartite patient–medicine projection with the top-ranked 
medications selected for treatment (79). Compared to three baseline 
models, the KG achieved the highest prediction accuracy (0.611) and 
the lowest drug–disease interaction rate (0.17%).

9.1.4 Example: patient diagnosis
An automated knowledge graph was created from EHR medical 

notes relating to diseases and symptoms to improve patient diagnosis 
(80). There were 156 diseases and 491 symptoms generated as medical 
concepts from the ED data of 273,174 patients. Compared to clinician 
expert opinion, the KG had a precision of 0.87 at a recall of 0.50 for 
detecting disease–symptom edges. The KG also surpassed the recall 
of the Google Health Knowledge Graph (GHKG), suggesting that the 
new graph detected relevant symptoms not suggested by the GHKG.

9.2 Open-source knowledge graphs

Many large-scale open-source disease-related knowledge graphs have 
now been generated using publicly available datasets, some of which are 
available to researchers as open access resources. These include PrimeKG 
(precision medicine knowledge graph) (81), Hetionet (heterogeneous 
network) (82), HINGRL (heterogeneous information network graph 
representation learning) (44) and SPOKE (scalable precision medicine 
open knowledge engine) (83). These have been applied for drug 
repurposing, detecting drug contraindications, discovering relationships 
between diseases and other related entities, including genes, proteins, and 
drug compounds, and for disease prediction.

PrimeKG is a knowledge graph designed to provide a holistic and 
multimodal view of diseases, using the networked relationships from 
different biological scales to support research into human disease and 
precision medicine (81). PrimeKG integrates 20 different publicly 
available resources describing more than 17,000 diseases and over 4 
million relationships representing 10 major biological scales, including 
disease-associated protein perturbations, biological processes and 
pathways, anatomical and phenotypic scales, and the entire range of 
approved drugs with their therapeutic action. PrimeKG identified an 
abundance of indications, contradictions, and off-label drug–disease 
edges (81).

Hetionet is a heterogeneous network using data from 29 publicly 
available biomedical sources, with 11 node types (including compounds, 
genes, proteins, diseases, and symptoms) and 24 relationship types 
(including compound–disease, compound–gene, and gene–disease) 
(82). The complete KG consists of 47,031 nodes, 1,552 compounds, and 
136 diseases. Hetionet was used to calculate the probability of a 
compound being a candidate treatment for diseases across 209,168 
different compound–disease pairs. The degree-weighted path count 
(DWPC) was used to estimate the prevalence of compound–disease 
paths. Of 29,044 non-treatments (compounds not currently used to 
treat a disease), 1,206 were considered in a model for treatment, of 
which 709 were significant. An overall area under the receiver operating 
characteristic (AUROC) of 97.4% demonstrated high performance in 
detecting known treatments, and the same model performed well in 
validation datasets (85.5 and 70.0%). Examples for epilepsy and nicotine 
dependence verified the high ranking of existing treatments and clearly 
showed the properties that made other non-treatments likely candidates 
for drug repurposing. Whilst the original focus of Hetionet was for drug 
repurposing, the network also identifies the biological processes 
involved in specific diseases, the drug targets responsible for causing 
specific side effects, and anatomies with transcriptional relevance for a 
specific disease.

HINGRL considers both network topology and biological 
knowledge to identify new indications for drugs by integrating 
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drug–disease, drug–protein, and protein–disease biological networks 
with the biological knowledge of drugs and diseases (44). Different 
representation strategies were applied to learn the features of the 
nodes in the heterogeneous information network from topological 
and biological perspectives. When used to predict unknown drug–
disease associations based on these integrated drug and disease 
features, HINGRL outperformed three other state-of-the-art 
algorithms proposed for drug repositioning, with an AUC of 0.8835 
and 0.9363 using separate benchmark datasets.

SPOKE is a heterogeneous biomedical knowledge graph developed 
as a basis for enabling a precision medicine approach to treatment, 
which connects patient EHRs with information from laboratories, 
procedures, and diagnoses to a knowledge network to provide real-
world patient context (84). EHRs from 878,479 patients were used to 
develop 3,233 medical concepts, including 137 diseases, which were 
overlapped with the 47,000 nodes in the knowledge network using a 
random walk algorithm. The importance of each node was determined 
based on the time spent on any node during the walk, and this 
information is then stored in embedded vectors called propagated 
spoke entry vectors (PSEVs). The study demonstrated the ability of the 
PSEVs to recover deleted disease–disease, disease–gene, compound–
compound, and compound–gene edges as well as infer new 
relationships between side effects and anatomy nodes. SPOKE now 
connects information from 41 biomedical databases and contains 
more than 21 node types and 55 edge types (83).

In an updated version of SPOKE, with 400 K knowledge nodes 
and 7,535 SEPs, SPOKE was again embedded into EHRs using the 
same modified version of the PageRank algorithm to uncover the 
hidden patterns of information existing between the concepts in the 
patient records and the knowledge nodes (85). The PSEVs improved 
prediction of multiple sclerosis (MS) for 5,752 patients 3 years before 
diagnosis (AUC = 0.83 vs. AUC = 0.60 using only EHRs) and 
provided insight into the biological drivers of MS. The same SPOKE 
KG was used for the early detection of Parkinson’s disease (86) with 
AUC accuracies of 0.77, 0.74, and 0.72 for 1, 3, and 5 years before 
diagnosis, respectively, and accuracies of 0.74, 0.70, and 0.66 in a 
validation cohort. These were all higher at each time point than 
when only EHRs were used (0.67, 0.63, and 0.56 at 1, 3, and 5 years, 
respectively).

