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Introduction: The development of costs-effective and sensitive screening 
solutions to prevent amblyopia and identify its risk factors (strabismus, 
refractive problems or mixed) is a significant priority of pediatric 
ophthalmology. The main objective of our study was to compare the 
classification performance of various vision screening tests, including 
classic, stereoacuity-based tests (Lang II, TNO, Stereo Fly, and Frisby), and 
non-stereoacuity-based, low-density static, dynamic, and noisy anaglyphic 
random dot stereograms. We determined whether the combination of non-
stereoacuity-based tests integrated in the simplest artificial intelligence (AI) 
model could be an alternative method for vision screening.

Methods: Our study, conducted in Spain and Hungary, is a non-experimental, 
cross-sectional diagnostic test assessment focused on pediatric eye 
conditions. Using convenience sampling, we  enrolled 423 children aged 
3.6–14  years, diagnosed with amblyopia, strabismus, or refractive errors, 
and compared them to age-matched emmetropic controls. Comprehensive 
pediatric ophthalmologic examinations ascertained diagnoses. Participants 
used filter glasses for stereovision tests and red-green goggles for an AI-
based test over their prescribed glasses. Sensitivity, specificity, and the area 
under the ROC curve (AUC) were our metrics, with sensitivity being the 
primary endpoint. AUCs were analyzed using DeLong’s method, and binary 
classifications (pathologic vs. normal) were evaluated using McNemar’s 
matched pair and Fisher’s nonparametric tests.

Results: Four non-overlapping groups were studied: (1) amblyopia (n  =  46), 
(2) amblyogenic (n  =  55), (3) non-amblyogenic (n  =  128), and (4) emmetropic 
(n  =  194), and a fifth group that was a combination of the amblyopia 
and amblyogenic groups. Based on AUCs, the AI combination of non-
stereoacuity-based tests showed significantly better performance 0.908, 
95% CI: (0.829–0.958) for detecting amblyopia and its risk factors than 
most classical tests: Lang II: 0.704, (0.648–0.755), Stereo Fly: 0.780, (0.714–
0.837), Frisby: 0.754 (0.688–0.812), p  <  0.02, n  =  91, DeLong’s method). 
At the optimum ROC point, McNemar’s test indicated significantly higher 
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sensitivity in accord with AUCs. Moreover, the AI solution had significantly 
higher sensitivity than TNO (p  =  0.046, N  =  134, Fisher’s test), as well, while 
the specificity did not differ.

Discussion: The combination of multiple tests utilizing anaglyphic random 
dot stereograms with varying parameters (density, noise, dynamism) in 
AI leads to the most advanced and sensitive screening test for identifying 
amblyopia and amblyogenic conditions compared to all the other tests 
studied.

KEYWORDS

amblyopia, screening, amblyogenic conditions, artificial intelligence – AI, 
strabism, cost-effective, ROC (receiver operating characteristic) analysis, 
amblyopia risk factors

1 Introduction

Amblyopia (1–3) is a global health problem with an average 
prevalence of 2.4% (4–12) that is even higher in unscreened 
populations (13). Early detection is crucial for successful treatment, 
making regular vision screening in childhood essential (12, 14–16). 
However, existing literature suggests that screening for amblyopia and 
its risk factors (or amblyogenic conditions) can be costly, with no 
effective and really inexpensive screening method currently available 
(15, 17, 18). The contribution of licensed eye practitioners makes the 
screening process expensive, and a recent Canadian study 
demonstrated that universal school screening and optometric 
examinations have not proven to be cost-effective relative to primary 
care screening for detecting amblyopia in young children (19). A new 
high-performance, lay-person-based screening method could 
considerably reduce costs and make amblyopia screening widely 
available (15). While stereovision tests that measure stereoacuity have 
the potential to detect amblyopia and strabismus (20, 21), existing 
clinical stereovision tests have several limitations, including low 
sensitivity, particularly in screening situations (22–28).

To address these limitations, we  developed the EuvisionTab® 
Stereovision test (ETS), a mobile-based, innovative screening solution 
for amblyopia (EuvisionTab®, ET, Euvision Ltd., Pécs, Hungary; 
https://tab.euvision.hu/) (29, 30). The ETS is essentially an anaglyphic 
random dot stereogram (RDS) generator (Figure  1) with several 
adjustable parameters, such as frame rate, dot size, dot density, 
disparity, and noise level, which control the difficulty of binocular 
perception. Our goal is to create a robust, non-stereoacuity-based 
stereovision test that meets the criteria of an ideal screening method, 
including time-efficiency, reproducibility, sensitivity, specificity, ability 
to make statistically supported decisions, and tolerance to common 
methodical mistakes. In a previous study, we demonstrated that high-
disparity targets embedded in low-density RDS with uncorrelated 
noise can be a sensitive tool to detect amblyopia and amblyogenic 
conditions without measuring stereoacuity. However, the low 
specificity of the noisy stereogram was a limitation (29).

In this study, we aimed to test various settings of the ETS and 
compare their discrimination performance with the most popular 
clinical stereovision tests for amblyopia and amblyogenic conditions, 
which are strictly based on stereoacuity. Furthermore, we  will 
demonstrate how an artificial intelligence-based (AI) algorithm that 
combines the results of multiple tests with different RDS parameters 
can dramatically improve specificity without compromising sensitivity.

2 Methods

2.1 Study design

Our study was a non-experimental cross-sectional diagnostic test 
study that compared the diagnostic classification of numerous tests with 
the classification of the ophthalmologist, which was accepted as the “gold 
standard” (GS). The objective was to identify the best stereovision test for 
detecting amblyopia and amblyogenic conditions from four classic tests, 
four novel random dot stereogram tests (ETS), and combinations of the 
latter by an artificial intelligence trained to maximize sensitivity and 
specificity (AI-ETS tests). The primary endpoints were sensitivity, 
specificity, and the area under the receiver operating characteristic (ROC) 
curve (AUC). We considered sensitivity as the most important measure 
since failure or delay to discover an amblyopic case reduces the chance of 
recovery for the child.

