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Objectives: This study aimed to explore the value of an artificial intelligence 
(AI)-assisted diagnostic system in the prediction of pulmonary nodules.

Methods: The AI system was able to make predictions of benign or malignant 
nodules. 260 cases of solitary pulmonary nodules (SPNs) were divided into 
173 malignant cases and 87 benign cases based on the surgical pathological 
diagnosis. A stratified data analysis was applied to compare the diagnostic 
effectiveness of the AI system to distinguish between the subgroups with 
different clinical characteristics.

Results: The accuracy of AI system in judging benignity and malignancy of 
the nodules was 75.77% (p  <  0.05). We created an ROC curve by calculating 
the true positive rate (TPR) and the false positive rate (FPR) at different 
threshold values, and the AUC was 0.755. Results of the stratified analysis 
were as follows. (1) By nodule position: the AUC was 0.677, 0.758, 0.744, 
0.982, and 0.725, respectively, for the nodules in the left upper lobe, left 
lower lobe, right upper lobe, right middle lobe, and right lower lobe. (2) 
By nodule size: the AUC was 0.778, 0.771, and 0.686, respectively, for the 
nodules measuring 5–10, 10–20, and 20–30  mm in diameter. (3) The 
predictive accuracy was higher for the subsolid pulmonary nodules than for 
the solid ones (80.54 vs. 66.67%).

Conclusion: The AI system can be  applied to assist in the prediction 
of benign and malignant pulmonary nodules. It can provide a valuable 
reference, especially for the diagnosis of subsolid nodules and small nodules 
measuring 5–10  mm in diameter.
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Introduction

Bronchogenic carcinoma, simply referred to as lung cancer, 
remains the leading cause of cancer deaths for both males and females 
according to Global Cancer Statistics 2023 (1). Adenocarcinoma is 
more common in the Asian population, particularly never-smokers 
(2, 3). Approximately 75% of lung cancer cases are diagnosed at 
advanced or late stages (4). Missing the optimal timing of surgical 
removal usually results in poor prognosis. On the other hand, the 
5-year survival rate for early-stage non-small cell lung cancer is above 
50% (5), and the 10-year survival rate for Stage I lung cancer with 
surgical treatment reaches as high as 92% (6). Therefore, improving 
the early diagnosis rate is crucial for prolonging lung cancer survival.

As CT imaging technology has rapidly developed, low-dose 
computed tomography (LDCT) has become an increasingly accepted 
method for lung cancer screening (7). However, challenges remain, as 
radiologists are faced with a high demand for clinical testing. 
Furthermore, a standardized diagnosis of pulmonary nodules (early-
stage lung cancer) is various among different countries, areas, and 
hospitals, due to heterogeneous of biological and healthcare economics 
policy, especially during and post the global pandemic of COVID-19 
(8). To address this issue, it is necessary to provide training based on 
large-scale imaging data. The concept of Artificial Intelligence (AI), 
coined at the Dartmouth Conference in 1956 (9), refers to the 
simulation of intelligent behavior by computers with minimal human 
intervention (10). Recent years have witnessed theoretical and 
practical advances in AI, such as deep learning (DL), and their 
applications in different fields of medical data analysis (11). Among 
these, the AI-assisted diagnostic system for pulmonary nodules 
(referred to as “the AI system” hereinafter) is becoming increasingly 
mature. By applying an effective extraction of the imaging 
characteristics of malignant nodules, the AI system can realize the 
automatic and accurate detection of small pulmonary nodules, as well 
as the assessment of malignancy risk (12). Not only does AI improve 
the efficiency of medical image reading, but it also enhances the 
accuracy rate of diagnosis, reaching over 90% (13). With regard to the 
application of AI as assistive technology for the judgment of benignity 
or malignancy of pulmonary nodules in the real world, little research 
is available concerning which subgroup(s) with which clinical 
characteristics may affect the predictive accuracy of the AI model. This 
study aimed to apply an AI-assisted system in the predictive analysis 
of pulmonary nodules, including automatic detection of nodules, 
segmentation of lesions, measurement of imaging parameters, and 
differentiation between benign and malignant nodules. We evaluated 
the diagnostic effectiveness of the AI model, and discussed its practical 
value for subgroups with different clinical characteristics, in order to 
make optimal use of AI in clinical diagnoses.