9.3 Open-source graph databases

Many publicly available graph databases also exist for educational 
and benchmarking purposes, including the Network Repository 
Project (87) and the Open Graph Benchmark (OGB) (88) that provide 
a repository of graph datasets, allowing users to train their models in 
predicting nodes, edges, and subgraphs and to compare their 
performance against other algorithms. OGB contains a diverse set of 
challenging benchmark datasets that are large-scale (up to 100+ 
million nodes and 1+ billion edges) and include biological networks 
and knowledge graphs. The Harvard Dataverse is a general research 
dataset repository that contains graph databases, including the 
PrimeKG knowledge graph (81). The Integrated Complex Traits 
Networks (iCTNet) is an app and database that allows researchers to 
build heterogeneous networks by integrating a variety of biological 
interactions, thus offering a system-level view of human complex 
traits (77).

10 Conclusion

Experts involved in developing guidelines for treating patients 
with multimorbidity acknowledge that there exists an urgent need to 
transform the current approach to prescribing, which relies on 
guidelines developed for different populations without consideration 
of the potential for drug–disease interactions and polypharmacy that 
can result if applied to older patients with multimorbidity. The 
development of such guidelines for this population also requires using 
observational real-world data to adequately incorporate patient 
heterogeneity, in addition to borrowing information from existing 
biomedical knowledge databases. Real progress in this direction is 
now being achieved by researchers applying techniques from network 
analysis, graph ML, and open-source knowledge graphs, thereby 
creating the required basis for precision medicine approaches to 
treatment in this population. Our article provides an overview of some 
of these powerful techniques, along with examples of their application 
in the context of multimorbidity.

By developing disease comorbidity and patient similarity 
networks, an improved understanding of the structure of these 
networks is being achieved, as is the ability to transfer information 
from such graphs into formats that allow prediction of disease 
diagnosis and health outcomes. The use of network algorithms to 
identify disease hubs, significant network connections, and disease 
and patient phenotypes provides a way to identify the diseases that 
should be targeted for treatment to disrupt disease progression whilst 
also incorporating more holistic care that is based on the patient 
phenotype rather than on each individual disease. Fully end-to-end 
graph ML in both non-neural network and neural network-based 
forms allows inductive models that can predict outcomes and 
pathways on new data unseen by the original graph. These networks 
can be designed to utilize information from multiple clinical domains, 
including disease diagnoses, laboratory data, and patient reports. 
Knowledge graphs have been combined with medical concepts 
obtained from real-world health datasets to relate medical concepts to 
the knowledge of thousands of medical entities and have been shown 
to provide accurate treatment recommendations for patients whilst 
minimizing the risk of prescribing errors. In these various ways, graph 
algorithms, graph representation learning, graph neural networks, and 
knowledge graphs are providing the novel insights required to develop 
safe and holistic approaches to prescribing for older patients 
with multimorbidity.

Several important factors make network analysis especially 
suitable for addressing the issues involved in developing suitable 
precision medicine approaches for the management of multimorbidity. 
Differential treatment responses can be influenced by various aspects 
of the patient phenotype, which must be formally elicited using robust 
statistical methods, including adaptive signature design studies (89) 
to identify genetic signatures, and established community detection 
algorithms used in network analysis (53, 54) for overall patient 
phenotyping. Similarly, since disease case incidence and other health 
outcomes include random variability, analytical approaches are 
required that incorporate the stochastic nature of health events over 
time (90). Here, networks have proven useful for simultaneously 
representing the physiological interactions occurring within the 
human organism, identifying the primary mediators of information 
flow within that network, and detecting those regulated physiological 
variables that become widely disconnected over time in individuals 
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with a poor prognosis. Finally, successful modeling for precision 
medicine typically requires an element of data reduction to capture 
patient phenotypes efficiently and accurately whilst using lower 
dimensional datasets. This may involve either feature selection 
methods, in which only the most relevant physiological variables are 
selected for use in prediction (91) or unsupervised clustering methods, 
in which a large number of informative features are reduced to a 
smaller set of cluster variables, including the modules identifiable 
using community detection algorithms.

It is also important to acknowledge the limitations of network analysis 
in relation to developing a precision medicine holistic approach to 
prescribing for the older multimorbid population and the need to 
consider how network analysis might integrate with other AI-based 
machine learning algorithms that are now being leveraged to assist with 
clinical decision support. For example, whilst network analysis can 
suggest new treatments and make predictions on health outcomes, the 
best treatment policy to apply for a particular patient must still be decided 
upon, and this requires determining from the potential treatment plan 
options the plan that provides the best health outcomes. Again, rapid 
progress is being made in AI machine learning fields such as 
reinforcement learning, which uses deep learning techniques to identify 
the best policy for long-term reward (92, 93). The use of reinforcement 
learning has already achieved success in other patient populations and 
medical settings, including treating sepsis within the intensive care unit 
(94), diabetes management (95) including optimization of glycemic 
control and blood pressure (36), optimizing hemodialysis for patients 
with anemia (37), and for prescribing in cancer (38).