In the first phase, participants were tested using classic tests and 
exploratory versions of the ETS tests, where dot density and noise level 
of the stereograms were varied, and the four ETS test versions to 
be included in the second phase were selected. Any test versions with 
AUC < 0.7 were excluded from the trial. The minimum number of 
participants for the second phase was estimated based on 
measurements for the classic tests collected in the first phase of the 

FIGURE 1

The photo montage is divided into two distinct panels. On the left-
hand side, the child is viewing a control display that is universally 
visible, allowing the child to respond accordingly. Conversely, the 
right-hand side features an image that is exclusively visible to the 
child wearing red-green goggles. The child can seamlessly complete 
the test by pressing the corresponding key, based on the orientation 
of the Snellen E optotype.
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current study and a previously published paper (29). MedCalc 
software was used to estimate a sample size between 24 and 44 for the 
study group and controls with the target of differentiating (at α = 0.05 
and β = 0.2) the average classical test (AUC of 0.75–0.78) from a 
hypothetical novel test with an AUC of 0.9.

2.2 Participants, recruitment, examinations

Participants were recruited from two institutions: Department of 
Ophthalmology of Vithas Medimar International Hospital of Alicante, 
Spain (n = 371, between March 2017 and May 2019) and the Department 
of Ophthalmology, University of Pécs, Hungary (n = 52, between May 
2019 and November 2019). The study included 194 healthy emmetropic 
children aged between 3.8–14 years with a mean age of 7.05 (SD: 2.53) as 
control subjects, with no ophthalmological or neurological conditions. 
For the study groups (n = 229, aged 3.6–14 mean age: 7.45 SD: 2.72), 
children with amblyopia, any type of strabismus, or refractive error were 
enrolled. Eye conditions were defined according to international 
guidelines and literature (1, 23, 31, 32) as outlined in Table  1. The 
demographics of the participants can be found in Table 2. The number of 
children with and without eye conditions was not significantly different 
in terms of age (χ2 = 10.1, p = 0.122).

The study was approved by the local ethics committees (Alicante: 
UA-2017-03-20, Pécs: 6301/2016) and was conducted in accordance 
with the Helsinki Declaration. Written informed consent was obtained 
from all parents or legal guardians after they were fully informed of 
the nature, course, advantages, and disadvantages of the investigation, 
both in oral and written forms.

The diagnostic classification was determined through a 
comprehensive eye examination conducted by licensed eye care 
professionals. The examination included monocular best-corrected 
visual acuity measurement using calibrated Snellen charts, objective 
and subjective refraction with and without cycloplegia, eye movement 
examination, cover test, Brückner test, Hirschberg test, Worth’s four 
dot test, a 4 diopter prism test to detect microtropia, and a monocular 
estimate method retinoscopy to evaluate the accommodative response.

2.3 Stereovision tests and procedures

In this study, the newly developed non-stereoacuity-based 
stereovision test (ETS) was used and its results were compared with 

those of four traditional, stereoacuity-based clinical stereovision tests 
(Lang II, TNO, Frisby, and Stereo Fly or Titmus Fly). (Table 3).

The ETS was performed using a 10.1-inch tablet (two types were 
used: 1. Samsung Galaxy Tab A (2016) 2. BQ Aquaris M10) at a 
viewing distance of 25–30 cm, and the patient responses were 
registered via input keys (Figure 1). The dot size was 420″, while the 
disparity of the stimuli was 840″ at 25 cm viewing distance. The size 
of the Snellen E was approximately 2°. The procedure for the ETS was 
described in detail by Budai et al. (29).

In the four non-stereoacuity-based ETSs, three parameters of the 
RDS were varied to create different levels of difficulty: Firstly, the 
RDSs were either static (SRDS) or dynamic (DRDS). In the dynamic 
stimuli, the random dot matrices were refreshed at 30 Hz. Secondly, 
the density was varied, which refers to the proportion of bright and 
dark dots in the RDS. In this study, three combinations of dynamism 
and density were used: 8% static (SRDS 8), 1% dynamic (DRDS 1), 
and 0.7% dynamic (DRDS 0.7). Finally, the noise level was varied, 
which represents the proportion of binocularly uncorrelated dots 
added to the stereogram. One condition included in the test was 
where 0.5% uncorrelated noise was added to the DRDS 1 condition 
(DRDS 1 + noise) (Table 3). In each ETS testing session, 24 test stimuli 
were presented in the following sequence: 1 repetition (x) of 
monocular control - 5 x SRDS 8–1 x monocular control - 5 x DRDS 
1–1 x monocular control – 5 x DRDS 0.7–1 x monocular control – 5 
x DRDS 1 + noise. Each participant was tested with a stereovision test 
only once, and retests were not performed. Not all participants were 
tested with all stereopsis tests. Children with a prescription for 
refractive glasses underwent the ETS both with (WC) and without 
(NC) refractive corrections.

To reduce the examination time, a relatively small number of 
images were presented for each type of ETS test. As a result, each 
examination formed a Bernoulli trial. For a trial to be considered 
successful, the binomial cumulative probability of false responses had 
to be less than 0.05. Each participant was presented with only five 
stereograms, so to pass the test, they had to correctly identify at least 
three of them, even if the ROC analysis suggested an optimum value 
of less than three (29). For the combined tests, the Bernoulli criteria 
were always met at the optimum ROC point, which was around 12–15 
correct responses out of 20.

The same experienced examiner performed the stereotests at both 
institutions. The four traditional stereovision tests were administered 
under daylight conditions, whereas the ETS tests were conducted in a 
dark room with participants wearing red-green goggles.

TABLE 1 The Definitions of the included eye conditions.

Name Definition

Amblyopia
Reduced best corrected visual acuity (0.2 or more logMAR lines of interocular difference) regardless of the origin (anisometropia, strabismus 

or mixed)

Anisometropia One or more diopters difference in refractive error between the two eyes

Strabismus
Abnormal alignment of the eyes, including esotropia, exotropia, convergence insufficiency, microesotropia, accommodative esotropia, 

decompensated phoria, hypertropia and intermittent exotropia

Significant hyperopia Hyperopia equal or exceeding 2.5 D under cycloplegia

Amblyogenic conditions Strabismus, anisometropia and significant hyperopia (children having amblyopia are not included)

Nonamblyogenic Myopia, astigmia and hyperopia less than 2.5 D (children having amblyopia or/and amblyogenic condition are not included)

D: diopters; logMAR: logarithm of minimum angle of resolution. Definition of amblyopia and preamblyopic conditions are based on the international literature.
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2.4 Application of artificial intelligence

In order to improve the accuracy of ETS screening, we used a 
weighted combination (AI-ETS) of the results from the four tests to 
create a new metric. To prevent overfitting and maintain generalization 
in AI solutions, we chose a straightforward model: the Perceptron 
model (33), a simple linear integrator (Figure 2).

