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Glaucoma is the second leading cause of irreversible blindness worldwide. Although 
genetic background contributes differently to rare early-onset glaucoma (before 
age 40) or common adult-onset glaucoma, it is now considered an important 
factor in all major forms of the disease. Genetic and genomic studies, including 
GWAS, are contributing to identifying novel loci associated with glaucoma or to 
endophenotypes across ancestries to enrich the knowledge about glaucoma 
genetic susceptibility. Moreover, new high-throughput functional genomics 
contributes to defining the relevance of genetic results in the biological pathways 
and processes involved in glaucoma pathogenesis. Such studies are expected to 
advance significantly our understanding of glaucoma’s genetic basis and provide 
new druggable targets to treat glaucoma. This review gives an overview of the 
role of genetics in the pathogenesis or risk of glaucoma.
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1 Introduction

Glaucoma is the second leading cause of blindness worldwide, and it is estimated that its 
incidence will increase in the next 20 years (1–3). The term glaucoma brings together a 
heterogeneous group of neurodegenerative diseases characterized by Retinal Ganglion Cell 
(RGC) degeneration as well as typical morphological changes in the Optic Nerve Head (ONH), 
i.e., the narrowing of the neuroretinal rim, the enlargement of the excavation, and the loss of 
prelaminar neural tissue (4, 5).

In general, all glaucoma forms are categorized into primary and secondary forms, according 
to their etiology. Primary glaucoma is defined as an isolated, idiopathic disease of the anterior 
chamber of the eye and the optic nerve whereas the secondary one is characteristic of specific 
syndromic frameworks (e.g., nail patella, exfoliation syndrome, aniridia), or associated with 
predisposing events, including systemic diseases (e.g., diabetes) and pharmacological treatment.

Primary glaucoma is further distinguished into three broad categories, based on the anatomy 
of the anterior chamber drainage angle, aqueous dynamics, and age at onset: (i) Primary Open 
Angle Glaucoma (POAG), (ii) Primary congenital glaucoma (PCG), and (iii) Primary Angle 
Closure Glaucoma (PACG) (3, 6).

Primary open angle glaucoma is responsible for most cases of adult-onset glaucoma (i.e., 
individuals aged over 40 years) in Africans, Latinos, Americans, and European populations (7, 
8). However, POAG, to a lesser extent, may occur in young subjects ranging from 3 years old 
and 40 years of age, as in the case of Juvenile Open Angle Glaucoma (JOAG).

Primary congenital glaucoma is a rare form of glaucoma in infancy (before the age of 
3 years) characterized by aqueous humor drainage obstruction due to an upstream 

OPEN ACCESS

EDITED BY

Gemma Caterina Maria Rossi,  
San Matteo Hospital Foundation (IRCCS), Italy

REVIEWED BY

Francesca Lazzara,  
University of Catania, Italy  
Ratnakar Tripathi,  
University of Missouri, United States

*CORRESPONDENCE

Stefania Vernazza  
 stefania.vernazza@unige.it

RECEIVED 06 September 2023
ACCEPTED 28 November 2023
PUBLISHED 12 December 2023

CITATION

Tirendi S, Domenicotti C, Bassi AM and 
Vernazza S (2023) Genetics and Glaucoma: the 
state of the art.
Front. Med. 10:1289952.
doi: 10.3389/fmed.2023.1289952

COPYRIGHT

© 2023 Tirendi, Domenicotti, Bassi and 
Vernazza. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Review
PUBLISHED 12 December 2023
DOI 10.3389/fmed.2023.1289952

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2023.1289952&domain=pdf&date_stamp=2023-12-12
https://www.frontiersin.org/articles/10.3389/fmed.2023.1289952/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1289952/full
mailto:stefania.vernazza@unige.it
https://doi.org/10.3389/fmed.2023.1289952
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2023.1289952


Tirendi et al. 10.3389/fmed.2023.1289952

Frontiers in Medicine 02 frontiersin.org

non-development of neural crest-derived tissues, which results in 
developmental anomaly at the angle of the anterior chamber (9).

Finally, PACG is responsible for most cases of glaucoma-induced 
bilateral blindness in populations, such as Asians (10). In such 
glaucoma, the anatomic narrow-angle leads to trabecular meshwork 
(TM) obstruction and, consequently, to peripheral anterior synechiae, 
elevated intraocular pressure IOP, iris whirling or sectoral atrophy, 
and excessive pigment deposition on the trabecular surface (10–13).

Glaucoma can occur at all ages exhibiting a classic (Mendelian) 
inheritance pattern (i.e., onset before the age of 40) (14, 15) or a 
complex inheritance pattern [i.e., onset after the age of (16, 17)]. 
Therefore, genetic background is considered a precondition that can 
directly cause or contribute to glaucoma. This present review aims to 
summarize the main achievement in genetic studies of glaucoma, 
mainly focusing on glaucoma-causing genes.