It is therefore hoped that by combining different AI techniques 
including network analysis, to identify candidate treatments based 
primarily on patient phenotypes, with other state-of-the-art ML 
algorithms such as reinforcement learning or recommender systems, 
reliable personalized and holistic treatment plans can be determined 
for individuals with multimorbidity. This will allow for the provision 
of clinical decision support tools that can achieve optimal outcomes 
for a highly heterogeneous patient population with very differing 
levels of clinical complexity.

Author contributions

RW: Conceptualization, Data curation, Formal analysis, 
Methodology, Visualization, Writing – original draft, Writing – review 

& editing. BK: Conceptualization, Writing – review & editing, 
Methodology. AM: Conceptualization, Writing – review & editing, 
Data curation, Resources.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Acknowledgments

Figures with graphs were created using Neo4j software with the 
Graphlytic App.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the peer 
review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmed.2023.1302844/
full#supplementary-material

References
 1. Chowdhury SR, Chandra Das D, Sunna TC, Beyene J, Hossain A. Global and 

regional prevalence of multimorbidity in the adult population in community settings: a 
systematic review and meta-analysis. EClinicalMedicine. (2023) 57:101860. doi: 
10.1016/j.eclinm.2023.101860

 2. Harrison C, Henderson J, Miller G, Britt H. The prevalence of complex multimorbidity 
in Australia. Aust N Z J Public Health. (2016) 40:239–44. doi: 10.1111/1753-6405.12509

 3. Robinson ES, Cyarto E, Ogrin R, Green M, Lowthian JA. Quality of life of older 
Australians receiving home nursing services for complex care needs. Health Soc Care 
Community. (2022) 30:e6091–101. doi: 10.1111/hsc.14046

 4. Makovski TT, Schmitz S, Zeegers MP, Stranges S, van den Akker M. Multimorbidity 
and quality of life: systematic literature review and meta-analysis. Ageing Res Rev. (2019) 
53:100903. doi: 10.1016/j.arr.2019.04.005

 5. Nunes BP, Flores TR, Mielke GI, Thumé E, Facchini LA. Multimorbidity and 
mortality in older adults: a systematic review and meta-analysis. Arch Gerontol Geriatr. 
(2016) 67:130–8. doi: 10.1016/j.archger.2016.07.008

 6. Rivera-Almaraz A, Manrique-Espinoza B, Ávila-Funes JA, Chatterji S, Naidoo N, 
Kowal P, et al. Disability, quality of life and all-cause mortality in older Mexican adults: 
association with multimorbidity and frailty. BMC Geriatr. (2018) 18:1–9. doi: 10.1186/
s12877-018-0928-7

 7. Rijken M, Struckmann V, Dyakova M, Melchiorre MG, Rissanen S, van Ginneken 
E, et al. ICARE4EU: improving care for people with multiple chronic conditions in 
Europe. Eur Secur. (2013) 19:29–31.

 8. Qumseya B, Goddard A, Qumseya A, Estores D, Draganov PV, Forsmark C. 
Barriers to clinical practice guideline implementation among physicians: a physician 
survey. Int J Gen Med. (2021) 14:7591–8. doi: 10.2147/IJGM.S333501

 9. Masnoon N, Shakib S, Kalisch-Ellett L, Caughey GE. What is polypharmacy? A 
systematic review of definitions. BMC Geriatr. (2017) 17:230. doi: 10.1186/s12877-017-0621-2

 10. Onder G, Vetrano DL, Palmer K, Trevisan C, Amato L, Berti F, et al. Italian 
guidelines on management of persons with multimorbidity and polypharmacy. Aging 
Clin Exp Res. (2022) 34:989–96. doi: 10.1007/s40520-022-02094-z

https://doi.org/10.3389/fmed.2023.1302844
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmed.2023.1302844/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2023.1302844/full#supplementary-material
https://doi.org/10.1016/j.eclinm.2023.101860
https://doi.org/10.1111/1753-6405.12509
https://doi.org/10.1111/hsc.14046
https://doi.org/10.1016/j.arr.2019.04.005
https://doi.org/10.1016/j.archger.2016.07.008
https://doi.org/10.1186/s12877-018-0928-7
https://doi.org/10.1186/s12877-018-0928-7
https://doi.org/10.2147/IJGM.S333501
https://doi.org/10.1186/s12877-017-0621-2
https://doi.org/10.1007/s40520-022-02094-z


Woodman et al. 10.3389/fmed.2023.1302844

Frontiers in Medicine 17 frontiersin.org

 11. Palmer K, Marengoni A, Forjaz MJ, Jureviciene E, Laatikainen T, Mammarella F, 
et al. Multimorbidity care model: recommendations from the consensus meeting of the 
joint action on chronic diseases and promoting healthy ageing across the life cycle (JA-
CHRODIS). Health Policy. (2018) 122:4–11. doi: 10.1016/j.healthpol.2017.09.006

 12. Panagioti M, Stokes J, Esmail A, Coventry P, Cheraghi-Sohi S, Alam R, et al. 
Multimorbidity and patient safety incidents in primary care: a systematic review and 
Meta-analysis. PLoS One. (2015) 10:e0135947. doi: 10.1371/journal.pone.0135947