To make a decision, we combined the results of all tests and created a 
variable based on ETS scores. We used three different methods for this 
combination: 1) Equal weight sum (simple addition), 2) Average weight 
sum with optimized weights for all study groups, and 3) Weight sum with 
optimized weights specifically for amblyopia. We used a least-square 
algorithm to determine the weights that minimized the deviation from 
100% sensitivity and specificity.

TABLE 2 Demographic distribution of participants.

Age at screening (yr) Eye condition Control N % of total

3.5-4 4 1 5 1.18

4-5 45 59 104 24.59

5-6 28 24 52 12.29

6-7 40 27 67 15.84

7-8 31 22 53 12.53

8-9 19 21 40 9.46

9-15 62 40 102 24.11

Total 229 194 423 100.00

Female 193 46.63

Male 230 54.37

TABLE 3 Summary of stereovision tests.

Test name Stimuli Channel 
separation

Type of 
stereotest

Producer Viewing 
distance (cm)

Possible 
results

Number of 
participants 

tested

Classic tests

Lang II star, elephant, 

car, moon

panographic global; random dot Lang Stereotest AG, 

Forch, 

langstereotest.com

40 >1000”*

600” 400”

200”

423

TNO Plate V-VI, 

„pancake”

anaglyphic global; random dot Lameris Ootech BV, 

ootech.nl

40 >1000” 480” 

240” 120” 60”

385

Frisby circles not needed global;

real depth

Frisby StereotestTM, 

frisbystereotest.

co.uk

40 >1000” 340” 

170” 85”

265

Stereo Fly circles polarization method local; contour 

stereogram

Stereo Optical 

Company, INC., 

stereooptical.com

40 >1000” 800” 

400” 200” 140” 

100” 80” 60” 

50” 40”

249

ETS

SRDS 8

DRDS 1

DRSD 0.7

DRDS 1+noise

Snellen E anaglyphic global; random dot Euvision Ltd., Pécs, 

Hungary

25-30

0-5/5

0-5/5

0-5/5

0-5/5

254

130

130

254

AI-ETS

sum

w

aw

Snellen E anaglyphic global; random dot Euvision Ltd., Pécs, 

Hungary

25-30

0-20/20

0-20/20

0-20/20

130

130

130

“: sec of arc; ETS: EuvisionTab® Stereovision test module; NC: no correction; WC: with correction; SRDS 8: 8% density static test; DRDS 1: 1% density dynamic test; DRDS 0.7: 0.7% density 
dynamic test; DRDS 1+noise: 1% density dynamic test with 0.5% binocularly uncorrelated noise; AI-ETS: Artificial intelligence-based ETS tests; sum: equally weighted sum of the four ETS-
tests; w: ‘weight’, optimized weight for amblyopia; aw: ‘average weight’, optimized weight for all pathologic conditions, *>1000” refers to lack of stereopsis.
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2.4.1 The artificial intelligence model
The objective with this model is to ascertain optimal weights, 

often referred to as mixture parameters, for the Perceptron neural 
network. The goal was to minimize the discrepancy between the 
actual network outcome and a target value. The inputs to the model 
comprised results from four distinct tests: one static and three 
dynamic. The aim was to identify a set of weights, denoted as w1, w2, 
w3, and w4, ensuring the cumulative result of these tests surpasses 
that of any individual test. The combination of these tests dictated 
if the subject has passed or failed. We  collated these outcomes 
within a contingency table and calculated the sensitivity and 
specificity of this test amalgamation. The squared deviation of these 
parameters from the perfect score of 1 served as our error function 
to minimize.

2.4.2 Optimization of the weights
Initially, for simplicity, we employed the Simulated Annealing 

method (34, 35), which we implemented in a custom-made MATLAB 
program. This iterative process ultimately provided us with a set of 
optimal weights, although it is noteworthy that this optimum may not 
always be global.

While the Simulated Annealing optimization technique was 
suitable for training a Perceptron model on an individual basis, its 
limitations preclude a detailed examination of the Perceptron’s full 
spectrum of opportunities and the extent to which individual inputs 
contribute to its efficacy. To gain a deeper understanding of the 
Perceptron model’s overall performance and the role of each input 
variable, it was necessary to employ additional, faster methods and 
tools. We opted to use MATLAB’s Neural Network Toolbox, which 
offers a wide spectrum of transfer functions and weight 
optimization methods.

In our study, we also included cross-validation to ensure that our 
model’s generalizability is robust across different datasets. This process 
allows us to assess the consistency and reliability of the Perceptron.

2.4.3 Simulated annealing
The Simulated Annealing algorithm, rooted in Thermodynamics 

yet widely applicable, was employed to tackle the aforementioned 
problem. Imagine a set of configurations symbolizing potential 
solutions for a given problem. Let us assume a function F is defined 
over this configuration space, which we desire to either minimize or 

maximize. For this discussion, we’ll focus on minimizing F. Let ξ  
represent the present configuration and T symbolize the system’s 
“temperature,” influenced by the cooling rate. The following steps 
delineate the process to pinpoint the optimal configuration:

 1. Derive a fresh configuration ξ that’s in proximity to the 
existing one.

 2. Decrease the temperature T in line with the cooling procedure.

 3. Determine the differential: F Fξ ξ( ) − ( ).
 4. If this difference is positive, indicating the function F at the new 

configuration is less than its predecessor, the new configuration 
is retained, and the old one is discarded.

 5. Conversely, if this difference is negative, the new sample is not 
instantly rejected. Instead, it’s accepted as the new configuration 
based on a probability defined by the Boltzmann factor:

    exp
F F

T
ξ ξ( ) − ( )









.

 6. This loop continues until the cooling process reaches a 
stopping point.

2.4.4 Assessing input significance and 
generalization of the Perceptron

The MATLAB Neural Network Toolbox offers a graphical view of 
the currently applied network. The architecture of our Perceptron 
model is depicted in Figure 3.

In pursuit of the swiftest convergence, we replaced the initially 
employed network, which had a linear output, with one utilizing a 
logistic sigmoid (logsig) transfer function. This adjustment enabled 
the use of more rapid learning algorithms. The Levenberg–Marquardt 
algorithm was implemented for training, significantly accelerating 
convergence. The weights and bias values were randomly initialized 
within the range of 0 to 1. To enhance the training process and 
promote convergence, a homogeneous noise margin of approximately 
±3% was introduced into the dataset, a technique commonly used to 
prevent overfitting and to promote generalization within the model. 
For dataset preparation, stereovision test results with and without 
refractive correction were merged to create a unified training dataset 
consisting of 182 four-dimensional vectors.