2 Methods

The data in this present comprehensive review were collected 
using two different searches: PubMed1 and the online database: 
genome aggregation database,2 and the NHGRI-EBI Catalog of 
Human Genome-Wide Association Studies.3 The search of the 
references using PubMed identified a total of 157 hits with no time 
frame relative to keywords such as “Genetic of glaucoma” “POAG 
guidelines,” “JOAG management,” “MYOC mutations in glaucoma,” 
“CYP1B1  in glaucoma,” “PACG guidelines,” “clinical and genetic 
update of glaucoma,” “candidate genes involved in glaucoma.” Thus, 
the combined information obtained from articles relevant to the 
subject matter and the online database has represented the basis for 
writing the review.

3 Results

3.1 Primary open angle glaucoma

Primary open angle glaucoma is defined as a progressive chronic 
bilateral or asymmetric ocular disease (18). Clinical evidence in 
addition to visual field defects and the age of patients (i.e., > the 40s) 
includes structural abnormalities to the optic disk (OD) rim or 
parapapillary retinal nerve fiber layer (RNFL) (19). The severity of 
POAG damage can be distinguished as mild, moderate, and severe 
based on the presence or not of possible changes in the optic disk, 
RNFL damage, and degree of visual field abnormalities.

Although it is not an effective treatment for all patients, IOP 
management is the only clinically addressable risk factor to prevent or 
delay POAG progression (3). Primary open angle glaucoma guidelines 
(20) suggest the use of topical medications (e.g., Prostaglandin 
analogs, beta-blockers, alpha2 adrenergic agonists, 
parasympathomimetic, and topical and oral carbonic anhydrase 
inhibitors) as the first line of treatment to reach the target pressure. 
However, since treatment regimens require daily applications to 

1 https://pubmed.ncbi.nlm.nih.gov/

2 https://gnomad.broadinstitute.org/

3 https://www.ebi.ac.uk/gwas/

control IOP, noncompliance, undesirable adverse effects, and cost 
limit their effectiveness (21, 22). Laser trabeculoplasty and glaucoma 
surgery (e.g., trabeculectomy, aqueous shunts, non-penetrating 
glaucoma surgery, micro-invasive glaucoma surgery, and so on…) are 
considered for further IOP reduction in eyes with inadequate initial 
responses (23).

Adult-onset POAG is a complex disease often caused by an 
intricate interplay at molecular levels between predisposing genes and 
evidence-based risk factors (e.g., ethnicity, gender, aging, IOP, central 
corneal thickness, migraine headache and peripheral vasospasm, 
myopia, systemic diseases, steroid responsiveness, positive history of 
glaucoma) (3, 24, 25). Primary open angle glaucoma may be inherited 
as a Mendelian trait, as in the case of causative mutations in genes such 
as the myocilin (MYOC), optineurin (OPTN), and TANK-binding 
kinase 1 (TBK1) (26, 27), where other genes or environmental factors 
play little role (See below).

Generally, POAG is unsuitable for linkage studies because they 
require many living POAG-affected relatives and this, for obvious 
reasons, is not always possible. Thus, highlighting an inheritance 
pattern for POAG represents a real challenge compared to the 
childhood-onset glaucomas (24, 28–31).

Genome-Wide Association Studies (GWAS) provide information 
about the common POAG genetic variants, i.e., Single Nucleotide 
Polymorphisms (SNPs), that are found among populations of diverse 
ancestry (Table 1). In this regard, recurring SNPs may constitute a 
quantifiable relationship between the genetic variability of POAG and 
its clinical manifestation (endophenotypes) (30, 41, 42). However, 
SNPs have limited predictive value in terms of risk assessment and 
prognosis of POAG due to its complex inheritance pattern (43).

3.1.1 Juvenile open angle glaucoma
Juvenile open angle glaucoma, as above mentioned, is an 

uncommon subset (0,38,100,000) of POAG that affects individuals 
during childhood or early adulthood.

Generally, JOAG is inherited in an autosomal dominant fashion 
in individuals with a strong family history of glaucoma. Nevertheless, 
it has been shown that in Iranian and Saudi Arabian populations, it 
occurs as an autosomal recessive or sporadic disease (17, 44–46). 
Therefore, genetically it is possible to identify different pathological 
mutations, including myocilin (MYOC), Cytochrome P450 subtype 1 
Polypeptide 1 (CYP1B1), Optineurin (OPTN), WD Repeat domain 36 
(WDR36), Neurotrophin 4 (NTF4), Latent Transforming growth 
factor-beta-binding Protein 2 (LTBP2), and Ankyrin repeat and 
SOCS-Box containing 10 (ASB10) (47–50). Recently, also the rare 
biallelic mutation CPAMD8 in both JOAG and PCG was identified as 
a unique form of autosomal recessive anterior segment dysgenesis 
with a variable range of clinical phenotypes (51).

