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Background: Previous studies have identified COVID-19 risk factors, such as 
age and chronic health conditions, linked to severe outcomes and mortality. 
However, accurately predicting severe illness in COVID-19 patients remains 
challenging, lacking precise methods.

Objective: This study aimed to leverage clinical real-world data and multiple 
machine-learning algorithms to formulate innovative predictive models for 
assessing the risk of severe outcomes or mortality in hospitalized patients 
with COVID-19.

Methods: Data were obtained from the Taipei Medical University Clinical 
Research Database (TMUCRD) including electronic health records from 
three Taiwanese hospitals in Taiwan. This study included patients admitted 
to the hospitals who received an initial diagnosis of COVID-19 between 
January 1, 2021, and May 31, 2022. The primary outcome was defined as 
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the composite of severe infection, including ventilator use, intubation, 
ICU admission, and mortality. Secondary outcomes consisted of individual 
indicators. The dataset encompassed demographic data, health status, 
COVID-19 specifics, comorbidities, medications, and laboratory results. 
Two modes (full mode and simplified mode) are used; the former includes 
all features, and the latter only includes the 30 most important features 
selected based on the algorithm used by the best model in full mode. Seven 
machine learning was employed algorithms the performance of the models 
was evaluated using metrics such as the area under the receiver operating 
characteristic curve (AUROC), accuracy, sensitivity, and specificity.

Results: The study encompassed 22,192 eligible in-patients diagnosed with 
COVID-19. In the full mode, the model using the light gradient boosting 
machine algorithm achieved the highest AUROC value (0.939), with an 
accuracy of 85.5%, a sensitivity of 0.897, and a specificity of 0.853. Age, 
vaccination status, neutrophil count, sodium levels, and platelet count were 
significant features. In the simplified mode, the extreme gradient boosting 
algorithm yielded an AUROC of 0.935, an accuracy of 89.9%, a sensitivity of 
0.843, and a specificity of 0.902.

Conclusion: This study illustrates the feasibility of constructing precise 
predictive models for severe outcomes or mortality in COVID-19 patients 
by leveraging significant predictors and advanced machine learning. These 
findings can aid healthcare practitioners in proactively predicting and 
monitoring severe outcomes or mortality among hospitalized COVID-19 
patients, improving treatment and resource allocation.

KEYWORDS

COVID-19, severity, prediction model, Taipei Medical University Clinical Research 
Database, artificial intelligence, machine learning

Introduction

The emergence of the coronavirus disease 2019 (COVID-19) 
outbreak in China during late 2019 has escalated into a worldwide 
health apprehension, primarily due to its rapid transmission and 
deleterious health implications (1). Its prevalent symptoms 
encompass fever, dry cough, and dyspnea (2). According to prior 
investigations, a distinct subset of afflicted individuals faces a 
heightened susceptibility to severe infection, with respiratory 
impairments such as dyspnea, elevated respiratory rate, and 
diminished oxygen saturation dominating the symptomatology. 
Individuals with advanced disease may also manifest respiratory 
failure, septic shock, or multi-organ dysfunction (3).

The swift propagation and extensive ramifications of this 
worldwide pandemic have imposed a significant strain on 
healthcare systems across diverse nations. This strain is 
particularly evident in the realms of clinical resource allocation 
and decision-making protocols. Numerous medical institutions 
have encountered unparalleled scarcities of essential supplies, 
among them mechanical ventilators, primarily stemming from the 
rapid surge in critically ill COVID-19 patients necessitating both 
airway assistance and mechanical ventilatory support. This 
predicament, confronting healthcare delivery systems, 
underscores the urgency of employing innovative and pioneering 
technologies to navigate acute and systemic challenges in 

healthcare provisioning. With the overarching aims of mitigating 
mortality and sustaining healthcare infrastructure, the primary 
objective entails averting severe outcomes and fatalities 
among patients.

The incorporation of artificial intelligence (AI) and machine 
learning (ML) within the healthcare domain, spanning tasks such 
as image analysis, clinical decision-making, and prognosis 
prediction, constitutes a burgeoning discipline with broad 
applications across diverse maladies (4). Within the context of 
COVID-19, artificial intelligence has demonstrated its pivotal role 
in both diagnostic and prognostic domains, encompassing 
prediction, detection, classification, screening, and diagnosis of 
COVID-19 infections (5, 6). Scoping reviews have underscored the 
potential of artificial intelligence as a weapon in the fight against 
COVID-19; nonetheless, many proposed methodologies are yet to 
secure clinical acceptance (7). Predictive models stand as extensively 
investigated tools within biotechnology, enriching clinical 
comprehension of the diagnostic and prognostic dimensions of 
various illnesses.

According to the Taiwan Centers for Disease Control, during 
the initial phase of the COVID-19 outbreak, a substantial 
proportion (42%) of the cases were primarily located in the 
northern region of Taiwan, probably due to the presence of the 
International airports in that area and May 2022 marked the onset 
of the first wave of the pandemic (8). The Taipei Medical University 
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Clinical Research Database (TMUCRD) gathers data from multiple 
centers and sources of various data types. It systematically collects 
both structured and unstructured data from three affiliated 
hospitals: Taipei Medical University Hospital, Wanfang Hospital, 
and Shuangho Hospital (9–11). The National Health Insurance 
database in Taiwan has a gap of 2 years in the dissemination of data 
for research purposes. Therefore, in terms of finding recent 
breakthroughs in the field of COVID-19, TMUCRD could help 
enhance the understanding of factors influencing 
COVID-19 outcomes.

Based on the most accurate information available, no prediction 
model study of COVID-19 severe symptoms in Taiwan. This study 
aimed to predict severe outcomes, including the use of ventilators, 
intubation, admission to the intensive care unit (ICU), and 
mortality, among COVID-19 patients hospitalized in Taiwan. The 
primary objective of this study is to develop predictive models that 
can assist clinicians in identifying individuals who are most 
vulnerable to severe outcomes, including mortality. This focused 
identification provides healthcare practitioners with the tools to 
carry out prompt interventions.