FIGURE 2

The Perceptron neural net utilized for decision-making.
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To evaluate the impact of each input on the model’s 
performance, we tested all possible mathematical combinations 
of the four inputs, resulting in 15 different scenarios: individual 
tests (4), all pairs (6), triplets (4), and the complete set of four 
tests (1). Training to assess input significance was conducted on 
the complete dataset, while a randomly partitioned subset was 
used to test for generalization.

To ensure the robustness of our model and rule out overfitting as 
a potential bias in performance, we employed the random division 
technique for dataset partitioning. Overfitting occurs when a model 
learns the details and noise in the training data to the extent that it 
negatively impacts the model’s performance on new data. We tackled 
this by randomly dividing the dataset into two parts: 75% for training 
and 25% for testing.

To thoroughly investigate the convergence consistency of our 
model, hundred independent training sessions were conducted, each 
involving the reinitialization of the model’s parameters and random 
repartitioning of the training and validation sets for each session. 
After each session, the AUC was calculated. Analyzing the AUC values 
across all runs allowed us to quantify the variability and stability of the 
model’s performance and to statistically compare results. The mean 
and standard deviation of the AUC scores offered insight into the 
convergence behavior of our training process, enabling an assessment 
of both the input significance and the performance differences 
between the validation and training sets across multiple initializations 
and training cycles.

2.5 Statistical analysis

Data processing was performed using MATLAB 2018b (The 
MathWorks, Inc., Natick, Massachusetts, United States), while for 
ROC analysis MedCalc® Statistical Software version 20.211 (MedCalc 
Software Ltd, Ostend, Belgium; https://www.medcalc.org; 2023) was 
used. To compare the performance of classic stereovision tests and 
various versions of the ETS (Table  4), the following methods 
were applied:

 1) AUCs were calculated and compared using DeLong’s method 
as implemented in MedCalc, which is designed for multiple 
comparisons (36).

 2) Sensitivities and specificities were compared at the optimum 
ROC point.

After binary classification (pathologic vs. normal):
 3) McNemar’s matched pair comparison was used to determine 

significant differences between classic and AI-based tests.

 4) Fisher’s exact test was used to compare the sensitivity and 
specificity of the AI-aw WC and TNO tests.

To control for type I and type II statistical errors due to multiple 
pairwise comparisons, we  applied Bonferroni’s or Benjamini-
Hochberg’s (37) methods. Further details on these statistical tests can 
be found in the Supplementary Methods.

3 Results

3.1 Characteristics of participants

We enrolled 229 participants with a range of eye conditions 
(Table  2). These participants were segmented into four 
non-overlapping groups, with each individual potentially having more 
than one underlying diagnosis. The amblyopia group (n = 46) 
consisted of 17 children with anisometropic, 12 with strabismic, and 
17 with mixed amblyopia. The amblyogenic condition group (n = 55) 
included 30 individuals with strabismus, 19 with anisometropia, and 
35 with hyperopia of any degree. The nonamblyogenic condition 
group (n = 128) comprised 23 children with myopia, 92 with 
non-significant hyperopia, and 53 with astigmatism. The control 
group was made up of 194 emmetropic participants. Furthermore, a 
fifth joint “amblyopia + amblyogenic” group was created to identify 
amblyopia as well as amblyogenic conditions. Stereovision tests, along 
with the variations of the ETSs, are summarized in Table 3. Table 5 
outlines the distribution of participants in each study group and the 
control group who underwent each stereovision test.

3.2 Classification performance: area under 
the ROC curve

We assessed the efficacy of various stereovision tests in 
differentiating between individuals with diverse eye conditions and 
the emmetropic control group. This assessment was carried out by 
calculating the AUCs and using DeLong’s method for pairwise 
comparisons (Tables 6, 7). All tests outperformed a random classifier 
in identifying amblyopia or amblyogenic conditions. Nevertheless, 
pairwise comparisons revealed that for the amblyogenic and joint 
amblyopia+amblyogenic group, the optimized AI-ETSs versions (i.e., 
AI-w WC, AI-aw WC) yielded higher AUCs than classic tests, except 
for the TNO (Table 6). These differences were statistically significant 
for all the above-mentioned pairs (Table 7) (n = 91).

3.3 Sensitivities and specificities at the 
optimum ROC point

In the subsequent phase of our statistical analysis, binary 
classification (pathologic vs. normal) was conducted at the optimum 
ROC point. For each stereovision test, we calculated sensitivities for 
every study group and specificities for the control group, as detailed 
in Table 8.

Every test evaluated in this study exhibited a specificity of at least 
86%. However, the sensitivity varied widely among the tests, 
influenced by the type of eye condition. Drawing from average 

FIGURE 3

MATLAB’s Perceptron neural network architecture for assessment of 
input significance and generalization.
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sensitivity metrics, the AI tests surpassed both individual tests and 
traditional stereoacuity-based clinical stereovision evaluations in 
terms of sensitivity, consistent with the AUC data. Notably, the AI-aw 
test demonstrated the highest sensitivity for both amblyopia and 
amblyogenic conditions. In contrast, no tests presented a significant 
sensitivity for nonamblyogenic conditions. We  also observed that 
introducing refractive correction enhanced visual performance for 
amblyogenic conditions. This adjustment resulted in diminished 
sensitivities in the WC group of tests when juxtaposed with the 
NC group.

3.4 Comparison of binary classification

We also sought to determine whether the observed significant 
differences in AUC figures translated into significant variations in 
sensitivity following binary classification. To test the null hypothesis—
that the performance of classic tests does not differ from that of AI-aw 
WC employed McNemar’s exact pairwise statistical comparison. Our 
analysis indicated that, for the combined amblyopia and amblyogenic 
study group, AI-aw WC consistently outperformed all classic tests, 
with the sole exception of the TNO. Specifically, the comparisons 

between AI-aw WC and Frisby, Lang II, Stereo Fly and TNO tests 
resulted in differences, with p-values of 0.0117, 0.0129, 0.0129, and 
0.508, respectively, (n = 46). To account for multiple comparisons, 
we applied the Benjamini-Hochberg method for controlling the false 
discovery rate, and found that the interpretation of significance did 
not change. Furthermore, no significant difference was observed in 
the emmetropic group.