In most cases, JOAG is characterized by severe IOP elevation 
(>40 mmHg) due to immaturity of the conventional outflow pathway, 
and thick corneas. However, the extent of clinical manifestations, 
including the IOP elevation, degree of goniodysgenesis, and the 
inheritance pattern, as well as the age at onset, are subject to individual 
variations. In this regard, four phenotype groups have been identified 
to classify affected individuals based on the age of onset, highest 
untreated IOP, gonioscopic findings, and iris features (52) (Table 2).

Recent evidence also reported a JOAG subtype, i.e., Juvenile 
normal tension glaucoma (JNTG), in which glaucomatous damage 
occurs at normal-range IOP (≤ 21 mmHg) (53).
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TABLE 1 List of some known SNPs identified in different glaucoma cohorts (source: GWAS Catalog).

Variant and risk allele Location Mapped gene(s) Alleles Ancestry Ref.

rs2041895-C 12:106956310 TMEM263 C/A/G/T European (32)

rs1333037-T 9:22040766 CDKN2B-AS1 C/T European,

Sub-Saharan African,

East Asian,

South Asian,

African unspecified,

Afro-Caribbean,

Hispanic or Latin American

(32–34)

rs4657477-T 1:165766938 TMCO1 C/T Sub-Saharan African

East Asian

European

(34)

rs2472494-C

rs2472494-T

9:104933258 CT70,

ABCA1

T/A/C East Asian

Sub-Saharan African

European

African American or Afro-Caribbean

(34–36)

rs57552558-T

rs62283811-T

rs62283809-T

3:172114745

3:172103100

3:172102421

FNDC3B C/A/T

C/A/G/T

T/G

European

Sub-Saharan African

East Asian

(34)

rs1536907-G

rs11792928-T

rs10448285-T

rs3829849-T

9:126620281

9:126639271

9:126634735

9:126628521

LMX1B A/G/T

C/T

C/T

C/T

European

Hispanic or Latin American

Other admixed ancestry

African American or Afro-Caribbean

South Asian

African unspecified

East Asian

(33, 34)

rs61870251-A 10:124595846 LHPP A/C East Asian (34)

rs1550437-T

rs8034017-A

15:73928957

15:73929702

LOXL1 C/T

A/G

East Asian

Sub-Saharan African

European

(34)

rs7588567-G 2:133605461 RN7SKP93 T/A/C/G East Asian (24)

rs4236601-A 7:116522675 CAV2, CAV1 G/A European (37, 38)

rs62391632-T

rs11969985-G

rs9392348-G

rs12664587-A

6:1957768

6:1922673

6:1989370

6:1948469

GMDS G/T

G/A

G/A

A/T

Sub-Saharan African

East Asian

European

(34, 38)

rs1647381-G 15:56794001 ZNF280D C/G European

Hispanic or Latin American

Other admixed ancestry

African American or Afro-Caribbean

South Asian

African unspecified

East Asian

(33)

rs33912345-A 14:60509819 C14orf39, SIX6 C/A/G European

East Asian

Sub-Saharan African

(32, 34)

rs9913911-A

rs12150284-T

17:10127866

17:10127773

GAS7 A/G

C/A/G/T

African American or Afro-Caribbean

European

Hispanic or Latin American

East Asian

Other admixed ancestry

South Asian

African unspecified

Sub-Saharan African

(33, 34, 39, 40)

rs7137828-T 12:111494996 ATXN2 C/A/T European

East Asian

(32)
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Juvenile open angle glaucoma differs from other early-onset 
glaucoma forms (e.g., congenital glaucoma) by the absence of 
buphthalmos, megalocornea, Haab’s striae, and ocular or other 
systemic developmental anomalies (17, 54).

Juvenile open angle glaucoma patients are often asymptomatic 
until an advanced stage, therefore, a prompt diagnosis is not always 
possible. When JOAG becomes symptomatic results in blurred vision, 
eye pain, decreased visual acuity, tearing, blinking, and glare (55). As 
known, an early JOAG diagnosis increases the chance of preserving 
vision and preventing permanent visual field loss. Surgery (i.e., 
trabeculectomy, external trabeculectomy, goniotomy, drainage 
implants, gonioscopy-assisted transluminal trabeculectomy, and so 
on…) is often required since the affected individuals are refractory to 
the standard primary drug approaches to manage the IOP (e.g., β 
blockers, topical carbonic anhydrase inhibitor, prostaglandin analogs, 
α-adrenergic agonists) (56, 57).

3.1.2 Myocilin
The MYOC gene, also known as Trabecular meshwork Inducible 

Glucocorticoid Response (TIGR), maps to the GLC1A (Glaucoma 1A) 
locus at chromosome 1q21– q31. It consists of three exons: the first 
encodes for amino-terminal region of the protein containing a peptide 
signal sequence and a leucine zipper-like motif (i.e., where the 
myocilin-myocilin interactions take place) with periodic arginine and 
leucine repeats arranged along an α-helix; the second encodes for the 
protein central region; the third encodes for the carboxyl-terminal 
half of myocilin, the olfactomedin (OLF)-domain, which includes the 
majority of the identified disease causing variants (58).