Methods

Study design and data source

To create the dataset, this study utilized clinical data obtained 
from the Taipei Medical University Clinical Research Database 
(TMUCRD). TMUCRD consolidates extensive clinical data 
derived from three associated hospitals: Taipei Medical University 
Hospital, Wanfang Hospital, and Shuang-Ho Hospital. The 
database comprises structured and unstructured information. 
This study obtained approval from the Taipei Medical University 
Joint Institutional Review Board (TMU-JIRB) with grant 
number N202302020.

Population selection

This study included patients who were hospitalized and 
confirmed to have contracted COVID-19 within the period 
spanning from January 1, 2021, to May 31, 2022. The diagnosis of 
COVID-19 was established either through a positive outcome from 
a real-time reverse transcription polymerase chain reaction 
(RT-PCR) test or a positive outcome from a rapid antigen test.

The exclusion criteria encompassed newly registered patients 
who had not previously sought medical care at the three hospitals 
due to the lack of complete medical background information 
records, individuals under the age of 20, and patients with 
undisclosed gender information. As a result, a total of 22,192 
patients were retained for inclusion in this study. The selection 
process for the study population is visually depicted in Figure 1.

Outcome measurement

The index date is defined as the date of the first COVID diagnosis. 
The primary outcome was defined as a serious event, encompassing 
occurrences such as ventilator use, intubation, intensive care unit 
(ICU) admission, and mortality within 3 months of confirmed 
COVID-19 infection. Additionally, each of the aforementioned 
specific indicators was considered as a secondary outcome in this 
study. Data censoring occurred either at the date of death, loss to 
follow-up, or at the end of the study (May 31, 2022).

Features

Based on a literature review and consultation with clinicians, 
this study identified features associated with the above outcomes 
based on demographic information, health status, COVID-19-
related details, comorbidities, long-term medication records, and 

FIGURE 1

Flowchart of cohort selection.
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laboratory test results. The selected features include: (1) 
demographic information: gender and age; (2) health status: body 
mass index (BMI) and Charlson Comorbidity Index (CCI) score; 
(3) COVID-19-related details: COVID-19 vaccine and Covid-19 
medications; (4) comorbidities: myocardial infarction (MI), 
chronic kidney disease (CKD), congestive heart failure (CHF), 
peripheral vascular disease, cerebrovascular disease (CVA), 
cardiovascular disease (CVD), dementia, chronic obstructive 
pulmonary disease (COPD), rheumatic disease, peptic ulcer 
disease, liver disease, diabetes mellitus (DM), hemiplegia, renal 
disease, cancer, human immunodeficiency virus/ acquired immune 
deficiency syndrome (HIV/AIDS), hypertension, hyperlipidemia, 
hyperuricemia, depression or anxiety, anemia, Parkinson’s disease 
(PD), osteoporosis; (5) long-term medication records: 
benzodiazepine (BZD), non-steroidal anti-inflammatory drug 
(NSAID), aspirin, hypertension (HTN) drugs, DM drugs, statins, 
antihyperuricemic drugs, antihistamin, gastro-oesophageal reflux 
disease (GORD) drugs, steroids; and (6) laboratory test results: 
HbA1C, total cholesterol (TC), high-density lipoprotein (HDL), 
low-density lipoprotein (LDL), triglycerides (TG), Uric acid (UA), 
aspartate aminotransferase/AST (GOT), alanine transaminase/
ALT (GPT), total protein, albumin, globubin, blood urea nitrogen 
(BUN), creatinine, red blood cells (RBC), hemoglobin (HGB), 
mean corpuscular hemoglobin (MCH), mean corpuscular 
hemoglobin concentration (MCHC), white blood cell (WBC), 
neutrophil, lymphocyte, platelet count (PLT), hematocrit (HCT), 
sodium (NA), potassium (K), troponin I, and troponin T.

The Charlson Comorbidity Index (CCI) score was computed, 
and comorbidity was determined using disease codes sourced from 
the ICD-9 or ICD-10 classification systems found in the medical 
records. Among the cohort members, individuals were categorized 
as having comorbidities if they had undergone a minimum of two 
outpatient visits or one hospitalization related to the specific disease 
before the index date. Evaluation of the COVID-19 vaccine status 
is based on the vaccination records within the year preceding the 
index date. Assessment of COVID-19 medications is grounded in 
the medication status during the 3 months following the index date. 
Long-term medication users in the cohort were characterized as 
patients who had received a prescription for one or more of the 
aforementioned drugs for a period of 28 days or longer in the year 
(365 days) prior to the index date. In cases where multiple test 
results were obtainable, priority was given to the latest laboratory 
test value within a one-year period before the index date. The 
technique of Multiple Imputation by Chained Equations (MICE) 
was employed to address the presence of missing continuous 
features (12).

Statistical analysis

In the realm of descriptive statistics, continuous data are 
elucidated through the utilization of the mean (standard deviation, 
S.D.) and median (minimum and maximum values). Conversely, 
categorical data are expounded upon by presenting the count of cases 
along with their corresponding percentages. Additionally, the count 
and proportion of missing values were computed. Statistical analyses 
were conducted employing R version 4.1.3 (R Project for 
Statistical Computing).

Algorithms used in this study

Seven machine learning algorithms were utilized to formulate 
personalized prediction models. The machine learning algorithms 
encompass Linear Discriminant Analysis (LDA), Logistic Regression 
(LR), Support Vector Machine (SVM), Random Forest (RF), Gradient 
Boosting Machine (GBM), Light GBM, and Extreme Gradient 
Boosting (XGBoost) (refer to Supplementary Appendix 1). Prediction 
models were developed in this study based on two modes and 
employing diverse algorithms: (1) Full mode: encompassing all 
selected features’ data; (2) Simplified mode: incorporating 30 crucial 
features chosen based on the algorithm used by the best model in 
full mode.

Model training and testing

The participant cohort was divided into training and testing 
datasets, with 80% of participants assigned to the training subset, and 
the remaining portion constituting the testing dataset. The cross-
validation technique was also performed to access the over-fitting 
(13, 14).