 13. Davies LE, Spiers G, Kingston A, Todd A, Adamson J, Hanratty B. Adverse 
outcomes of polypharmacy in older people: systematic review of reviews. J Am Med Dir 
Assoc. (2020) 21:181–7. doi: 10.1016/j.jamda.2019.10.022

 14. Tan YY, Papez V, Chang WH, Mueller SH, Denaxas S, Lai AG. Comparing clinical 
trial population representativeness to real-world populations: an external validity 
analysis encompassing 43 895 trials and 5 685 738 individuals across 989 unique drugs 
and 286 conditions in England. Lancet Healthy Longev. (2022) 3:e674–89. doi: 10.1016/
S2666-7568(22)00186-6

 15. Buffel du Vaure C, Dechartres A, Battin C, Ravaud P, Boutron I. Exclusion of patients 
with concomitant chronic conditions in ongoing randomised controlled trials targeting 
10 common chronic conditions and registered at clinical Trials.gov: a systematic review of 
registration details. BMJ Open. (2016) 6:e012265. doi: 10.1136/bmjopen-2016-012265

 16. Kostis JB, Dobrzynski JM. Limitations of randomized clinical trials. Am J Cardiol. 
(2020) 129:109–15. doi: 10.1016/j.amjcard.2020.05.011

 17. Fröhlich H, Balling R, Beerenwinkel N, Kohlbacher O, Kumar S, Lengauer T, et al. 
From hype to reality: data science enabling personalized medicine. BMC Med. (2018) 
16:150. doi: 10.1186/s12916-018-1122-7

 18. Fraccaro P, Arguello Casteleiro M, Ainsworth JD, Buchan IE. Adoption of clinical 
decision support in multimorbidity: a systematic review. JMIR. Med Inf. (2015) 3:3. doi: 
10.2196/medinform.3503

 19. Kotiranta P, Junkkari M, Nummenmaa J. Performance of graph and relational 
databases in complex queries. Appl Sci. (2022) 12:6490. doi: 10.3390/app12136490

 20. Li MM, Huang K, Zitnik M. Graph representation learning in biomedicine and 
healthcare. Nature Biomed Eng. (2022) 6:1353–69. doi: 10.1038/s41551-022-00942-x

 21. Guo M, Yu Y, Wen T, Zhang X, Liu B, Zhang J, et al. Analysis of disease comorbidity 
patterns in a large-scale China population. BMC Med Genet. (2019) 12:177. doi: 10.1186/
s12920-019-0629-x

 22. Lu H, Uddin S. Disease prediction using graph machine learning based on 
electronic health data: a review of approaches and trends. Healthcare. (2023) 11:1031. 
doi: 10.3390/healthcare11071031

 23. Hidalgo CA, Blumm N, Barabási A-L, Christakis NA. A dynamic network 
approach for the study of human phenotypes. PLoS Comput Biol. (2009) 5:e1000353. 
doi: 10.1371/journal.pcbi.1000353

 24. Vilela J, Asif M, Marques AR, Santos JX, Rasga C, Vicente A, et al. Biomedical 
knowledge graph embeddings for personalized medicine: predicting disease-gene 
associations. Expert Syst. (2023) 40:e13181. doi: 10.1111/exsy.13181

 25. Grosdidier S, Ferrer A, Faner R, Piñero J, Roca J, Cosío B, et al. Network medicine 
analysis of COPD multimorbidities. Respir Res. (2014) 15:111. doi: 10.1186/
s12931-014-0111-4

 26. Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L. The human disease 
network. Proc Natl Acad Sci. (2007) 104:8685–90. doi: 10.1073/pnas.0701361104

 27. Rubio-Perez C, Guney E, Aguilar D, Piñero J, Garcia-Garcia J, Iadarola B, et al. 
Genetic and functional characterization of disease associations explains comorbidity. 
Sci Rep. (2017) 7:6207. doi: 10.1038/s41598-017-04939-4

 28. Carmona-Pírez J, Poblador-Plou B, Díez-Manglano J, Morillo-Jiménez MJ, Marín 
Trigo JM, Ioakeim-Skoufa I, et al. Multimorbidity networks of chronic obstructive 
pulmonary disease and heart failure in men and women: evidence from the epi Chron 
cohort. Mech Ageing Dev. (2021) 193:111392. doi: 10.1016/j.mad.2020.111392

 29. Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based 
approach to human disease. Nat Rev Genet. (2011) 12:56–68. doi: 10.1038/nrg2918

 30. Divo MJ, Casanova C, Marin JM, Pinto-Plata VM, De-Torres JP, Zulueta JJ, et al. COPD 
comorbidities network. Eur Respir J. (2015) 46:640–50. doi: 10.1183/09031936.00171614

 31. Diez D, Agustí A, Wheelock CE. Network analysis in the investigation of chronic 
respiratory diseases. From basics to application. Am J Respir Crit Care Med. (2014) 
190:981–8. doi: 10.1164/rccm.201403-0421PP

 32. Srinivasan K, Currim F, Ram S. Predicting high-cost patients at point of admission 
using network science. IEEE J Biomed Health Inform. (2018) 22:1970–7. doi: 10.1109/
JBHI.2017.2783049