Methods

Study design and data source

This retrospective study used data for pulmonary nodules 
managed using surgical treatment during the period between January 
2018 and April 2021 at the Affiliated Zhongshan Hospital of Dalian 
University. The study was approved by their Ethical Board and 
exempted from informed consent. The criteria for data inclusion were: 

(1) a definitive diagnosis based on surgical pathology, (2) a normal CT 
scan of the chest taken before the surgery, and a clear, qualified thin-
slice image (thickness of 1.00 mm) being available, (3) at least one 
pulmonary nodule being present per case, (4) nodules measuring 
5–30 mm in diameter, and (5) complete and detailed clinical 
information on the patient. Among the 260 cases included in the 
dataset, a total of more than 260 SPNs were identified by the clinical 
CT evaluation, but in each case only one nodule was surgically 
removed and consequently confirmed as being malignant or benign 
according to surgical pathology. Malignant nodules accounted for 
66.54% of the dataset (173 cases) and benign nodules, 33.46% (87 
cases). Males accounted for 41.54% of the dataset (108 cases) and 
females, 58.46% (152 cases). The age range was from 26 to 83 years. 
The analysis workflow of the collected dataset is showed as a flow chart 
in Figure 1.

Instruments and examinations

CT examination
A multi-slice spiral CT scan of the chest was applied to each 

patient, using a Siemens SOMATOM Definition CT scanner (64-slice 
or above). The patient was required to lie in a supine position, take a 
deep breath in and hold it during the CT scan, which ranged from the 
apex to the base of the lung. The technical parameters of the routine 
CT scan were: tube voltage 100–120 kV, tube current 100–350 mAs, 
scan slice thickness 5.0–8.0 mm, slice spacing 4.0–6.0 mm, and matrix 
size 512 × 512. Subsequently, thin-slice reconstruction (thickness of 
1.0 mm) was performed using the built-in software.

FIGURE 1

The flow chart analysis workflow of the collected dataset.
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AI identification
The thin-slice chest CT imaging data were imported into the AI 

system (σ-Discover/Lung, V1.0.2, 12 Sigma Technologies, 
United States) for automatic detection of the pulmonary nodules and 
predictive analysis of benignity or malignancy (14). The system 
recorded the number of nodules, position, long-axis diameter, and 
short-axis diameter, and produced a prediction of malignancy risk 
(Figures 2, 3), which was completely calculated based on the CT image 
of the nodules, without reference to the patient’s clinical information. 
The system leverages deep learning, also referred to as deep neural 
network (DNN), which is a neural network architecture integrating 
multiple hidden layers. The deep convolutional neural network 
(DCNN) enables it to implement 3D detection, 3D segmentation, and 
3D analysis of the pulmonary nodules (15, 16). According to the 
previous training and validation of the model using a local dataset 
(17), if an AI outcome is ≥65%, the nodule is predicted to 
be malignant; the higher the value, the more likely it is to be malignant. 
Conversely, an AI outcome <65% means the prediction is for benignity.

Statistical analyses

IBM SPSS 20.0 software was applied for statistical analysis in this 
study. We considered a positive result according to surgical pathology 
to be the “gold standard” for the diagnosis of pulmonary nodules, 
following the pathologic diagnostic criteria for lung cancer specified 
by the World Health Organization (WHO) (17, 18). We examined the 
results of the DL algorithm-based prediction model for nodule 

benignity and malignancy, and analyzed the differences in diagnostic 
effectiveness between the clinical subgroups by calculating the 
accuracy, sensitivity, specificity, positive predictive value, and negative 
predictive value. The AI contributed to the judgment of benign and 
malignant, showing certain value in early diagnosis of lung cancer 
(12, 19).