Evaluation of model performance and 
interpretation

Performance assessment and comparison of all prediction models 
involved the calculation of metrics including the area under the 
receiver operating characteristic curve (AUROC), accuracy, sensitivity 
(recall), specificity, positive predictive value (PPV or precision), 
negative predictive value (NPV), and F1-score. The optimal model 
was determined by identifying the one with the highest AUROC 
through a comparative analysis of various models using testing results. 
Data processing was executed using MSSQL Server 2017, while model 
training and testing were carried out utilizing the Python 
programming language version 3.9 (15). The SHapley Additive 
exPlanations (SHAP) values were used to assess feature’s contribution 
(also known as its importance) to the most optimal model when 
interpreting the models (16).

Results

Baseline of patient characteristics

Table 1 shows basic characteristics of the study cohort, including 
patients’ demographic information, health status, COVID-19-related 
details, comorbidities, long-term medication records, and laboratory 
test results. In this study, 22,192 inhospitalized patients were included. 
Among the entire patient cohort, there were 12,452 female patients 
(56.1%), slightly outnumbering the 9,740 male patients (43.9%). The 
patients had a mean age of 49.3 (S.D. 17.4), with the majority falling 
below 65 years old (17,625, 79.4%), followed by those aged 65–85 
(3,960, 17.8%), and those above 85 (607, 2.7%). Among the subset of 
patients with available BMI records (11,695), the patients’ average 
BMI was 24.4 (S.D. 4.51). The majority had a BMI greater than or 
equal to 24 (48.32%), while 45.44% had BMIs between 18.5 and 24, 
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TABLE 1 Baseline of patient characteristics.

Variables Total (N  =  22,192) Ventilator 
(N  =  1,010)

Intubation 
(N  =  196)

ICU (N  =  85) Mortality 
(N  =  205)

Demographic information

Sex, N (%)

Female 12,452 (56.1%) 459 (45.4%) 84 (42.9%) 28 (32.9%) 72 (35.1%)

Male 9,740 (43.9%) 551 (54.6%) 112 (57.1%) 57 (67.1%) 133 (64.9%)

Age, N (%)

Mean (SD) 49.3 (17.4) 71.4 (17.2) 66.5 (15.0) 72.9 (13.6) 78.2 (12.4)

Median [Min, Max] 47.4 [20.0, 110] 73.5 [20.0, 108] 69.4 [20.0, 97.7] 72.8 [32.2, 97.7] 79.5 [43.1, 102]

Age < 65 yrs. 17,625 (79.4%) 303 (30.0%) 77 (39.3%) 17 (20.0%) 28 (13.7%)

65 ≤ Age < 85 yrs. 3,960 (17.8%) 459 (45.4%) 100 (51.0%) 52 (61.2%) 110 (53.7%)

Age ≥ 85 yrs. 607 (2.7%) 248 (24.6%) 19 (9.7%) 16 (18.8%) 67 (32.7%)

Health status

BMI, N (%)

Mean (SD) 24.4 (4.51) 23.8 (4.71) 25.1 (4.83) 24.8 (4.49) 23.1 (4.39)

Median [Min, Max] 23.8 [9.21, 51.9] 23.4 [12.5, 48.5] 24.4 [15.7, 43.8] 24.0 [16.9, 37.8] 22.4 [13.5, 41.6]

BMI < 18.5 730 (3.3%) 95 (9.4%) 14 (7.1%) 4 (4.7%) 21 (10.2%)

18.5 < = BMI < 24 5,314 (23.9%) 397 (39.3%) 63 (32.1%) 36 (42.4%) 96 (46.8%)

BMI > = 24 5,651 (25.5%) 401 (39.7%) 96 (49.0%) 40 (47.1%) 68 (33.2%)

CCI score, N (%)

Mean (SD) 0.530 (1.52) 1.88 (2.68) 1.76 (2.41) 1.89 (2.84) 1.80 (3.08)

Median [Min, Max] 0 [0, 18.0] 0 [0, 16.0] 1.00 [0, 11.0] 0 [0, 16.0] 0 [0, 16.0]

CCI score = 0 18,298 (82.5%) 517 (51.2%) 95 (48.5%) 44 (51.8%) 131 (63.9%)

0 < = CCI score < 3 2,115 (9.5%) 187 (18.5%) 44 (22.4%) 16 (18.8%) 17 (8.3%)

CCI score > = 3 1779 (8.0%) 306 (30.3%) 57 (29.1%) 25 (29.4%) 57 (27.8%)

COVID-19-related details

COVID-19 vaccine 5,820 (26.2%) 151 (15.0%) 23 (11.7%) 9 (10.6%) 24 (11.7%)

COVID-19 medications 

(Paxlovid or Molnupiravir)
558 (2.5%) 49 (4.9%) 4 (2.0%) 2 (2.4%) 4 (2.0%)

Comorbidities, N (%)

Congestive heart failure 

(CHF)
534 (2.4%) 111 (11.0%) 17 (8.7%) 5 (5.9%) 17 (8.3%)

Cardiovascular disease 997 (4.5%) 182 (18.0%) 34 (17.3%) 17 (20.0%) 29 (14.1%)

COPD 1,106 (5.0%) 155 (15.3%) 30 (15.3%) 13 (15.3%) 23 (11.2%)

Peptic ulcer disease 1,367 (6.2%) 153 (15.1%) 30 (15.3%) 14 (16.5%) 26 (12.7%)

Liver disease 860 (3.9%) 85 (8.4%) 22 (11.2%) 9 (10.6%) 22 (10.7%)

Diabetes mellitus 1,347 (6.1%) 210 (20.8%) 31 (15.8%) 17 (20.0%) 41 (20.0%)

Renal disease 673 (3.0%) 131 (13.0%) 26 (13.3%) 13 (15.3%) 29 (14.1%)

Cancer 535 (2.4%) 90 (8.9%) 20 (10.2%) 9 (10.6%) 18 (8.8%)

Hypertension 1,490 (6.7%) 240 (23.8%) 50 (25.5%) 25 (29.4%) 45 (22.0%)