Myocilin encodes the myocilin glycoprotein expressed in several 
ocular tissues, such as the cornea, iris, ciliary body, retinal epithelium, 
and TM. Myocilin mutations can be responsible for the improper 
function of the eye tissue where the protein is commonly highly 
expressed, e.g., TM (59). Moreover, myocilin is found also in 
non-ocular tissues, such as the heart tissue and skeletal muscle but 
there is no evidence of its involvement in systemic disease (60, 61).

Myocilin in its wild-type (wt) state is a ubiquitous protein whose 
function in the eye has not been determined yet. One suggestion is 
that myocilin contributes to the maintenance of IOP homeostasis, 
although it has not been confirmed due to conflicting and 
contradictory data. While some studies report that myocilin 
up-regulation is responsible for IOP elevation (62, 63), other ones 
report that neither its overexpression nor its haploinsufficiency is the 
primary mechanism for glaucoma phenotype. (31, 64, 65). This latter 
evidence has challenged the pathological role of myocilin in 
promoting steroid-induced glaucoma (~40% of cases) after long-term 
glucocorticoid treatment (e.g., dexamethasone) (66). In this regard, 
previous studies on steroid-induced myocilin overexpression excluded 
its role in both ocular hypertension and endoplasmic reticulum (ER) 

stress (67, 68). However, a myocilin stress-related function in TM has 
been suggested because stressful stimuli, such as hydrogen peroxide 
and elevated IOP, increase its expression (69, 70).

The first evidence that showed a correlation between POAG and 
mutant myocilin date from 1997 (71). Linkage studies have shown that 
MYOC mutations, accounting for 8–34% of JOAG, 2–4% of adult-
onset POAG cases, and in part for NTG, are mainly inherited in an 
autosomal dominant manner with incomplete penetrance (72). In this 
regard, disease severity varies between individuals due to a strong 
genotype–phenotype correlation (73). A meta-analysis of the 
penetrance of MYOC mutation revealed that except for a few variants 
(e.g., Pro370Leu, Thr377Arg, Asp380Ala, and Asn480Lys) having a 
stable penetrance, the penetrance of MYOC mutations can 
be influenced by factors such as aging, and ethnicity (74).

Under physiological conditions, wt myocilin after intracellular 
endoproteolytic processing, produces two fragments, i.e., the 35kD 
fragment containing the C-terminal OLF-like domain and the 20kD 
fragment containing the N-terminal leucine zipper-like domain (75). 
However, only the 35kD fragment is co-secreted with non-processed 
protein leading to assume that it may play a role in the regulation of 
the myocilin extracellular activity (76, 77). The best known-myocilin-
induced disease phenotype is characterized by an intracellular 
abnormal buildup of myocilin in TM (26, 78, 79), resulting in a toxic 
gain-of-function disease mechanism. Indeed, most of the myocilin-
associated glaucoma mutations are missense clustered in the OLF 
domain (Table 3). These mutations by inducing defects in myocilin 
stability, promote the mutant myocilin retention into the endoplasmic 
reticulum (ER) of TM cells with toxic consequences, such as ER stress, 
cytotoxicity, and TM apoptosis, which in turn affect the IOP control 
(61, 75, 91–93). However, also nonsense mutations are involved in 
about 5.7% of JOAG and adult-onset POAG cases. Notably, the 
nonsense mutation Gln368Stop is responsible for 40% of High 
Tension Glaucoma (HTG) (91, 94, 95).

3.1.3 Familial normal tension glaucoma
Normal-tension glaucoma (NTG) is an OAG characterized by an 

IOP within a statistically normal range (≤21 mmHg). The NTG 
pattern of damage in the optic disk, retinal nerve fiber layer, and visual 
field significantly differs from that found in POAG, suggesting that the 
optic neuropathy is due to other mechanisms rather than elevating 
IOP (96). In this regard, a higher sensitivity to normal pressure, 
vascular dysregulation, an abnormally high translaminar pressure 
gradient, and a low cerebrospinal fluid pressure in the optic nerve 
sheath compartment, have been proposed to contribute to NTG 
pathogenesis (97).

Generally, NTG has a complex genetic basis, but the analyses of 
several pedigrees showed that about 2% of NTG forms (i.e., Familial 
NTG) are caused by a single-gene mutation. NTG genetic survey 

TABLE 2 Four phenotypic groups of JOAG.