 33. Pavlopoulos GA, Kontou PI, Pavlopoulou A, Bouyioukos C, Markou E, Bagos PG. 
Bipartite graphs in systems biology and medicine: a survey of methods and applications. 
Giga Science. (2018) 7:giy014. doi: 10.1093/gigascience/giy014

 34. Marzouki F, Bouattane O. Structural knowledge analysis and modeling of 
multimorbidity using graph theory based techniques. Commun Math Biol Neurosci. 
(2021) 2021:91. doi: 10.28919/cmbn/6839

 35. Lu H, Uddin S, Hajati F, Moni MA, Khushi M. A patient network-based machine 
learning model for disease prediction: the case of type 2 diabetes mellitus. Appl Intell. 
(2022) 52:2411–22. doi: 10.1007/s10489-021-02533-w

 36. Shervashidze N, Schweitzer P, Leeuwen EJv, Mehlhorn K, Borgwardt KM. 
Weisfeiler-Lehman Graph Kernels. J Mach Learn Res. (2011) 12:2539–61.

 37. Lee D, Seung H. Algorithms for non-negative matrix factorization Advances in 
Neural Information Processing 13 (Proc. NIPS: 2000). MIT Press (2001).

 38. Barajas-Martínez A, Mehta R, Ibarra-Coronado E, Fossion R, Martínez Garcés VJ, 
Arellano MR, et al. Physiological Network Is Disrupted in Severe COVID-19. Front 
Physiol. (2022) 13:848172.

 39. Dong Y, Chawla NV, Swami A. metapath2vec: Scalable Representation Learning 
for Heterogeneous Networks. Proceedings of the 23rd ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining (Halifax, NS, Canada: Association 
for Computing Machinery) (2017) 135–44.

 40. Xu Z, Zhang Q, Yip PSF. Predicting post-discharge self-harm incidents using 
disease comorbidity networks: a retrospective machine learning study. J Affect Disord. 
(2020) 277:402–9. doi: 10.1016/j.jad.2020.08.044

 41. Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. 
Advances in Neural Information Processing Systems. (2017)) 30.

 42. Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with 
graph convolutional networks. Bioinformatics. (2018) 34:i457–i66. doi: 10.1093/
bioinformatics/bty294

 43. Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, et al. 
Systematic integration of biomedical knowledge prioritizes drugs for repurposing. elife. 
(2017) 6:e26726. doi: 10.7554/eLife.26726

 44. Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY. A comprehensive survey on 
graph neural networks. IEEE Trans Neural Netw Learn Syst. (2020) 32:4–24. doi: 
10.1109/TNNLS.2020.2978386

 45. Liu Z, Li X, Peng H, He L, Yu PS. Heterogeneous similarity graph neural network 
on electronic health records. 2020 IEEE international conference on big data (big data); 
10–13 December, 2020. (2020).

 46. Han X, Xie R, Li X, Li J, Smile GNN. drug–drug interaction prediction based on 
the SMILES and graph neural network. Life. (2021) 12. doi: 10.3390/life12020319

 47. Qian Z, Alaa AM, Bellot A, Rashbass J, MVD Schaar. Learning dynamic and 
personalized comorbidity networks from event data using deep diffusion processes. 
International Conference on Artificial Intelligence and Statistics; 25–27 April, 2023. 
(2020).

 48. Hu X, Pang H, Liu J, Wang Y, Lou Y, Zhao Y. A network medicine-based approach 
to explore the relationship between depression and inflammation. Front Psych. (2023) 
14:1184188. doi: 10.3389/fpsyt.2023.1184188

 49. Khan A, Uddin S, Srinivasan U. Chronic disease prediction using administrative 
data and graph theory: the case of type 2 diabetes. Expert Syst Appl. (2019) 136:230–41. 
doi: 10.1016/j.eswa.2019.05.048

 50. Folino F, Pizzuti C, Ventura M. A comorbidity network approach to predict disease 
risk. Information Technology in Bio- and Medical Informatics, ITBAM 2010. September 
1–2, 2010. (2010).

 51. Zhao B, Huepenbecker S, Zhu G, Rajan SS, Fujimoto K, Luo X. Comorbidity 
network analysis using graphical models for electronic health records. Front Big Data. 
(2023) 6:6. doi: 10.3389/fdata.2023.846202

 52. Yingfan L, Hong C, Jiangtao C. Revisiting k-Nearest neighbor graph construction 
on high-dimensional data: experiments and analyses. arXiv. (2021). doi: 10.48550/
arXiv.2112.02234

 53. Lorenz DM, Jeng A, Deem MW. The emergence of modularity in biological 
systems. Phys Life Rev. (2011) 8:129–60. doi: 10.1016/j.plrev.2011.02.003

 54. Newman ME, Girvan M. Finding and evaluating community structure in 
networks. Phys Rev E. (2004) 69:026113. doi: 10.1103/PhysRevE.69.026113

 55. Qiu H, Wang L, Zeng X, Pan J. Comorbidity patterns in depression: a disease 
network analysis using regional hospital discharge records. J Affect Disord. (2022) 
296:418–27. doi: 10.1016/j.jad.2021.09.100