While we  could not utilize all the data for the matched pair 
McNemar comparison, the sensitivity figures and their 95% 
confidence intervals suggested a potentially significant difference 
between TNO [0.66 (95%CI: 0.55–0.76)] and AI-aw WC [0.83 
(95%CI: 0.69–0.92)]. Recognizing the uneven sample sizes of the 
compared groups, we employed the Fisher’s exact non-parametric test, 
which accommodates such discrepancies. This analysis AI-aw WC’s. 
superior performance, highlighting a significant difference in 
sensitivity relative to the TNO. The Fisher’s exact test yielded a value 
of p = 0.046 for the sensitivity comparison (n = 134), while the 
specificity comparison for the emmetropic group resulted in a value 
of p = 0.575 (n = 228).

For further evidence and in-depth analysis of the data, please also 
refer to Supplementary Table S1 and Supplementary Figures S1, S2 in 
the supplementary material.

TABLE 4 Nomenclature of the stereovision tests compared in this study.

Screening test Refractive correction Dynamic Density of RDS (%)

Classic tests

Lang II Yes No 50

TNO Yes No Not specified

Stereo Fly Yes No Contour

Frisby Yes No Patterned

Single ETSs

SRDS 8 NC No No 8

DRDS 1 NC No Yes 1

DRDS 0.7 NC No Yes 0.7

DRDS 1+noise NC No Yes 1

Artificial intelligence-based tests (AI-ETS)

AI-sum NC (equal weighted sum) No Mixed Various

AI-w NC (weighted for amblyopia) No Mixed Various

AI-aw NC (weighted for all conditions) No Mixed Various

Single ETSs

SRDS 8 WC Yes No 8

DRDS 1 WC Yes Yes 1

DRDS 0.7 WC Yes Yes 0.7

DRDS 1 + noise WC Yes Yes 1

Artificial intelligence-based tests

AI-sum WC (equal weighted sum) Yes Mixed Various

AI-w WC (weighted for amblyopia) Yes Mixed Various

AI-aw WC (weighted for all conditions) Yes Mixed Various

“: sec of arc; ETS: EuvisionTab® Stereovision test module; NC: no correction; WC: with correction; SRDS 8: 8% density static test; DRDS 1: 1% density dynamic test; DRDS 0.7: 0.7% density 
dynamic test; DRDS 1+noise: 1% density dynamic test with 0.5% binocularly uncorrelated noise; AI-ETS: Artificial intelligence-based ETS tests; sum: equally weighed sum of the four ETS-
tests; w: ‘weight’, optimized weight for amblyopia; aw: ‘average weight’, optimized weight for all pathologic conditions.
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TABLE 6 Receiver operating characteristic curve analysis of the stereo tests: AUC values with 95% confidence intervals.

Test name Amblyopia Amblyogenic Nonamblyogenic
Amblyopia+
Amblyogenic

SRDS 8 NC 0.910 (0.852-0.950) 0.693 (0.615-0.763) 0.508 (0.435-0.581) 0.788 (0.722-0.844)

DRDS 1 NC 0.918 (0.862-0.956) 0.685 (0.607-0.756) 0.525 (0.452-0.598) 0.787 (0.721-0.843)

DRDS 0.7 NC 0.976 (0.906-0.998) 0.856 (0.749-0.929) 0.558 (0.445-0.666) 0.916 (0.839-0.964)

DRDS 1+noise NC 0.914 (0.821-0.969) 0.829 (0.718-0.909) 0.599 (0.486-0.705) 0.872 (0.785-0.933)

AI-sum NC 0.995 (0.937-1.000) 0.876 (0.774-0.944) 0.606 (0.494-0.711) 0.936 (0.864-0.976)

AI-w NC 0.996 (0.940-1.000) 0.867 (0.762-0.937) 0.604 (0.491-0.709) 0.931 (0.859-0.974)

AI-aw NC 0.996 (0.940-1.000) 0.865 (0.760-0.936) 0.614 (0.501-0.718) 0.930 (0.857-0.973)

SRDS 8 WC 0.889 (0.830-0.933) 0.641 (0.563-0.715) 0.513 (0.447-0.580) 0.759 (0.693-0.816)

DRDS 1 WC 0.853 (0.788-0.904) 0.629 (0.550-0.703) 0.511 (0.445-0.578) 0.735 (0.667-0.795)

DRDS 0.7 WC 0.934 (0.846-0.980) 0.689 (0.566-0.796) 0.576 (0.464-0.684) 0.812 (0.716-0.886)

DRDS 1+noise WC 0.919 (0.827-0.971) 0.671 (0.547-0.781) 0.536 (0.423-0.645) 0.795 (0.698-0.873)

AI-sum WC 0.972 (0.901-0.997) 0.805 (0.718-0.909) 0.596 (0.483-0.702) 0.889 (0.806-0.945)

AI-w WC 0.971 (0.898-0.996) 0.830 (0.719-0.910) 0.613 (0.501-0.718) 0.900 (0.819-0.953)

AI-aw WC 0.976 (0.906-0.998) 0.840 (0.731-0.917) 0.611 (0.499-0.716) 0.908 (0.829-0.958)

Lang II 0.822 (0.768-0.869) 0.604 (0.541-0.666) 0.522 (0.466-0.578) 0.704 (0.648-0.755)

TNO 0.953 (0.916-0.977) 0.742 (0.680-0.797) 0.603 (0.544-0.659) 0.840 (0.791-0.882)

Stereo Fly 0.926 (0.871-0.962) 0.656 (0.576-0.731) 0.585 (0.508-0.659) 0.780 (0.714-0.837)

Frisby 0.852 (0.786-0.903) 0.668 (0.590-0.740) 0.528 (0.453-0.603) 0.754 (0.688-0.812)

AUC: area under the ROC curve; for all conditions and across all classifiers, the AUC was significantly greater than 0.5, with the exception of non-amblyogenic conditions; NC: no correction; 
WC: with correction; SRDS 8: 8% density static test; DRDS 1: 1% density dynamic test; DRDS 0.7: 0.7% density dynamic test; DRDS 1+noise: 1% density dynamic test with 0.5% binocularly 
uncorrelated noise; AI-ETS: artificial intelligence-based ETS tests; sum: equally weighted sum of the four ETS-tests; w: ‘weight’, optimized weight for amblyopia; aw: ‘average weight’, optimized 
weight for all pathologic conditions.