Group 1 Group 2 Group 3 Group 4

Iris crypts Normal Normal Normal Absent prominent

Angle Normal Featureless angle Prominent iris processes or high 

iris insertion

Prominent iris processes or high 

iris insertion

Age of onset 28 ± 9.2 years 24 ± 9.6 years 26 ± 7.8 years 27.4 ± 9.2 years

IOP 36 ± 11 mmHg 38.8 ± 12.8 mmHg 41.3 ± 12.7 mmHg 41.3 ± 12.7 mmHg
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improved thanks to the GWAS since have identified several susceptible 
loci contributing to NTG on chromosomes 9p2, 2p21, 7q31, 1q24, and 
6p21.1-p12.1 (37, 43, 96, 98).

Familial NTG refers to an early onset (at 20–35 years old) bilateral 
disease with variable severity (99). Optineurin, MYOC, and TBK1 are 
indicated as NTG-causing genes, according to the Mendelian 
autosomal dominant inheritance pattern.

3.1.4 Optineurin
The human OPTN gene, located on the short arm of chromosome 

10 (10q13), encodes for optineurin, which is a multifunctional protein 
ubiquitously expressed in many tissues (e.g., the heart, brain, liver, 
skeletal muscle, kidney, pancreas, and the eye). In the eye, optineurin 
is expressed in the trabecular meshwork, non-pigmented ciliary 
epithelium, and remarkably in the retina (100). The well-characterized 
optineurin multiple cellular functions include selective autophagy 
(i.e., mitophagy, aggrephagy, xenophagy) through ubiquitin-signaling, 
NF-κB regulation, membrane trafficking, exocytosis, vesicle transport, 
transcriptional activation, and reorganizing of actin and microtubules. 
All these molecular functions arise from the interaction with a 
number of proteins, such as Rab8, huntingtin (Htt), transcription 
factor IIIA, myosin VI, and TANK binding protein 1 (TBK1) 
(101–103).

The optineurin-mediated autophagy-dysfunction by either 
overstimulation or by defects that block its function has attracted 
considerable attention due to its involvement in a variety of 
neurodegenerative diseases (glaucoma, amyotrophic lateral sclerosis, 
Parkinson’s disease, Huntington’s disease), inflammatory diseases 
(Crohn’s disease, acute liver failure, rheumatoid arthritis) cancer, and 
nephropathy (104). Notably, the autophagy-mediated RGC death in 
POAG, also known as autophagic cell death, seems to be promoted by 
an excess of catabolic activity induced by chronic IOP elevation (105) 
or alterations in OPTN and TBK1 (106). Under physiological 
conditions, OPTN to link structures targeted for elimination with 
proteins of an assembling autophagosome must be phosphorylated by 
TBK1. However, POAG-associated OPTN mutations may increase the 
autophagy activation by promoting OPTN phosphorylation via TBK1. 
Moreover, other OPTN functions may be altered by specific mutations 
(see below). On the other hand, the gain-of-function mutation and 
copy number variation (CNV) of the TBK1 gene have been proposed 

as possible Normal Tension Glaucoma (NTG, a POAG subtype) 
causing mechanism (107, 108).

Rezaie et al. (109) described four sequence alterations in OPTN 
involved in autosomal dominant adult-onset glaucoma cases, i.e., 
Glu50Lys, Arg545Gnl, 691_692insAG, and Met98Lys. Most of the 
affected families harboring these OPTN alterations had normal IOP, 
and only a small portion had high IOP. Among the OPTN 
polymorphisms, Glu50Lys, which is located within a putative bZIP 
motif, is the most recurrent likely disease-causing variant associated 
with hereditary NTG in Caucasian and Hispanic individuals. The 
Glu50Lys-induced functional alterations leading to RGC apoptosis are 
probably related to both autophagy and trafficking dysfunction and 
an increase in oxidative stress (110, 111).

Arg545Gnl may be considered a disease-causing variant only in 
Asian populations because this role was not shown in other studies 
(112). 691_692insAG variant was described as a dominant mutation 
responsible for familial POAG in Japan (109) and Eastern Europe 
(112). Met98Lys was initially proposed as an attributable risk factor 
for familial and sporadic POAG cases but due to conflicting results 
among diverse populations, it was not confirmed (113–115).

Interesting, semiquantitative, hierarchical evidence-based rules 
for locus interpretation (Sherloc), which are a refinement of the 
American College of Medical Genetics and Genomics–Association for 
Molecular Pathology (ACMG–AMP) guidelines, are providing an 
accurate clinical prediction of the functional consequences of OPTN 
mutations (116). The algorithms used to predict the effect of sequence 
change suggest that variants affecting protein sequence (e.g., missense 
mutation), its function (e.g., splicing mutation), or its abundance (e.g., 
frameshift or nonsense mutations) are presumed more likely to 
be deleterious (Please visit the National Library of Medicine for more 
information).4 Further studies on larger populations are required to 
confirm the incrimination of OPTN in POAG, to discriminate OPTN 
mutations causing POAG from those acting only as risk factors, and 
to ascertain the rate of loss-of-function OPTN variants in 
different populations.