Hyperlipidemia 2055 (9.3%) 213 (21.1%) 52 (26.5%) 23 (27.1%) 31 (15.1%)

Depression or anxiety 884 (4.0%) 87 (8.6%) 18 (9.2%) 6 (7.1%) 9 (4.4%)

Anemia 621 (2.8%) 92 (9.1%) 21 (10.7%) 7 (8.2%) 17 (8.3%)

Long-term medication, N (%)

BZD 1,695 (7.6%) 216 (21.4%) 42 (21.4%) 22 (25.9%) 71 (34.6%)

NSAID 1,016 (4.6%) 65 (6.4%) 20 (10.2%) 10 (11.8%) 16 (7.8%)

(Continued)
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TABLE 1 (Continued)

Variables Total (N  =  22,192) Ventilator 
(N  =  1,010)

Intubation 
(N  =  196)

ICU (N  =  85) Mortality 
(N  =  205)

Aspirin 1,396 (6.3%) 178 (17.6%) 40 (20.4%) 22 (25.9%) 54 (26.3%)

HTN 2,846 (12.8%) 323 (32.0%) 62 (31.6%) 32 (37.6%) 90 (43.9%)

DM 1,250 (5.6%) 154 (15.2%) 25 (12.8%) 14 (16.5%) 49 (23.9%)

Statin 2,141 (9.6%) 181 (17.9%) 43 (21.9%) 21 (24.7%) 46 (22.4%)

Antihyperuricemic 418 (1.9%) 56 (5.5%) 11 (5.6%) 5 (5.9%) 27 (13.2%)

Antihistamin 528 (2.4%) 49 (4.9%) 7 (3.6%) 4 (4.7%) 14 (6.8%)

GORD 1,317 (5.9%) 182 (18.0%) 35 (17.9%) 21 (24.7%) 54 (26.3%)

Steroids 2,420 (10.9%) 228 (22.6%) 56 (28.6%) 28 (32.9%) 69 (33.7%)

Laboratory test results, N (%)

AST (GOT)

Mean (SD) 30.2 (123) 53.4 (288) 115 (663) 53.6 (84.3) 113 (597)

Median [Min, Max] 21.0 [0, 7,930] 26.5 [8.00, 7,930] 31.0 [11.0, 7,930] 32.0 [14.0, 553] 35.0 [8.00, 7,930]

ALT (GPT)

Mean (SD) 26.1 (57.1) 37.2 (150) 57.2 (243) 37.2 (83.0) 63.1 (233)

Median [Min, Max] 19.0 [0, 2,690] 18.0 [0, 2,690] 20.0 [0, 2,580] 20.0 [0, 654] 20.0 [0, 2,580]

Creatinine

Mean (SD) 1.28 (1.88) 1.87 (2.51) 2.00 (2.45) 2.28 (2.62) 2.16 (2.37)

Median [Min, Max] 0.820 [0, 23.3] 1.00 [0, 19.3] 1.08 [0.340, 17.8] 1.29 [0.340, 17.8] 1.27 [0, 17.8]

RBC

Mean (SD) 4.39 (0.741) 4.08 (0.860) 4.21 (0.968) 3.95 (0.812) 3.74 (0.912)

Median [Min, Max] 4.44 [1.03, 7.67] 4.11 [1.03, 6.87] 4.34 [1.67, 6.85] 4.02 [2.20, 6.24] 3.75 [1.77, 7.19]

Hemoglobin (HGB)

Mean (SD) 13.0 (2.04) 12.1 (2.39) 12.4 (2.58) 12.0 (2.39) 11.3 (2.61)

Median [Min, Max] 13.3 [3.40, 25.2] 12.4 [4.50, 18.3] 12.8 [4.70, 17.6] 12.0 [7.00, 16.8] 11.4 [5.80, 16.8]

MCH

Mean (SD) 29.7 (3.11) 29.9 (3.24) 29.8 (3.59) 30.6 (3.06) 30.3 (3.04)

Median [Min, Max] 30.3 [12.9, 43.4] 30.5 [13.2, 43.4] 30.5 [17.2, 36.7] 30.8 [20.9, 35.3] 30.5 [18.8, 38.4]

MCHC

Mean (SD) 33.8 (1.20) 33.8 (1.44) 33.6 (1.62) 33.8 (1.23) 33.6 (1.33)

Median [Min, Max] 33.9 [16.6, 40.1] 33.9 [16.6, 40.1] 33.8 [27.2, 40.1] 33.9 [29.7, 36.5] 33.8 [29.6, 37.1]

WBC

Mean (SD) 7.39 (3.31) 8.14 (4.78) 9.13 (7.30) 9.59 (6.30) 10.3 (8.32)

Median [Min, Max] 6.78 [0.200, 78.7] 7.19 [0.570, 78.7] 7.72 [0.570, 78.7] 8.40 [0.570, 37.8] 8.58 [0.570, 78.7]

Neutrophil

Mean (SD) 67.4 (13.6) 74.3 (13.4) 74.5 (14.7) 77.2 (12.5) 78.8 (13.9)

Median [Min, Max] 67.4 [0, 99.0] 75.7 [0, 99.0] 76.5 [0, 96.5] 78.2 [34.3, 96.5] 81.5 [0, 98.5]

PLT

Mean (SD) 230 (80.9) 197 (87.1) 190 (88.1) 175 (97.6) 178 (88.5)

Median [Min, Max] 226 [0, 1,010] 182 [12.0, 652] 172 [14.0, 569] 151 [14.0, 569] 155 [14.0, 478]

HCT

Mean (SD) 38.3 (5.85) 35.8 (6.91) 36.8 (7.44) 35.5 (6.85) 33.4 (7.68)

Median [Min, Max] 39.1 [10.4, 55.5] 36.8 [11.7, 52.0] 37.9 [11.7, 51.3] 35.8 [22.0, 48.4] 33.4 [16.4, 50.6]

NA

Mean (SD) 138 (4.52) 135 (6.01) 136 (6.68) 135 (5.48) 137 (7.28)

(Continued)
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and 6.24% had BMIs below 18.5. The patients had an average CCI 
score of 0.53 (S.D. 1.52), with the majority achieving a CCI score of 0 
(18,298, 82.5%). Following were patients with CCI scores ranging 
from 0 to 3 (2,115, 9.5%), while a smaller portion exhibited scores 
greater than 3 (1,779, 8.0%). A total of 5,820 individuals (26.2% of all 
patients) had a history of vaccine succession, while 558 individuals 
(2.5% of all patients) had received anti-COVID-19 virus drugs 
(Paxlovid or Molnupiravir). Complete basic patient characteristics are 
provided in Appendix 2.