To be more specific, the accuracy was expressed as the ratio of the 
number of correctly predicted nodules to the total number of nodules; 
the sensitivity, or true positive rate (TPR), was expressed as the ratio 
of the number of malignant nodules correctly predicted to the total 
number of malignant nodules; the specificity, or true negative rate 
(TNR), was expressed as the ratio of the number of benign nodules 
correctly predicted to the total number of benign nodules; the positive 
predictive value (PPV) was expressed as the ratio of the number of 
malignant nodules correctly predicted to the number of malignant 
nodules correctly predicted and benign nodules incorrectly predicted 
as malignant; and the negative predictive value (NPV) was expressed 
as the ratio of the number of benign nodules correctly predicted to the 
number of benign nodules correctly predicted and malignant nodules 
incorrectly predicted as benign. Continuous data with normal 
distributions are presented as the mean and SD, whereas those not 
normally distributed are presented as the median and IQR after 
assessing normality by the Shapiro–Wilk test. An ROC curve was 
created to evaluate the performance of the AI model in the prediction 
of benign and malignant pulmonary nodules, and its diagnostic 
effectiveness was expressed by the AUC. A chi-squared test (α = 0.05) 
was used for comparison between the groups, and p  < 0.05 was 
considered to be statistically significant.

FIGURE 2

Illustration of the AI identification of pulmonary malignant nodules. The system has identified a nodule in the thin-slice chest CT imaging (the red box), 
automatically measured its long- and short-axis diameters in 3D (the blue arrow), and prompted a prediction of malignancy risk (the yellow arrow).
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Results

Demographics and imaging characteristics

The 260 cases of pulmonary nodules with surgical treatment were 
classified into benign and malignant groups according to the 
pathologic results, and demographic features, clinical manifestations, 
and imaging characteristics. The pathologic diagnostic results for the 
two groups are shown in Table 1. There were no significant differences 
between the benign and malignant groups concerning mean age, sex, 
reason for consultation, but the differences were statistically significant 
concerning mean nodule diameter (p = 0.002), nodule density 
(p = 0.011), and nodule position (p = 0.045).

AI prediction results for the 260 pulmonary 
nodules

The dataset included 173 malignant cases, among which 
adenocarcinoma was the major pathologic type, accounting for 169 
cases, with the remaining four cases being squamous cell carcinoma. 
The cases of adenocarcinoma included atypical adenomatous 
hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive 
adenocarcinoma (MIA), invasive adenocarcinoma (IA), and mucinous 
adenocarcinoma. The 87 benign cases included inflammatory 
pseudotumor, carbon dust deposition, hamartoma, fibrous tissue 
hyperplasia, granulomatous inflammation, inflammatory disease, 
tuberculoma, and intrapulmonary lymph nodes (Table  1). In this 

study, the AI software detected 100% of the pulmonary nodules, and 
we further examined the prediction results for benign and malignant 
nodules (Table  2). Among the 173 malignant nodules, 155 cases 
(89.60%) were correctly predicted, and 18 cases (10.40%) were 
incorrectly predicted as being benign. The AI predictive accuracy was 
77.57%, with a sensitivity of 89.60%, and a specificity of 48.28%. PPV 
and NPV were 77.50 and 70.00%, respectively, and the AUC was 0.755 
(Figure 4).

AI prediction results according to 
anatomical position, nodule density, and 
nodule diameter

In the subgroups according to the position of the nodules, the AI 
system correctly predicted 43 (37 malignant and 6 benign) out of the 
58 nodules in the left upper lobe, 38 (30 malignant and 8 benign) out 
of the 45 nodules in the left lower lobe, 68 (60 malignant and 8 benign) 
out of the 84 nodules in the right upper lobe, 16 (eight malignant and 
eight benign) out of the 20 nodules in the right middle lobe, and 32 
(20 malignant and 12 benign) out of the 53 nodules in the right lower 
lobe. We  created ROC curves by calculating TPR and FPR using 
different threshold values, and the AUC was 0.677, 0.758, 0.744, 0.982, 
and 0.725, respectively, for the nodules in the left upper lobe, left lower 
lobe, right upper lobe, right middle lobe, and right lower lobe, which 
demonstrated that the AI system had fairly good diagnostic 
effectiveness for these subgroups, especially for nodules in the right 
middle lobe (Figure 5).