4 https://www.ncbi.nlm.nih.gov/clinvar/?term=OPTN%5Bgene%5D&

redir=gene

TABLE 3 List of some pathogenic/likely pathogenic glaucoma-associated myocilin missense mutations.

SNP Placement Position Ref.

MYOC transcript Myocilin

NM_000261.2:c.1440C > G NP_000252.1:p.Asn480Lys 1: 171636000 (80, 81)

rs74315332 NM_000261.2:c.1440C>A NP_000252.1:p.Asn480Lys 1: 171636000 (81)

rs74315338 NM_000261.2:c.1297T>C NP_000252.1:p.Cys433Arg 1: 171636143 (82)

rs74315328 NM_000261.2:c.1309T>C NP_000252.1:p.Tyr437His 1: 171636131 (81, 83, 84)

rs74315335 NM_000261.2:c.1010A>G NP_000252.1:p.Gln337Arg 1: 171636430 (85)

NM_000261.2:c.1139A>C NP_000252.1:p.Asp380Ala 1: 171636301 (80, 84, 86, 87)

rs74315329 NM_000261.2:c.1102C>T NP_000252.1:p.Gln368Ter 1: 171636338 non sense (88–90)

rs74315334 NM_000261.2:c.1099G>A NP_000252.1:p.Gly367Arg 1: 171636341 (81)

NM_000261.2:c.1130C>T NP_000252.1:p.Thr377Met 1: 171636310 (88)

rs74315330 NM_000261.2:c.1109C>T NP_000252.1:p.Pro370Leu 1: 171636331 (81, 83, 84)

Source: gnomAD browser.
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3.2 PGC

Primary congenital glaucoma is considered a non-syndromic 
glaucoma form characterized by a childhood onset with variable 
incidence across countries and ethnic groups, but it is most widespread 
in countries where consanguineous marriages abound (e.g., Middle 
East) (117, 118).

This pediatric glaucoma occurs at birth or within the first 3 years 
of life, and the clinical outcomes vary depending on whether the 
neonatal/newborn-onset PGC (within a month after birth) or late-
onset-PGC (after 2 years of age). Indeed, neonatal PGC has a poor 
visual prognosis compared to that diagnosis later, especially if 
accompanied by amblyopia (119, 120). Moreover, other elements 
strongly associated with poor long-term visual outcomes are unilateral 
disease, multiple surgeries, poor vision at diagnosis, and ocular 
co-morbidities.

The main mechanisms involved in PCG are related to trabecular 
dysgenesis due to mutations affecting normal TM development with 
or without iridodysgenesis and maldeveloped trabecular angle 
meshwork with or without dysgenesis of the Schlemm’s canal (121–
123). Moreover, histopathological findings of the anterior chamber 
angle of PCG eyes reveal an immature anatomic relationship involving 
iris, TM, and ciliary body (119, 124, 125). Clinical features include 
high IOP, an increase in horizontal corneal diameter, the presence of 
corneal edema, Haab’s striae, the pupillary reflex, refraction, axial 
length, and keratometry (124).

High IOP and its fluctuations are managed through multiple or 
single surgical drainage procedures (e.g., goniotomy and 
trabeculotomy ab externo) aimed at targeting the abnormal trabecular 
angle. Topical hypotensive medications could be used post-op (126).

Genetically, PCG is considered heterogeneous. 10–40% of affected 
individuals show several pathogenetic variants of CYP1B1 or LTBP2 
inherited in an autosomal recessive manner and with varying degrees 
of penetrance (127). Moreover, also autosomal dominant and pseudo-
dominant inheritance patterns have been described as well (117, 
128, 129).

Genetic linkage analysis has identified four chromosomal loci of 
recessively inherited PCG, namely GLC3A, GLC3B, GLC3C, and 
GLC3D. Among these, GLC3A on chromosome 2p22-p21, which 
harbors the CYP1B1 gene, is considered the most representative of the 
severe phenotypes (123) (Table 4).

3.2.1 Cytochrome P450 subtype 1 polypeptide 1
Cytochrome P450 subtype 1 Polypeptide 1, belonging to the 

cytochrome P450 (CYP450) superfamily, is an enzyme mainly 
involved in oxidative metabolic activation (e.g., synthesis of retinoic 
acid) and detoxification of many compounds (e.g., several polycyclic 
aromatic hydrocarbons, endogenous steroids) (150).

Human Cyp1b1 consists of three exons and two introns, where the 
coding region is located within the second and the third exons. It is 
expressed constitutively in many parenchymal and stromal tissues, 
including the liver, brain, kidney, prostate, breast, cervix, uterus, ovary, 
lymph nodes, heart, placenta, lung, skeletal muscle, and eye (85, 151).