 56. Faner R, Agustí A. Network analysis: a way forward for understanding COPD 
multimorbidity. Eur Respir J. (2015) 46:591–2. doi: 10.1183/09031936.00054815

 57. Newman MEJ. Modularity and community structure in networks. Proc Natl Acad 
Sci. (2006) 103:8577–82. doi: 10.1073/pnas.0601602103

 58. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of 
communities in large networks. J Stat Mech. (2008) 2008:10008. doi: 
10.1088/1742-5468/2008/10/P10008

 59. Hu Z, Qiu H, Wang L, Shen M. Network analytics and machine learning for 
predicting length of stay in elderly patients with chronic diseases at point of admission. 
BMC Med Inform Decis Mak. (2022) 22:62. doi: 10.1186/s12911-022-01802-z

 60. Sideris C, Pourhomayoun M, Kalantarian H, Sarrafzadeh M. A flexible data-driven 
comorbidity feature extraction framework. Comput Biol Med. (2016) 73:165–72. doi: 
10.1016/j.compbiomed.2016.04.014

 61. Liu C, Wang F, Hu J, Xiong H. Temporal phenotyping from longitudinal electronic 
health records: a graph based framework. Proceedings of the 21th ACM SIGKDD 
international conference on knowledge discovery and data mining; Sydney, NSW, 
Australia. (2015). 705–714.

https://doi.org/10.3389/fmed.2023.1302844
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1016/j.healthpol.2017.09.006
https://doi.org/10.1371/journal.pone.0135947
https://doi.org/10.1016/j.jamda.2019.10.022
https://doi.org/10.1016/S2666-7568(22)00186-6
https://doi.org/10.1016/S2666-7568(22)00186-6
https://doi.org/10.1136/bmjopen-2016-012265
https://doi.org/10.1016/j.amjcard.2020.05.011
https://doi.org/10.1186/s12916-018-1122-7
https://doi.org/10.2196/medinform.3503
https://doi.org/10.3390/app12136490
https://doi.org/10.1038/s41551-022-00942-x
https://doi.org/10.1186/s12920-019-0629-x
https://doi.org/10.1186/s12920-019-0629-x
https://doi.org/10.3390/healthcare11071031
https://doi.org/10.1371/journal.pcbi.1000353
https://doi.org/10.1111/exsy.13181
https://doi.org/10.1186/s12931-014-0111-4
https://doi.org/10.1186/s12931-014-0111-4
https://doi.org/10.1073/pnas.0701361104
https://doi.org/10.1038/s41598-017-04939-4
https://doi.org/10.1016/j.mad.2020.111392
https://doi.org/10.1038/nrg2918
https://doi.org/10.1183/09031936.00171614
https://doi.org/10.1164/rccm.201403-0421PP
https://doi.org/10.1109/JBHI.2017.2783049
https://doi.org/10.1109/JBHI.2017.2783049
https://doi.org/10.1093/gigascience/giy014
https://doi.org/10.28919/cmbn/6839
https://doi.org/10.1007/s10489-021-02533-w
https://doi.org/10.1016/j.jad.2020.08.044
https://doi.org/10.1093/bioinformatics/bty294
https://doi.org/10.1093/bioinformatics/bty294
https://doi.org/10.7554/eLife.26726
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.3390/life12020319
https://doi.org/10.3389/fpsyt.2023.1184188
https://doi.org/10.1016/j.eswa.2019.05.048
https://doi.org/10.3389/fdata.2023.846202
https://doi.org/10.48550/arXiv.2112.02234
https://doi.org/10.48550/arXiv.2112.02234
https://doi.org/10.1016/j.plrev.2011.02.003
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1016/j.jad.2021.09.100
https://doi.org/10.1183/09031936.00054815
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1186/s12911-022-01802-z
https://doi.org/10.1016/j.compbiomed.2016.04.014


Woodman et al. 10.3389/fmed.2023.1302844

Frontiers in Medicine 18 frontiersin.org

 62. Zhou T, Ren J, Medo M, Zhang Y-C. Bipartite network projection and personal 
recommendation. Phys Rev E. (2007) 76:046115. doi: 10.1103/PhysRevE.76.046115

 63. Agusti A, Sobradillo P, Celli B. Addressing the complexity of chronic obstructive 
pulmonary disease. Am J Respir Crit Care Med. (2011) 183:1129–37. doi: 10.1164/
rccm.201009-1414PP

 64. Snijders TAB, Borgatti SP. Non-parametric standard errors and tests for network 
statistics. Connect. (1999) 2:61–70.

 65. Hoang VT, Jeon H-J, You E-S, Yoon Y, Jung S, Lee O-J. Graph representation 
learning and its applications: a survey. Sensors. (2023) 23:4168. doi: 10.3390/s23084168

 66. Geng C, Jung Y, Renaud N, Honavar V, Bonvin AMJJ, Xue LC. iScore: a novel 
graph kernel-based function for scoring protein–protein docking models. Bioinformatics. 
(2019) 36:112–21. doi: 10.1093/bioinformatics/btz496

 67. Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains. 
Proceedings 2005 IEEE International Joint Conference on Neural Networks, 2005. 
Montreal, QC, Canada. (2005). 729–734

 68. Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, et al. Graph neural networks: a review 
of methods and applications. AI Open. (2020) 1:57–81. doi: 10.1016/j.aiopen.2021.01.001

 69. Li MM, Huang K, Zitnik M. Representation learning for networks in biology and 
medicine: advancements, challenges, and opportunities. ArXiv. (2021). doi: 10.48550/
arXiv.2104.04883

 70. Tong C, Rocheteau E, Veličković P, Lane N, Liò P. Predicting patient outcomes with 
graph representation learning In: A Shaban-Nejad, M Michalowski and S Bianco, 
editors. AI for disease surveillance and pandemic intelligence: Intelligent disease detection 
in action. Cham: Springer International Publishing (2022). 281–93.