TABLE 5 Participant count by group for various stereovision tests.

Screening test Amblyopia Amblyogenic Nonamblyogenic Control Total

SRDS 8 NC 28 36 66 124 254

DRDS 1 NC 28 36 66 124 254

DRDS 0.7 NC 23 23 39 45 130

DRDS 1+noise NC 23 23 39 45 130

AI-sum NC 23 23 39 45 130

AI-w NC 23 23 39 45 130

AI-aw NC 23 23 39 45 130

SRDS 8 WC 35 39 106 124 304

DRDS 1 WC 35 39 106 124 304

DRDS 0.7 WC 23 23 39 45 130

DRDS 1+noise WC 23 23 39 45 130

AI-sum WC 23 23 39 45 130

AI-w WC 23 23 39 45 130

AI-aw WC 23 23 39 45 130

Lang II 46 55 128 194 423

TNO 41 47 114 183 385

Stereo Fly 34 40 60 115 249

Frisby 38 43 63 119 263

Number of participants examined with all tests 23 23 39 45 130

Number of participants in the group 46 55 128 194 423

NC: no correction; WC: with correction; SRDS 8: 8% density static test; DRDS 1: 1% density dynamic test; DRDS 0.7: 0.7% density dynamic test; DRDS 1+noise: 1% density dynamic test with 
0.5% binocularly uncorrelated noise; AI-ETS: Artificial intelligence-based ETS tests; sum: equally weighted sum of the four ETS-tests; w: ‘weight’, optimized weight for amblyopia; aw: ‘average 
weight’, optimized weight for all pathologic conditions.
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3.5 Modeling performance and 
convergence

The modifications to the derivable output function, combined 
with the adoption of the Levenberg–Marquardt training algorithm, 
significantly accelerated convergence of the Perceptron. This 
enhancement facilitated efficient testing, even with hundreds of 
random initializations and repeated training sessions.

3.5.1 Role of inputs to the Perceptron
Figure  4 shows a boxplot of our results from all possible 

combinations of inputs, including single tests, pairs, triplets, and all 
four inputs simultaneously. It is evident that single test performance 
is inferior compared to combinations involving two or more tests. 
Results are particularly superior when static and at least one dynamic 
test are combined. The noisy stereogram appears to contribute the 
least efficiently to the overall performance, as its exclusion does not 
significantly diminish the performance variable (AUC). Figure  5 
displays the pairwise comparison of AUCs for all 15 combinations of 
inputs. After applying Bonferroni’s correction, which adjusted the 
significance threshold by a factor of 15×15, the negative logarithm of 
the adjusted p-values was color-coded for visualization in the figure.

3.5.2 Generalization ability and overfitting test
We observed that the Perceptron’s performance remained stable 

across both the training and testing sets, suggesting effective 
generalization. The mean AUC for the training set was 0.914 with a 
standard deviation (SD) of ±0.0153, while the validation set showed a 
mean AUC of 0.907 with an SD of ±0.0477. A two-sample t-test was 
applied to assess the statistical significance of the difference between 
these two sets, resulting in a value of p of 0.295. This non-significant 
value of p indicates that there is no substantial difference in the 
model’s performance on the training and testing sets, thus supporting 
the conclusion that overfitting is unlikely in our model.

This consistent performance across different subsets demonstrates 
the model’s reliability and its potential applicability in real-world 
scenarios where data variability is a common challenge.

3.5.3 Input–output examples
In this chapter, we  present examples of true positives, false 

negatives, true negatives, and false positives (Table 9), using input data 
and the output of the Perceptron. The logsig output of the Perceptron 
ranges between 0 and 1, where 0 indicates the presence of amblyopia 
or a risk factor condition, and 1 signifies the absence of the eye 
condition. Generally, the threshold for making a binary decision is set 

TABLE 7 Pairwise comparison of classic and ETS tests for AUC values.

Amblyopia Lang II TNO Stereo Fly Frisby

SRDS 8 WC 0.404 0.707 0.745 0.210

DRDS 1 WC 0.381 0.737 0.733 0.246

DRDS 0.7 WC 0.134 0.627 0.748 0.271

DRDS 1+noise WC 0.659 0.318 0.992 0.457

AI-sum WC 0.041 0.458 0.240 0.030

AI-w WC 0.067 0.540 0.288 0.034

AI-aw WC 0.042 0.391 0.215 0.023

Amblyogenic conditions

SRDS 8 WC 0.182 0.715 0.399 0.313

DRDS 1 WC 0.484 0.564 0.463 0.518

DRDS 0.7 WC 0.492 0.101 0.728 0.800

DRDS 1+noise WC 0.875 0.082 0.923 0.982

AI-sum WC 0.086 0.924 0.096 0.064

AI-w WC 0.038 0.556 0.046 0.028

AI-aw WC 0.018 0.409 0.038 0.014

Ambylopia+Amblyogenic conditions

SRDS 8 WC 0.124 0.638 0.371 0.141

DRDS 1 WC 0.327 0.534 0.435 0.266

DRDS 0.7 WC 0.205 0.115 0.653 0.443

DRDS 1+noise WC 0.954 0.074 0.941 0.672

AI-sum WC 0.015 0.684 0.047 0.008

AI-w WC 0.008 0.447 0.027 0.004

AI-aw WC 0.003 0.289 0.018 0.001

Numbers represent p-values, level of significance was determined at p=0.05. p-values less than 0.05 are in bold. AUC: area under the ROC curve. ETS: EuvisionTab® Stereovision test module; 
NC: no correction; WC: with correction; SRDS 8: 8% density static test; DRDS 1: 1% density dynamic test; DRDS 0.7: 0.7% density dynamic test; DRDS 1+noise: 1% density dynamic test with 
0.5% binocularly uncorrelated noise; AI-ETS: artificial intelligence-based ETS tests; sum: equally weighted sum of the four ETS-tests; w: ‘weight’, optimized weight for amblyopia; aw: ‘average 
weight’, optimized weight for all pathologic conditions.
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TABLE 8 Sensitivity and specificity at optimal ROC points for each condition and test.