The role of CYP1B1 in PCG and JOAG is not clear, but it has been 
hypothesized that it plays a metabolic role in eye development and 
function, as well as cellular redox homeostasis maintenance (152–
154). Therefore, the most accepted theory to explain the link between 
CYP1B1 mutation and PCG holds that mutated CYP1B1 is the leading 

cause of maladapted and dysfunctional TM due to defects in 
embryonic neural crest cell migration during development. This 
condition, in turn, leads to increased IOP, compression of the optic 
nerve, and blindness, if not treated surgically (155). Moreover, 
mutations in the Cyp1b1 gene, in addition to being strongly related to 
the pathophysiology of PCG, are associated with the most severe 
disease outcomes. Notably, a genotype–phenotype study in a large 
cohort of Moroccan PCG reports that both patients carrying CYP1B1 
mutation and those with double CYP1B1 null alleles showed the most 
severe phenotype when compared with patients genetically 
negative (156).

Most of the CYP1B1 mutations responsible for a maldeveloped 
and dysfunctional TM are missense (Table 5), but how they affect 
disease phenotype and their frequency among different populations 
is still under investigation (152, 155). Recently, “in silico” methods 
(supported by databases, network analysis, and machine learning 
approaches) were used to identify possible high-risk deleterious 
variations by predicting the functional importance (neutral or 
deleterious) of the altered amino acid substitution on protein stability 
and the resulting phenotypic characteristics (e.g., disruption of the 
structural conformation), considering the allele frequency of variants 
(157). Based on such approaches, three novel missense mutations, i.e., 
Leu487Pro, Leu177Arg and Trp434Arg, and a transversion mutation 
Asp374Glu were identified in consanguineous Pakistani families as 
impacting the CYP1B1 protein stability, structure, and function (158). 
The results obtained from computational tools, functional assays, 
segregation analysis, genetic studies, and epidemiological data could 
potentially be helpful for the understanding and management of PCG.

3.3 Primary angle closure glaucoma

Primary angle closure glaucoma (PACG) is characterized by at 
least 180° of iridotrabecular contact, resulting from mechanical 
obstruction of the TM in the anterior chamber angle and glaucomatous 
optic neuropathy due to elevated IOP. PACG pathogenesis can 
be explained as a pupillary block, which is the most common one, 
plateau iris or peripheral iris crowding, and multiple mechanism 
patterns, according to clinical phenotype, anatomic configurations, 
etiology and natural history (159).

From a clinical point of view, PACG is classified into acute, 
sub-acute, and chronic angle-closure glaucoma, based on the timing 
of onset, symptoms, and clinical findings. However, is not unusual to 
observe a combination of these clinical types in patients. Indeed, 
acute/subacute angle-closure glaucoma may progress to a chronic 
stage if it does not remit spontaneously or under medical intervention 
or vice-versa.

In acute glaucoma, the sudden elevation of IOP (usually more 
than 50 mmHg) leads to severe symptoms, including pressure-induced 
corneal edema (i.e., blurred vision and halos around lights), 
mid-dilated pupil, lens opacity (glaucomflecken), vascular congestion, 
headache, eye pain, and redness (160). The subacute presentation, 
which may occur before the acute attack or before peripheral anterior 
synechiae (in the case of chronic IOP elevation), can be asymptomatic 
or show mild prodromal symptoms, such as headache, blurred vision, 
and halos, coinciding with IOP spikes (161). Finally, in chronic angle-
closure glaucoma, IOP is usually chronically raised and generally, no 
symptoms are experienced when vision loss occurs. The closure of the 
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angle is due to peripheral anterior synechiae (more than 180 degrees), 
which occurs as a consequence of recurrent pupillary block or 
“creeping” angle closure (162, 163). Clinical goals of PACG 
management are reversing or preventing the angle-closure process, 
controlling IOP through topical ocular hypotensive agents, laser 
peripheral iridotomy or refractive lensectomy, and rescuing optic 
nerve from damage (164).

Diagnosis of PACG is associated with its natural course and is 
often delayed until an advanced phenotypic stage, i.e., when the 
patient has chronic visual loss or acute angle closure. Several risk 
factors, such as aging, female gender, Inuit, East Asian, and South 
Indians ethnicity, anatomical features (e.g., shallow anterior chamber 
depth, short axial length, thick and anteriorly positioned lens, plateau 
iris configuration, and hyperopia), family history (i.e., first-degree 
relatives), and environmental factors, are involved in promotion of the 
disease progression (165–167).