 71. Li Y, Feng L. Patient multi-relational graph structure learning for diabetes 
clinical assistant diagnosis. Math Biosci Eng. (2023) 20:8428–45. doi: 10.3934/
mbe.2023369

 72. Wang Z, Wen R, Chen X, Cao S, Huang S-L, Qian B, et al. Online disease diagnosis 
with inductive heterogeneous graph convolutional networks. Proceedings of the web 
conference 2021; Ljubljana, Slovenia. (2021). p. 3349–3358.

 73. Kwak H, Lee M, Yoon S, Chang J, Park S, Jung K. Drug-disease graph: predicting 
adverse drug reaction signals via graph neural network with clinical data. Adv Knowl 
Discovery Data Mining. (2020) 12085:633–44. doi: 10.1007/978-3-030-47436-2_48

 74. Hogan A, Blomqvist E, Cochez M, D’amato C, Melo GD, Gutierrez C, et al. 
Knowledge graphs. ACM Comput Surv. (2021) 54:1–37. doi: 10.1145/3447772

 75. Singhal A. (2012). Introducing the knowledge graph: Things, not strings. Available 
at: https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

 76. Schneider P, Schopf T, Vladika J, Galkin M, Simperl EPB, Matthes F. A decade of 
knowledge graphs in natural language processing: A survey. Proceedings of the 2nd 
Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics 
and the 12th International Joint Conference on Natural Language Processing. (2022).

 77. Wang L, Himmelstein DS, Santaniello A, Parvin M, Baranzini SE. iCTNet2: 
integrating heterogeneous biological interactions to understand complex traits. 
F1000Research. (2015) 4:485. doi: 10.12688/f1000research.6836.1

 78. Shang J, Xiao C, Ma T, Li H, Sun J. GAMENet: graph augmented MEmory 
networks for recommending medication combination. ArXiv. (2018). doi: 10.48550/
arXiv.1809.01852

 79. Gong F, Wang M, Wang H, Wang S, Liu M. SMR: medical knowledge graph 
embedding for safe medicine recommendation. Big Data Res. (2021) 23:100174. doi: 
10.1016/j.bdr.2020.100174

 80. Rotmensch M, Halpern Y, Tlimat A, Horng S, Sontag D. Learning a health 
knowledge graph from electronic medical records. Sci Rep. (2017) 7:5994. doi: 10.1038/
s41598-017-05778-z

 81. Chandak P, Huang K, Zitnik M. Building a knowledge graph to enable precision 
medicine. Scientific Data. (2022) 10:67. doi: 10.1038/s41597-023-01960-3

 82. Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, et al. 
Systematic integration of biomedical knowledge prioritizes drugs for repurposing. elife. 
(2017) 6:e26726.

 83. Morris JH, Soman K, Akbas RE, Zhou X, Smith B, Meng EC, et al. The scalable 
precision medicine open knowledge engine (SPOKE): a massive knowledge graph of 
biomedical information. Bioinformatics. (2023) 39:btad080. doi: 10.1093/bioinformatics/
btad080

 84. Nelson CA, Butte AJ, Baranzini SE. Integrating biomedical research and electronic 
health records to create knowledge-based biologically meaningful machine-readable 
embeddings. Nat Commun. (2019) 10:3045. doi: 10.1038/s41467-019-11069-0

 85. Nelson CA, Bove R, Butte AJ, Baranzini SE. Embedding electronic health records 
onto a knowledge network recognizes prodromal features of multiple sclerosis and 
predicts diagnosis. J Am  Med Inform Assoc. (2021) 29:424–34. doi: 10.1093/jamia/
ocab270

 86. Soman K, Nelson CA, Cerono G, Goldman SM, Baranzini SE, Brown EG. Early 
detection of Parkinson's disease through enriching the electronic health record using a 
biomedical knowledge graph. Front Med (Lausanne). (2023) 10:1081087. doi: 10.3389/
fmed.2023.1081087

 87. Rossi R, Ahmed N. The network data repository with interactive graph analytics 
and visualization. Proceedings of the AAAI Conference on Artificial Intelligence, 
Austin, TX. (2015).