Test name Amblyopia Amblyogenic Nonamblyogenic Amblyopia+Amblyogenic Specificity

SRDS 8 NC 0.86 (0.67-0.96) 0.47 (0.30-0.65) 0.08(0.03-0.17) 0.64 (0.51-0.76) 0.98 (0.93-0.99)

DRDS 1 NC 0.89 (0.72-0.98) 0.44 (0.28-0.62) 0.15(0.08-0.26) 0.64 (0.51-0.76) 0.88 (0.81-0.93)

DRDS 0.7 NC 0.87 (0.66-0.97) 0.52 (0.31-0.73) 0.21(0.09-0.36) 0.70 (0.54-0.82) 0.96 (0.85-0.99)

DRDS 1+noise NC 0.83 (0.61-0.95) 0.57 (0.34-0.77) 0.21(0.09-0.36) 0.70 (0.54-0.82) 0.87 (0.73-0.95)

AI-sum NC 1.00 (0.85-1.00) 0.65 (0.43-0.84) 0.33(0.19-0.50) 0.83 (0.69-0.92) 0.91 (0.79-0.98)

AI-w NC 1.00 (0.85-1.00) 0.61 (0.39-0.80) 0.13(0.04-0.27) 0.80 (0.66-0.91) 0.98 (0.88-1.00)

AI-aw NC 1.00 (0.85-1.00) 0.70 (0.47-0.87) 0.26(0.13-0.42) 0.85 (0.71-0.94) 0.89 (0.76-0.96)

SRDS 8 WC 0.77 (0.60-0.90) 0.36 (0.21-0.53) 0.11(0.06-0.19) 0.55 (0.43-0.67) 0.98 (0.93-0.99)

DRDS 1 WC 0.74 (0.57-0.88) 0.38 (0.23-0.55) 0.20(0.13-0.29) 0.55 (0.43-0.67) 0.88 (0.81-0.93)

DRDS 0.7 WC 0.83 (0.61-0.95) 0.39 (0.20-0.61) 0.21(0.09-0.36) 0.61 (0.45-0.75) 0.96 (0.85-0.99)

DRDS 1+noise WC 0.83 (0.61-0.95) 0.35 (0.16-0.57) 0.21(0.09-0.36) 0.59 (0.43-0.73) 0.87 (0.73-0.95)

AI-sum WC 0.96 (0.78-1.00) 0.43 (0.23-0.66) 0.28(0.15-0.45) 0.70 (0.54-0.82) 0.91 (0.79-0.98)

AI-w WC 0.96 (0.78-1.00) 0.43 (0.23-0.66) 0.10(0.03-0.24) 0.70 (0.54-0.82) 0.98 (0.88-1.00)

AI-aw WC 0.96 (0.78-1.00) 0.70 (0.47-0.87) 0.23(0.11-0.39) 0.83 (0.69-0.92) 0.89 (0.76-0.96)

Lang II 0.65 (0.50-0.79) 0.22 (0.12-0.35) 0.05(0.02-0.11) 0.42 (0.32-0.52) 0.99 (0.96-1.00)

TNO 0.88 (0.74-0.96) 0.47 (0.32-0.62) 0.20(0.13-0.29) 0.66 (0.55-0.76) 0.91 (0.86-0.95)

Stereo Fly 0.85 (0.69-0.95) 0.30 (0.17-0.47) 0.17(0.08-0.29) 0.55 (0.43-0.67) 0.97 (0.93-0.99)

Frisby 0.76 (0.60-0.89) 0.44 (0.29-0.60) 0.19(0.10-0.31) 0.59 (0.48-0.70) 0.86 (0.78-0.91)

Values in brackets represent 95% confidence intervals. ROC: receiver operating characteristic, NC: no correction; WC: with correction; SRDS 8: 8% density static test; DRDS 1: 1% density 
dynamic test; DRDS 0.7: 0.7% density dynamic test; DRDS 1+noise: 1% density dynamic test with 0.5% binocularly uncorrelated noise; AI-ETS: artificial intelligence-based ETS tests; sum: 
equally weighted sum of the four ETS-tests; w: ‘weight’, optimized weight for amblyopia; aw: ‘average weight’, optimized weight for all pathologic conditions.

FIGURE 4

Performance of the Perceptron in different stereovision test combinations. Standard boxplot shows the distribution of the AUCs after 100 repetitions of 
reinitialization and convergence for single tests, pairs, triplets and all four input variations. Boxes are bounded by the first and third quartiles, red lines in 
the boxes show the medians and whiskers show the lowest and highest data points within 1.5 times the interquartile range to the median. Red crosses 
represent outliers. S8: Static random dot stereogram with 8% density, D1: Dynamic random dot stereogram with 1% density, D07: random dot 
stereogram with 0.7% density, D1N: Dynamic random dot stereogram with 1% density including 0.5% uncorrelated noise.
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at 0.5. For finer adjustment, this threshold can be modified based on 
the ROC curve.

4 Discussion

In this study, we  evaluated the performance of a new type of 
stereovision test called EuvisionTab Stereovision tests (ETS) in 
detecting amblyopia, amblyogenic and non-amblyogenic conditions 
in children. These tests were compared with four established clinical 
stereovision tests (Lang II, TNO, Stereo Fly, Frisby). ETS tests are 
distinct in that they: 1) do not rely on measuring stereoacuity; 2) can 
be either static or dynamic; 3) have low dot density; 4) can include 
uncorrelated noise, and 5) use artificial intelligence technology. Our 
results were supported by various statistical models, including AUC 
(DeLong’s method), matched-pair (McNemar’s exact), and 
non-matched (Fisher’s exact) tests. The sensitivity of ETS tests was 
found to be significantly better or equal to that of the most widely used 
clinical stereovision tests. The best-performing AI-based combination 
(AI-aw WC) was found to be more effective in detecting amblyopia or 
amblyogenic conditions than any of the classic stereovision tests.

4.1 Interpretation of the results

In this section, we summarize the advantages of novel, low-density, 
static and dynamic stereograms in vision screening compared to 
classic stereoacuity-based testing. Our results from ROC curve 

analysis, McNemar’s matched-pair test, and Fisher’s non-matched tests 
were consistent.

The AI-based tests showed significantly higher AUCs for detecting 
amblyopia (0.97–0.98) and amblyogenic conditions (0.81–0.84) 
compared to classic tests (0.82–0.95 for amblyopia, 0.6–0.74 for 
amblyogenic conditions). Sensitivity figures at optimum ROC points 
were higher for the novel tests (0.74–0.83) with AI-based tests showing 
high sensitivity in detecting amblyopia (0.96). Optimizing stimulus 
parameters and combining test results improved the specificities of the 
ETSs (0.87–0.98) to be comparable to classic tests (0.86–0.99).