PACG is characterized by a complex inheritance, thus to increase 
knowledge of the common variant contribution, GWAS 
have genotyped eight SNPs of PACG susceptibility loci for the 
common adult-onset form of PACG within PLEKHA7 (pleckstrin 
homology domain containing A7), COL11A1 (collagen type XI alpha 
1 chain), PCMTD1-ST18 [Protein-L-Isoaspartate (D-Aspartate) 

O-Methyltransferase Domain Containing] 1-ST18 C2H2C-type zinc 
finger transcription factor (PCMTD1-ST18), EPDR1 (ependymin 
related 1), CHAT (choline O-acetyltransferase), GLIS3 (GLIS family 
zinc finger 3), FERMT2 (fermitin family member 2), DPM2-FAM102A 
(dolichyl-phosphate mannosyltransferase subunit 2, regulatory and 
family sequence similarity 102 member A, respectively; Table 5) (14). 
However, these SNPs explain only 2% of the genetic variance in 
PACG. Thus, they could not be considered potential universal gene-
dependent risk factors for PACG pathogenesis since the genotype 
distribution and allele frequency varies among populations of different 
ancestry. (168, 169).

4 Conclusion

Although impressive advancements in glaucoma study and 
treatment are progressing, it still represents the second leading cause 
of blindness worldwide. Only a small portion of rare early-onset 
glaucomas (before age 40) show Mendelian inheritance, while the 
common adult-onset forms are characterized by a complex inheritance.

GWAS studies aim to identify either genetic variants associated 
with disease or endophenotypes across ancestries and important 

TABLE 4 List of some pathogenic/likely pathogenic glaucoma-associated CYP1B1 missense mutations (Source: gnomAD browser).

Placement

dsSNP CYP1B1 transcript Cytochrome P450 1B1 Position Ref.

rs1682415237 NM_000104.4:c.1460 T > C NP_000095.2:p.Leu487Pro 2:38070894 (130)

rs28936701 NM_000104.4:c.1405C > T NP_000095.2:p.Arg469Trp 2:38070949 (131, 132)

rs72549376 NM_000104.4:c.1331G > A NP_000095.2:p.Arg444Gln 2:38071023 (133)

rs56175199 NM_000104.4:c.1310C > T NP_000095.2:p.Pro437Leu 2: 38071044 (134)

rs104893629 NM_000104.4:c.1267A > T NP_000095.2:p.Asn423Tyr 2:38071087 (135)

rs148542782 NM_000104.4:c.1168C > A NP_000095.2:p.Arg390Ser 2:38071186 (136)

rs55989760 NM_000104.4:c.1159G > A NP_000095.2:p.Glu387Lys 2: 38071195 (137, 138)

rs56175199 NM_000104.4:c.1310C > T NP_000095.2:p.Pro437Leu 2:38071044 (134)

rs55771538 NM_000101.4:c.1093G > T NP_000095.2:p.Gly365Trp 2:38071261 (85)

rs72549379 NM_000101.4:c.1090G > A NP_000095.2:p.Val364Met 2:38071264 (139, 140)

rs52976968 NM_000101.4:c.578C > T NP_000095.2:p.Pro193Leu 2:38074811 (141–143)

rs72481807 NM_000101.4:c.517G > A NP_000095.2:p.Glu173Lys 2:38074872 (133, 144, 145)

rs28936700 NM_000101.4:c.182G > A NP_000095.2:p.Gly61Glu 2:38075207 (131, 146, 147)

rs72549389 NM_000101.4:c.2 T > C NP_000095.2:p.Met1Thr 2:38075387 (148, 149)

rs757520959 NM_000101.4:c.1A > G NP_000095.2:p.Met1Val 2:38075388

TABLE 5 SNPs of PACG susceptibility loci identified in different glaucoma cohorts (source: GWAS Catalog).

Variant and risk allele Location Mapped gene(s) Alleles Study accession

rs3816415-A 7:37948709 SFRP4, EPDR1 G/A GCST003467

rs736893-G 9:4217028 GLIS3 G/A/C GCST003467

rs3739821-G 9:127940198 FAM102A, DPM2 A/G GCST003467

rs7494379-G 14:52944673 FERMT2 C/G/T GCST003467

rs3753841-G 1:102914362 COL11A1 G/A/C GCST003467

rs1015213-A 8:51974981 PCMTD1 C/T GCST003467

rs11024102-G 11:16987058 PLEKHA7 T/A/C GCST003467
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functional insights underlying biological mechanisms of glaucoma 
pathogenesis. GWAS results are clinically important to identify 
subjects with an increased risk of the disease and they can be the 
starting point for studying the contribution of protein-changing, 
coding sequence genetic variants. Thus, next-generation sequencing 
technologies coupled with high throughput functional genomics can 
enrich our understanding of the disease pathophysiological 
mechanisms by identifying novel disease-associated or causative 
genetic variants for predicting glaucoma risk. However, although 
gene-based screening can be  useful for genetic counseling and 
treatment and surveillance plans in families with a history of early-
onset glaucoma, a limitation is a relatively low diagnostic yield after 
testing for the genes currently known (170). Moreover, gene-based 
screening for adult-onset glaucoma seems to be  accurate when 
comprises a large number of risk alleles.

The study of the complex genetic background in glaucoma is in 
the making but in the future, the hope is that it will become a tool to 
assess personal risk for the disease and facilitate novel 
therapeutic strategies.
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