FIGURE 3

Illustration of the AI identification of pulmonary benign nodules. The system has identified a nodule in left upper lobe superior segment (the red box), 
automatically measured its long- and short-axis diameters in 3D (the blue arrow), and prompted a prediction of malignancy risk (the yellow arrow).
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In the subgroups according to nodule density, the AI system 
correctly predicted 74 (55 malignant and 19 benign) out of the 111 
solid nodules, and 120 (99 malignant and 21 benign) out of the 149 
subsolid nodules. The subsolid nodules included 123 pure ground-
glass nodules (pGGNs) and 26 mixed-ground glass nodules (mGGNs), 
the AI system correctly predicted 100 (84 malignant and 16 benign) 
out of the 123 pGGNs, and 20 (15 malignant and 5 benign) out of the 
26 mGGNs. As shown in Table 3, the AI software performed better in 
the prediction of the subsolid nodules than the solid ones, showing a 

statistically significant difference (p < 0.05), but there no significant 
differences between the pGGNs and mGGNs groups.

All the pulmonary nodules included in the dataset measured 
5–30 mm (both inclusive) in diameter. Stratification by nodule 
diameter showed that the AI system correctly predicted 91 (76 
malignant and 15 benign) out of the 118 nodules measuring 5–10 mm 
(both inclusive) in diameter, 67 (27 malignant and 20 benign) out of 
the 90 nodules measuring 10–20 mm (20 mm inclusive) in diameter, 
and 39 (32 malignant and 7 benign) out of the 42 nodules measuring 

TABLE 1 Demographics and imaging characteristics.

Characteristics Number Benign group Malignant group p value

Patient 260 87 (33.46%) 173 (66.54%)

Age (mean ± standard deviation) 58.88 ± 10.18 58.72 ± 1.06 58.96 ± 0.79 0.882

Sex

  Female 152 (58.46%) 48 (55.17%) 104 (60.12%)

  Male 108 (41.54%) 39 (44.83%) 69 (39.88%) 0.591

Reason for consultation (with or without symptoms)

  Physical examination 204 (78.46%) 72 (82.76%) 132 (76.3%)

  Appearance of symptoms 56 (21.54%) 15 (17.24%) 41 (23.7%) 0.879

Nodule 27 (13.5%) 173 (86.5)

Diameter, mm (mean ± standard deviation) 14.69 ± 0.40 12.99 ± 0.64 15.54 ± 0.50 0.002

Nodule density

  Solid nodule 111 (42.69%) 44 (51.76%) 67 (38.29%)

  Subsolid nodule 149 (57.31%) 41 (48.24%) 108 (61.71%) 0.011

Pure ground-glass nodules 123 (82.55%) 31 (75.61%) 92 (85.19%)

Mixed-ground glass nodules 26 (17.45%) 10 (24.39%) 16 (14.81%) 0.608

Nodule position

  Right upper lobe 84 (32.31%) 16 (18.39%) 68 (39.31%)

  Right middle lobe 20 (7.69%) 12 (13.79%) 8 (4.62%)

  Right lower lobe 53 (20.38%) 29 (33.33%) 24 (13.87%)

  Left upper lobe 58 (22.31%) 18 (20.69%) 40 (23.12%)

  Left lower lobe 45 (17.31%) 12 (13.80%) 33 (19.08%) 0.045

Pathologic type

  Benign nodule 87

   Carbon dust deposition 4 (4.60%)

   Hamartoma 11 (12.64%)

   Fibrous tissue hyperplasia 11 (12.64%)

   Granulomatous inflammation 15(17.24%)

   Inflammatory lesion 38 (43.68%)

   Tuberculosis 5 (5.75%)

   Intrapulmonary lymph node 3 (3.45%)