Full mode

Table 2 presents the performance evaluation of prediction models 
for overall severe outcome prediction, encompassing mortality, in the 
full mode. Upon analyzing the test outcomes, the Light GBM model 
exhibited the highest AUROC (0.939), surpassing other models 
including XGBoost (AUROC = 0.938), GBM (AUROC = 0.937), RF 
(AUROC = 0.936), LR (AUROC = 0.869), SVM (AUROC = 0.852), and 
LDA (AUROC = 0.852). The best-performing model (Light GBM) 
demonstrated accuracy, sensitivity, and specificity of 85.5%, 0.897, and 
0.853, respectively. The cross-validation performance is provided in 
the Supplementary Appendices 6 and 8. In the cross-validation 
performance, the Light GBM had the consistent result with the 
external AUC at 0.924. Figure  2 illustrates the AUROC values of 
different models in the context of the full mode. The ROC curve 
delineating the performance of the prediction models for each specific 
outcome is provided in Supplementary Appendix 3(A). Figure  3 
presents the feature importance for predicting severe outcomes or 
mortality using the optimal model within the full mode. The most 
significant features were age, vaccination before having PCR test, 
neutrophil count result, levels of sodium test and platelet count result.

Simplified mode

The LGBM algorithm selected the 30 most crucial features from 
the entire set, which encompassed: sex type, age, BMI, CCI score, 
vaccination before having PCR test, COVID-19 medications, 
comorbidities including cardiovascular disease, COPD, renal disease, 
depression or anxiety, long-term medication such as NSAID, drugs 
for hypertension, drugs for GORD, aspirin, statin, antihyperuricemic, 
laboratory test results contain AST (GOT), ALT (GPT), creatinine, 
RBC, hemoglobin, MCH. MCHC, WBC, Neutrophil, PLT, HCT, NA 
and K. Table  3 displays the performance evaluation of prediction 
models for overall severe outcome prediction, inclusive of mortality, 
in the simplified mode. Based on the results of the tests, the XGBoost 
model achieved the highest AUROC (0.935) among the other models, 

namely RF (AUROC = 0.934), Light GBM (AUROC = 0.934), GBM 
(AUROC = 0.933), LR (AUROC = 0.863), SVM (AUROC = 0.846), and 
LDA (AUROC = 0.841). The optimal model (XGBoost) achieved 
accuracy, sensitivity, and specificity of 89.9%, 0.843, and 0.902, 
respectively. The XGBoost model demonstrates consistent 
performance when using the cross-validation strategy, with an 
external AUC of 0.934 The cross-validation performance of the 
prediction of individual indicators in the simple mode is shown in 
Supplementary Appendices 7 and 8. Figure 4 illustrates the AUROC 
values of different models within the context of the simplified mode. 
The ROC curve delineating the performance of the prediction models 
for each specific outcome is provided in Supplementary Appendix 3(B).

The calibration plot showcasing the performance of prediction 
models for severe outcomes or mortality can be  found in 
Supplementary Appendix 4. Additionally, the calibration plots 
illustrating the performance of prediction models for specific 
outcomes are furnished in Supplementary Appendix 5.

Discussion

Precise and personalized assessment of individuals at risk of 
developing severe COVID-19 outcomes holds the potential to enhance 
both the efficacy of clinical interventions and the judicious utilization 
of medical resources (17, 18). Several pivotal factors contribute to the 
heightened predictive capacity of machine learning (ML) models 
compared to conventional techniques. The considerable advantage of 
ML models lies in their capacity to generate predictions from vastly 
expanded datasets, a facet not to be understated. Moreover, ML models 
remain impervious to human emotions and subjective perspectives, 
thereby ensuring the objectivity and impartiality of the predictive 
process. Simultaneously, the innate adaptability inherent to ML models 
empowers them to swiftly acclimate and assimilate alterations, thereby 
amplifying their responsiveness to dynamic environments. Ultimately, 
ML models exhibit an aptitude for discerning intricate patterns of great 
complexity, often surpassing the capabilities of conventional 
methodologies. The choice of seven unique machine learning 
algorithms in this study is based on a comprehensive approach to 
developing personalized prediction models (19). The algorithms were 
chosen based on careful evaluation of their attributes and capabilities, 
ensuring they were in line with the project’s goals and the specific 
peculiarities of the dataset. The prediction models were developed by 
employing a range of algorithms, including traditional ones like LDA 
and LR, as well as basic methods like SVM. Additionally, this study 
utilize ensemble techniques that involve tree-based algorithms such as 
RF, GBM, Light GBM, and XGBoost (20, 21).

While prior investigations have constructed and validated 
predictive models with the goal of forecasting COVID-19 outcomes 

TABLE 1 (Continued)

Variables Total (N  =  22,192) Ventilator 
(N  =  1,010)

Intubation 
(N  =  196)

ICU (N  =  85) Mortality 
(N  =  205)

Median [Min, Max] 138 [68.5, 167] 136 [103, 167] 136 [103, 163] 135 [111, 146] 137 [111, 162]

K

Mean (SD) 4.04 (0.538) 3.98 (0.661) 4.05 (0.762) 4.13 (0.866) 4.11 (0.781)

Median [Min, Max] 4.00 [2.01, 7.50] 3.90 [2.20, 7.50] 3.90 [2.60, 7.50] 3.90 [2.60, 7.50] 4.00 [2.40, 7.50]
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(22, 23), this study boasts several notable strengths. Firstly, it adeptly 
harnessed a more diverse and comprehensive dataset than its 
antecedents, encapsulating demographic particulars, COVID-19 
vaccination statuses, COVID-19 drug utilization, comorbidities, 

long-term medication histories, and results from laboratory tests. 
Notably, this extends beyond the purview of earlier studies, which 
omitted the inclusion of long-term medication records and laboratory 
test outcomes (23–25). Furthermore, distinct from conventional 

TABLE 2 Performance of prediction models under full mode.