Results from McNemar’s test showed that the AI test optimized 
for all conditions (AI-aw WC) outperformed most classic tests in 
detecting amblyopia or amblyogenic conditions. Fisher’s exact test 
revealed that the AI-aw WC test had significantly higher sensitivity in 
detecting amblyopia or an amblyogenic condition compared to TNO, 
while specificities did not differ significantly.

The study demonstrated that ETSs without refractive 
correction, typical in community screenings, were highly effective 
in detecting amblyopia. AI-based tests showed AUCs of 0.997 
without refractive correction, indicating that they could identify all 
amblyopic individuals. This is a significant advantage in 
community screenings.

AI-based stereovision tests significantly outperformed classic tests 
in detecting amblyopia and amblyogenic conditions, with superiority 
evident when the goal is to detect amblyogenic conditions along with 
amblyopia. ETSs offer benefits for mass screening over traditional 
clinical tests, including simpler testing procedures, no monocular cues 
(38), unambiguous pass/fail decisions, flexibility in pass level 

FIGURE 5

Pairwise comparison of the AUCs for different Perceptron configurations. The color codes represent the p-values obtained from pairwise Student 
t-tests. p-values are coded as the negative logarithm of their magnitudes.
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adjustment, popularity among children, potential for AI optimization, 
suitability for telemedicine and home screening, and easy integration 
with patient data management systems.

4.2 Strengths and limitations of the study

4.2.1 Strengths
The novel test under evaluation is robust and straightforward 

to administer. Its design is so user-friendly that even a child can 
self-administer the test (Figure  1). Moreover, the interactive 
nature of the test, use of mobile technology makes it engaging 
for children.

In this study, we conducted a comprehensive comparison of the 
new test with several well-established clinical stereovision tests. These 
classic tests were carefully selected to represent a broad range of 
methodologies, including random dot stereograms with different 
channel separations, real depth, and contour stereograms. 
We refrained from using predefined stereoacuity thresholds. Instead, 
we employed sophisticated ROC curve analysis to identify optimal 
cut-off points for binary classification. Multiple statistical methods 

were used, and they all yielded consistent results when comparing the 
novel test to classic tests.

4.2.2 Limitations
Despite the strengths of the study, some limitations exist. Firstly, 

not all subjects underwent every test in a systematic manner. For a 
detailed explanation, please refer to the “Study Design” subsection 
within the Methods section. Secondly, the study included only a 
limited number of patients who were newly diagnosed with eye 
conditions. To emulate a setting that is representative of a typical 
screening environment, we  tested participants without corrective 
lenses (“no correction” or NC test conditions). However, this was only 
possible with the new type of test. Furthermore, the age range of our 
participants was broader than the standard target demographic for 
amblyopia screening, which is typically 3.5 to 6 years.

4.3 Future of AI-based screening

This trial sought to identify optimal random dot stereogram 
parameters for screening amblyopia and amblyogenic conditions. During 

TABLE 9 Input-output examples.

True negatives Example #1 Example #2 Example #3 Example #4 Example #5
IN

PU
T

SRDS 8% 5 5 5 5 5

DRDS 1% 4 3 4 3 5

DRDS 0.7% 5 3 4 4 5

DRDS 1%+0.5% noise 4 2 4 3 5

Perceptron’s logsig OUTPUT 0.788 0.559 0.751 0.602 0.881

False positives Example #1 Example #2

IN
PU

T

SRDS 8% 5 5

DRDS 1% 1 3

DRDS 0.7% 3 1

DRDS 1%+0.5% noise 1 1

Perceptron’s logsig OUTPUT 0.236 0.464

True positives Example #1 Example #2 Example #3 Example #4 Example #5

IN
PU

T

SRDS 8% 1 1 5 5 5

DRDS 1% 1 2 2 2 2

DRDS 0.7% 0 2 4 1 2

DRDS 1%+0.5% noise 1 3 1 2 4

Perceptron’s logsig OUTPUT <0.001 <0.001 0.438 0.290 0.321

False negatives Example #1 Example #2 Example #3 Example #4 Example #5

IN
PU

T

SRDS 8% 5 5 5 5 5

DRDS 1% 5 5 4 5 3

DRDS 0.7% 5 4 4 4 5

DRDS 1%+0.5% noise 4 4 3 4 3

Perceptron’s logsig OUTPUT 0.884 0.861 0.757 0.861 0.650

True negative examples were observed among emmetropic controls. Forty percent of these controls achieved the highest score, meaning they reached the maximum score (5) on each type of 
non-stereoacuity-based stereovision test (see last column). False positive examples from emmetropic controls were rare. These score patterns were more significant for amblyogenic conditions. 
True positive examples were identified among children with eye conditions. These examples highlight that, in some cases, while the static stereovision test was performed adequately, the 
dynamic tests frequently did not achieve satisfactory results, particularly in amblyogenic conditions. False negative examples from the amblyopic or amblyogenic group included only one 
amblyope who passed the test with refractive correction (see first column). However, without refractive correction, the child failed to pass (see last column of true positive examples). Some 
amblyogenic risk factors did not appear to lead to binocular abnormalities. These cases remain those of the unrecognized individuals by this method.
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analysis, the idea of AI first emerged as a simple summation of ETS scores 
significantly improved AUC, suggesting potential for further optimization. 
Although the current study utilized a simplistic AI approach (perceptron) 
suitable for the dataset size, employing more complex AI solutions like 
multilayer feedforward backpropagation (39) or deep learning could 
enhance results in the future studies. Further exploration of RDS 
parameters, which could include other versions of stereograms with fewer 
repetitions, could also be beneficial.

Our study represents a significant advancement in vision 
screening, overcoming some limitations of traditional methods. 
We  have developed an AI model that merges different types of 
stereograms, such as static, dynamic, and noisy, outperforming 
standard stereoacuity-based tests in identifying childhood vision 
impairments. Unlike typical AI applications that analyze facial images 
and eye positions to detect signs of amblyopia (40–43), our approach 
integrates multiple non-stereoacuity tests. This method effectively 
identifies all cases of amblyopia and its risk factors, not just those with 
visible symptoms. Additionally, it offers a more affordable solution for 
vision screening in areas with limited resources, moving away from 
expensive technologies like autorefraction and retina scanners.
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