 88. Hu W, Fey M, Zitnik M, Dong Y, Ren H, Liu B, et al. Open graph benchmark: 
datasets for machine learning on graphs. ArXiv. (2020). doi: 10.48550/
arXiv.2005.00687

 89. Bhattacharyya A, Rai SN. Adaptive signature design- review of the biomarker 
guided adaptive phase -III controlled design. Contemp Clin Trials Commun. (2019) 
15:100378. doi: 10.1016/j.conctc.2019.100378

 90. Bhattacharyya A, Chakraborty T, Rai SN. Stochastic forecasting of COVID-19 
daily new cases across countries with a novel hybrid time series model. Nonlinear Dyn. 
(2022) 107:3025–40. doi: 10.1007/s11071-021-07099-3

 91. Bhattacharyya A, Pal S, Mitra R, Rai S. Applications of Bayesian shrinkage prior 
models in clinical research with categorical responses. BMC Med Res Methodol. (2022) 
22:126. doi: 10.1186/s12874-022-01560-6

 92. Woodman RJ, Mangoni AA. A comprehensive review of machine learning 
algorithms and their application in geriatric medicine: present and future. Aging Clin 
Exp Res. (2023) 35:2363–97. doi: 10.1007/s40520-023-02552-2

 93. Woodman RJ, Mangoni AA. Artificial intelligence and the medicine of the future 
In: WM Alberto Pilotto, editor. Gerontechnology a clinical perspective. Cham: Springer 
Cham (2023)

 94. Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The artificial 
intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat 
Med. (2018) 24:1716–20. doi: 10.1038/s41591-018-0213-5

 95. Sun X, Bee YM, Lam SW, Liu Z, Zhao W, Chia SY, et al. Effective treatment 
recommendations for type 2 diabetes management using reinforcement learning: 
treatment recommendation model development and validation. J Med Internet Res. 
(2021) 23:e27858. doi: 10.2196/27858

https://doi.org/10.3389/fmed.2023.1302844
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1103/PhysRevE.76.046115
https://doi.org/10.1164/rccm.201009-1414PP
https://doi.org/10.1164/rccm.201009-1414PP
https://doi.org/10.3390/s23084168
https://doi.org/10.1093/bioinformatics/btz496
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.48550/arXiv.2104.04883
https://doi.org/10.48550/arXiv.2104.04883
https://doi.org/10.3934/mbe.2023369
https://doi.org/10.3934/mbe.2023369
https://doi.org/10.1007/978-3-030-47436-2_48
https://doi.org/10.1145/3447772
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://doi.org/10.12688/f1000research.6836.1
https://doi.org/10.48550/arXiv.1809.01852
https://doi.org/10.48550/arXiv.1809.01852
https://doi.org/10.1016/j.bdr.2020.100174
https://doi.org/10.1038/s41598-017-05778-z
https://doi.org/10.1038/s41598-017-05778-z
https://doi.org/10.1038/s41597-023-01960-3
https://doi.org/10.1093/bioinformatics/btad080
https://doi.org/10.1093/bioinformatics/btad080
https://doi.org/10.1038/s41467-019-11069-0
https://doi.org/10.1093/jamia/ocab270
https://doi.org/10.1093/jamia/ocab270
https://doi.org/10.3389/fmed.2023.1081087
https://doi.org/10.3389/fmed.2023.1081087
https://doi.org/10.48550/arXiv.2005.00687
https://doi.org/10.48550/arXiv.2005.00687
https://doi.org/10.1016/j.conctc.2019.100378
https://doi.org/10.1007/s11071-021-07099-3
https://doi.org/10.1186/s12874-022-01560-6
https://doi.org/10.1007/s40520-023-02552-2
https://doi.org/10.1038/s41591-018-0213-5
https://doi.org/10.2196/27858

	Applying precision medicine principles to the management of multimorbidity: the utility of comorbidity networks, graph machine learning, and knowledge graphs
	1 Introduction
	2 Literature search
	3 Network creation
	3.1 Bipartite patient-disease networks

	4 Similarity algorithms
	4.1 Unipartite disease comorbidity network (DCN)
	4.2 Node similarity metrics
	4.3 K-nearest neighbor (k-NN) and handcrafted similarity features

	5 Community detection
	5.1 Modularity and community detection algorithms
	5.2 Other clustering methods
	5.2.1 Local clustering coefficient
	5.2.2 K-nearest neighbors
	5.2.3 Hierarchical clustering
	5.2.4 Temporal phenotyping
	5.3 Unipartite patient-patient similarity network
	5.4 Bipartite similarity network

	6 Graph feature extraction algorithms
	6.1 Graph centrality algorithms
	6.2 Closeness and betweenness centrality algorithms
	6.3 Eigenvector centrality algorithms
	6.4 Aggregated network features

	7 Graph embedding (graph representation learning)
	7.1 Graph kernels
	7.2 Matrix factorization-based models
	7.3 Shallow models (DeepWalk, Node2vec)
	7.4 Non-Euclidean models

	8 Graph machine learning
	8.1 Graph neural networks
	8.1.1 Example: predicting self-harm
	8.2 Heterogeneous graph NNs
	8.2.1 Example: disease prediction
	8.2.2 Example: diabetes prediction
	8.2.3 Example: a heterogeneous GNN for online disease diagnosis based on symptoms
	8.2.4 Example: a heterogeneous graph for predicting adverse drug reactions

	9 Knowledge graphs
	9.1 Knowledge graphs for precision medicine
	9.1.1 Example: treatment recommendation with reduced adverse drug reactions
	9.1.2 Example: adverse drug reaction prediction
	9.1.3 Example: medication recommendation
	9.1.4 Example: patient diagnosis
	9.2 Open-source knowledge graphs
	9.3 Open-source graph databases

	10 Conclusion
	Author contributions

	 References