Model Training 
AUC

Testing 
AUC

Accuracy Sensitivity Specificity PPV NPV F1-score

Severe outcomes or mortality

Linear discriminant analysis 0.881 0.852 0.893 0.748 0.901 0.276 0.986 0.524

Logistic regression 0.885 0.869 0.890 0.752 0.897 0.269 0.986 0.572

Support vector machine 0.882 0.852 0.876 0.734 0.884 0.242 0.985 0.532

Random forest 0.949 0.936 0.884 0.860 0.885 0.275 0.992 0.634

Gradient boosting 0.950 0.937 0.859 0.897 0.857 0.242 0.994 0.651

Light GBM 0.991 0.939 0.855 0.897 0.853 0.236 0.994 0.657

Extreme gradient boosting 0.952 0.938 0.899 0.846 0.902 0.304 0.991 0.640

Ventilator use

Linear discriminant analysis 0.879 0.860 0.883 0.777 0.888 0.248 0.988 0.523

Logistic regression 0.885 0.866 0.845 0.797 0.847 0.199 0.989 0.570

Support vector machine 0.878 0.851 0.887 0.762 0.893 0.254 0.987 0.573

Random forest 0.947 0.938 0.847 0.891 0.845 0.215 0.994 0.630

Gradient boosting machine 0.949 0.937 0.831 0.916 0.827 0.202 0.995 0.631

Light GBM 0.993 0.931 0.884 0.847 0.885 0.260 0.992 0.623

Extreme gradient boosting 0.950 0.938 0.864 0.881 0.863 0.235 0.993 0.654

Intubation use

Linear discriminant analysis 0.857 0.874 0.884 0.795 0.885 0.058 0.998 0.116

Logistic regression 0.834 0.906 0.850 0.846 0.850 0.048 0.998 0.192

Support vector machine 0.802 0.827 0.894 0.692 0.896 0.056 0.997 0.151

Random forest 0.949 0.880 0.860 0.795 0.861 0.048 0.998 0.161

Gradient boosting machine 0.925 0.872 0.938 0.769 0.939 0.101 0.998 0.201

Light GBM 1.000 0.820 0.791 0.718 0.792 0.030 0.997 0.224

Extreme gradient boosting 0.933 0.894 0.924 0.769 0.925 0.084 0.998 0.283

ICU admission

Linear discriminant analysis 0.909 0.822 0.925 0.647 0.927 0.033 0.999 0.181

Logistic regression 0.904 0.892 0.942 0.647 0.943 0.042 0.999 0.093

Support vector machine 0.893 0.758 0.972 0.529 0.973 0.071 0.998 0.101

Random forest 0.988 0.849 0.896 0.706 0.896 0.026 0.999 0.119

Gradient boosting machine 0.980 0.730 0.954 0.529 0.955 0.044 0.998 0.056

Light GBM 1.000 0.807 0.829 0.647 0.829 0.014 0.998 0.047

Extreme gradient boosting 0.988 0.864 0.952 0.647 0.953 0.050 0.999 0.154

Mortality

Linear discriminant analysis 0.940 0.928 0.855 0.902 0.855 0.055 0.999 0.344

Logistic regression 0.962 0.965 0.915 0.878 0.915 0.088 0.999 0.396

Support vector machine 0.965 0.942 0.844 0.927 0.843 0.052 0.999 0.381

Random forest 0.984 0.967 0.927 0.927 0.927 0.106 0.999 0.400

Gradient boosting machine 0.987 0.936 0.880 0.927 0.879 0.067 0.999 0.406

Light GBM 1.000 0.972 0.911 0.951 0.911 0.090 1.000 0.448

Extreme gradient boosting 0.988 0.980 0.942 0.951 0.942 0.133 1.000 0.506
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algorithms, this study also employed advanced algorithms, a measure 
that facilitated the attainment of heightened precision in predictive 
models. Lastly, through a meticulous analysis of feature significance, 
this study procured a collection of the most pivotal predictors 
profoundly impacting model performance (6, 26, 27). The meticulous 
and personalized appraisal of patients susceptible to severe COVID-19 
would undoubtedly amplify the efficacy of clinical interventions and 
streamline the judicious allocation of medical resources.

This study elucidates that the age of COVID-19 patients stands as 
the foremost predictor of severe outcome risk, aligning harmoniously 
with the conclusions drawn from diverse antecedent observational 
studies, which consistently affirm that elderly COVID-19 patients 
exhibit a heightened vulnerability to severe outcomes (27–29). 
Furthermore, this study’s findings expound upon the notion that 
pre-infection vaccination of COVID-19 patients equally serves as a 
pivotal predictor of serious events’ risk (including ventilator 
utilization, intubation, and mortality), as its primary function lies in 
averting the manifestation of numerous severe outcome risks. This 
alignment with prior research findings attests to the study’s robustness 
(30–32).

Presently, numerous national health authorities have issued 
declarations stipulating the utilization of antiviral agents against 
COVID-19, notably paxlovid (for individuals aged ≥12 years and 
weighing ≥40 kg) and molnupiravir (for individuals aged ≥18 years), 
as a crucial treatment avenue for at-risk patients (33). Zheng et al. 
conducted a meta-analysis, revealing Paxlovid’s efficacy and safety in 
managing high-risk COVID-19 patients (34). Debbiny et  al.’s 
outcomes further underscored Paxlovid’s heightened efficacy within 
vulnerable demographics, encompassing elderly patients, those under 
immunosuppression, and individuals contending with underlying 

neurological or cardiovascular conditions (35). Concurrently, 
Benaicha et al.’s meta-analysis showcased the substantial reduction in 
all-cause mortality and hospitalization risk attributed to molnupiravir 
(36). Remarkably, this study’s findings reinforce the pivotal role of 
COVID-19 antiviral agents in predicting severe outcome risks. Post-
COVID-19 infection, individuals incorporating COVID-19 antiviral 
medications within their treatment regimens evinced a substantial 
decline in the necessity for ventilator assistance within a three-month 
timeframe, vis-à-vis counterparts devoid of such treatment. The 
alignment of the predictive model with antecedent research outcomes 
underscores its congruence with established clinical practice and the 
prudent integration of prior findings.

The findings further highlight the significance of prolonged 
utilization of specific medications (such as benzodiazepines) as a 
salient affirmative predictor of severe outcome risk, a trend congruent 
with precedent observational investigations. This discovery bears 
noteworthy implications within clinical contexts (29). 
Benzodiazepines, encompassing medications frequently employed to 
address insomnia, anxiety, seizures, and alcohol withdrawal 
syndromes, interface with gamma-aminobutyric acid (GABA) 
receptors within the central nervous system, engendering a 
tranquilizing and pacifying impact upon the physiological framework. 
Notably, alongside the potential for immunosuppressive reactions 
entailing benzodiazepine administration, protracted usage might 
entail diminished respiratory function, exacerbating complexities 
among COVID-19 patients (37, 38).

Moreover, study’s investigation unveiled the substantial 
predictive potency of laboratory test outcomes, encompassing 
neutrophil count, white blood cell count, platelet count, MCH, and 
GOT, GPT, NA, and K levels. These variables assumed pivotal roles 

FIGURE 2

ROC curve of performance of prediction models of severe outcomes or mortality under the full mode.
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in the formulation of the predictive model, due to their influential 
role in disease progression. According to other systematic reviews, 
high blood White Blood Cell count (WBC), high blood aspartate 
aminotransferase (AST), high blood C-reactive protein (CRP), low 
blood platelet count, and a decrease in lymphocyte count may 
increase the possibilities of severe COVID-19 symptoms (39, 40). 
Hence, these variables assumed pivotal roles in the formulation of 
the predictive model, due to their influential role in 
disease progression.

Nonetheless, this study does encompass certain limitations. 
Primarily, it hinges upon electronic health records culled from 
diverse hospitals, constituting the primary wellspring of data. 
While these records amass a wealth of clinical intricacies, such as 
demographic particulars, disease management particulars, 

comprehensive medical histories incorporating comorbidities, 
prolonged medication use, and pivotal diagnostic outcomes, they 
regrettably omit several other data categories of import. Absent 
from this compilation are diverse facets of an individual’s lifestyle, 
spanning dietary habits, physical activity, tobacco and alcohol 
consumption, as well as socioeconomic indicators. In prospective 
endeavors, incorporation of this omitted information might yield 
alternative predictive models. In clinical practices, hospitals can 
adopt similar models to assist physicians in the prognostic process. 
However, a major obstacle is the limited availability and quality of 
data. The selection of these features was meticulously made, taking 
into account the available literature. While multiple features were 
employed in the study, the ones the study utilized are highly 
accessible and easily obtainable in the electronic health record 

FIGURE 3

Shapley additive explanations chart of the feature importance for predicting severe outcomes or mortality by the best model under the full mode.
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(EHR) system. Therefore, our findings can be readily applied in 
future research. The issue of model interpretability is of utmost 
importance, as healthcare practitioners may struggle to 
comprehend complex machine learning algorithms. To improve 
the model’s interpretability, SHAP value ranking was additionally 
conducted in the findings.

Secondarily, it merits mention that the hospital-held electronic 
health records solely chronicle the specifics of a patient’s clinical 

visits, bypassing documentation of medical procedures and 
interventions executed within other healthcare institutions. 
Consequently, the clinical insights accessible for each patient might 
not have attained a truly all-encompassing status, potentially 
culminating in inaccuracies within the predictions of the 
predictive model.

Finally, a veritable acknowledgement is that the data 
origination in this study emanates solely from clinical archives of 

TABLE 3 Performance of prediction models under simplified mode.

Model Training 
AUC

Testing 
AUC

Accuracy Sensitivity Specificity PPV NPV F1-score

Severe outcomes or mortality

Linear discriminant analysis 0.886 0.841 0.915 0.723 0.925 0.327 0.985 0.523

Logistic regression 0.889 0.863 0.889 0.753 0.896 0.267 0.986 0.569

Support vector machine 0.885 0.846 0.909 0.715 0.919 0.309 0.985 0.534

Random forest 0.952 0.934 0.848 0.891 0.846 0.226 0.994 0.647

Gradient boosting 0.948 0.933 0.870 0.873 0.870 0.253 0.993 0.627

Light GBM 0.995 0.934 0.882 0.861 0.883 0.271 0.992 0.629

Extreme gradient boosting 0.952 0.935 0.899 0.843 0.902 0.304 0.991 0.635

Ventilator use

Linear discriminant analysis 0.877 0.852 0.890 0.766 0.895 0.258 0.988 0.520

Logistic regression 0.884 0.871 0.901 0.734 0.909 0.277 0.986 0.555

Support vector machine 0.872 0.849 0.881 0.738 0.888 0.238 0.986 0.550

Random forest 0.948 0.940 0.863 0.885 0.862 0.234 0.994 0.642

Gradient boosting machine 0.945 0.939 0.864 0.893 0.863 0.236 0.994 0.637

Light GBM 0.993 0.933 0.905 0.833 0.908 0.302 0.991 0.641

Extreme gradient boosting 0.950 0.940 0.857 0.897 0.855 0.228 0.994 0.653

Intubation use

Linear discriminant analysis 0.839 0.855 0.833 0.837 0.833 0.043 0.998 0.136

Logistic regression 0.833 0.887 0.879 0.796 0.880 0.056 0.998 0.170

Support vector machine 0.786 0.786 0.846 0.735 0.847 0.041 0.997 0.182

Random forest 0.952 0.892 0.885 0.796 0.885 0.058 0.998 0.171

Gradient boosting machine 0.915 0.875 0.881 0.735 0.882 0.053 0.997 0.154

Light GBM 1.000 0.867 0.902 0.673 0.904 0.059 0.997 0.244

Extreme gradient boosting 0.933 0.902 0.921 0.735 0.923 0.078 0.997 0.314

ICU admission

Linear discriminant analysis 0.906 0.795 0.941 0.667 0.942 0.042 0.999 0.157

Logistic regression 0.917 0.862 0.963 0.667 0.964 0.066 0.999 0.105

Support vector machine 0.844 0.854 0.762 0.810 0.762 0.013 0.999 0.098

Random forest 0.988 0.886 0.943 0.714 0.944 0.046 0.999 0.127

Gradient boosting machine 0.972 0.872 0.946 0.714 0.947 0.048 0.999 0.130

Light GBM 1.000 0.840 0.773 0.762 0.773 0.013 0.999 0.094

Extreme gradient boosting 0.987 0.880 0.957 0.714 0.958 0.060 0.999 0.208

Mortality

Linear discriminant analysis 0.936 0.932 0.885 0.902 0.885 0.068 0.999 0.389

Logistic regression 0.962 0.965 0.848 0.961 0.847 0.055 1.000 0.422

Support vector machine 0.966 0.966 0.898 0.922 0.898 0.077 0.999 0.456

Random forest 0.962 0.965 0.848 0.961 0.847 0.055 1.000 0.422

Gradient boosting machine 0.984 0.924 0.871 0.922 0.871 0.062 0.999 0.370

Light GBM 1.000 0.965 0.922 0.922 0.922 0.099 0.999 0.394

Extreme gradient boosting 0.988 0.974 0.916 0.941 0.916 0.094 0.999 0.493
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three hospitals within a singular Taiwanese system. While these 
hospitals have the largest number of COVID-19 patients in Taiwan, 
the study may not fully represent the entire population of Taiwan. 
Therefore, these models, which rely exclusively on hospital cases 
specific to Northern Taiwan, may have limitations in terms of the 
generalizability of their findings. Hence, for forthcoming research, 
it is prudent to foster inter-hospital collaboration and international 
partnership. Standardized case selection, research blueprinting, 
data structuring, processing methodologies, and analytical tools—
when conjoined with predictive models engendered through 
multi-center federated learning—will furnish the substratum for 
the impending research trajectory.

Conclusion

This study has successfully developed an innovative and precise 
computer-aided risk prediction model designed to anticipate severe 
outcomes (including ventilator use, intubation, and intensive care unit 
admission) or mortality among COVID-19 patients. The outcomes of 
this research reveal that both the comprehensive and simplified 
models achieved an area under the curve (AUC) exceeding 0.9, 
accompanied by an accuracy rate surpassing 85%. The potential to 
apply timely medical interventions tailored to high-risk patients holds 
promise for preventing adverse outcomes and thereby ameliorating 
the disease’s impact on a substantial patient cohort. Although 
prediction model in this study performed well in the test set, one 
limitation of this study is the need to take into account the dataset’s 
representation. The future focus will be on externally validating the 

model. Collaboration with both domestic hospitals in Taiwan and 
hospitals in other countries, along with the utilization of the 
international database, is imperative. There is an expectation that 
further hospitals in southern Taiwan will be  used to validate and 
enhance this model.
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Glossary

AC before meals

AI artificial intelligence

ALT alanine transaminase, alanine transaminase

AST aspartate aminotransferase

AUC area under the curve

AUROC area under the receiver operating characteristics curve

BMI body-mass index

BUN blood urea nitrogen

BUN blood urea nitrogen

BZD benzodiazepine

CI confidence interval

CCI Charlson comorbidity index

CHF congestive heart failure

COPD chronic obstructive pulmonary disease

COVID-19 coronavirus disease 2019

CVA cerebrovascular disease

CVD cardiovascular disease

DM diabetes mellitus

DPP-4i dipeptidyl peptidase 4 inhibitor

FN false negative

FP false positive

GABA gamma-aminobutyric acid

GBM Gradient Boosting Machine

GLP-1 glucagon-like peptide-1 analogue

GORD gastro-oesophageal reflux disease

GOT glutamic-oxaloacetic transaminase

GPT glutamic-pyruvic transaminase

HbA1c glycated hemoglobin

HDL high-density lipoprotein

HCT hematocrit

HGB hemoglobin

HIV/AIDS human immunodeficiency virus/acquired immune deficiency syndrome

HTN hypertension

ICD-9-CM International Classification of Disease, Clinical Modification, Ninth Revision

ICD-10-CM International Classification of Disease, Clinical Modification, Tenth Revision

ICU intensive care unit

K potassium

LDA linear discriminant analysis

LDL low-density lipoprotein

LGBM Light Gradient Boosting Machine

LR logistic regression

MCH corpuscular hemoglobin

MCHC corpuscular hemoglobin concentration

MI myocardial infarction

MICE Multiple Imputation by Chained Equations
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ML machine learning

MSSQL Microsoft Structured Query Language

NA sodium

NPV negative predictive value

NSAID non-steroidal anti-inflammatory drug

OR odds ratio

PD Parkinson’s disease

PLT platelet

PPV positive predictive value

PUD peptic ulcer disease

PVD peripheral vascular disease

RBC red blood cells

RF random forest

ROC receiver operating characteristic

RT-PCR real-time reverse transcription polymerase chain reaction

S.D. standard deviation

SGLT2i sodium-glucose co-transporter 2 inhibitor

SHAP SHapley Additive exPlanations

SHH Shuang-Ho Hospital

SVM Support Vector Machine

SVC Support Vector Classifier

T1DM type I diabetes mellitus

T2DM type II diabetes mellitus

TC total cholesterol

TG triglycerides

TMU Taipei Medical University

TMUCRD Taipei Medical University Clinical Research Database

TMU-JIRB Taipei Medical University Joint Institutional Review Board

TMUH Taipei Medical University Hospital

TN true negative

TP true positive

UA uric acid

WBC white blood cell

WFH Wan-Fang Hospital

XGB eXtreme gradient boosting
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