  Malignant nodule 173

   AAH 6 (3.47%)

   AIS 33 (19.08%)

   MIA 20 (11.56%)

   IA 107 (61.85%)

   Squamous cell carcinoma 4 (2.31%)

   Mucinous adenocarcinoma 3 (1.73%)
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20–30 mm (30 mm inclusive) in diameter. We created ROC curves by 
calculating TPR and FPR using different threshold values, and the 
AUC was 0.778, 0.771, and 0.686 (Figure 6), respectively, for the three 
subgroups, which demonstrated that the AI system had fairly good 
diagnostic effectiveness for the pulmonary nodules measuring 
5–30 mm in diameter, and especially for those of 5–10 mm (both 
inclusive) in diameter.

AI prediction results divided by initial 
treatment applied, reason for consultation, 
and sex

We noted three types of treatment processes that the patients 
experienced after the identification of pulmonary nodules: in some 
cases, an empirical anti-infection treatment (levofloxacin 500 mg/day 
or moxifloxacin 400 mg/day for 7–10 days) was administered before 
the surgery (6–14 days of anti-inflammatory treatment); in other 
cases, no empirical anti-infection treatment was administered and 
only follow-ups (for 1–6 months) were arranged before the surgery; 
and the third subgroup received immediate surgical treatment. The AI 

system correctly predicted 43 (37 malignant and 6 benign) out of the 
60 nodules with anti-inflammatory treatment before surgery, 114 (84 
malignant and 30 benign) out of the 146 nodules without anti-
inflammatory treatment but with follow-ups before surgery, and 39 
(34 malignant and 5 benign) out of the 54 nodules with immediate 
surgical treatment, showing no significant difference (p > 0.05) in the 
predictive accuracy.

In the subgroups according to reason for consultation, the AI 
system correctly predicted 155 (122 malignant and 33 benign) out 
of the 204 nodules identified in chest CT for physical examinations, 
and 42 (33 malignant and 9 benign) out of the 56 nodules 
identified in chest CT after the appearance of symptoms, showing 
no significant difference (p > 0.05) in the predictive accuracy 
(Table 4).

With regard to sex, the AI system correctly predicted 80 (62 
malignant and 18 benign) out of the 108 male cases, and 117 (93 
malignant and 24 benign) out of the 152 female cases, showing no 
significant difference (p > 0.05) in predictive accuracy (Table 4).

AI prediction results according to 
adenocarcinoma subtype

There were 87 benign cases and 173 malignant cases (including 
AAH) in the dataset. Stratification by pathologic subtype showed that 
the AI system correctly predicted all six cases of AAH, 30 out of the 
33 cases of AIS, 19 out of the 20 cases of MIA, 98 out of the 107 cases 
of IA, none of the four cases of squamous cell carcinoma, and all of the 
three cases of mucinous adenocarcinoma. There were no significant 
differences (p > 0.05) in the predictive accuracy between the subgroups 
according to adenocarcinoma subtype or TNM staging (Table 5).

TABLE 2 AI prediction results for the 260 pulmonary nodules.

Pathology Correct 
prediction 
(number)

Incorrect 
prediction 
(number)

Total

Malignant nodule 155 18 173

Benign nodule 42 45 87

Total 197 63 260

*p < 0.05.

FIGURE 4

ROC curve for the DL algorithm-based model in the prediction of benignity and malignancy of the pulmonary nodules.
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Discussion

Lung cancer ranks first in both incidence and mortality rates 
among all malignant tumors in China due to the aging of the 
population, as well as the environment, smoking, and genetic factors 
(20). Pulmonary nodules are a major manifestation of early-stage lung 
cancer, and LDCT is recommended as the principal test for pulmonary 
nodule detection and lung cancer screening, since it can reduce the 
lung cancer mortality rate by 20% in high-risk individuals without 
symptoms (21). However, radiologists are faced with the dilemma of 
misdiagnoses caused by large volumes of data from initial screenings 
and re-examinations (22). An AI imaging diagnostic software with 
stable performance, high repeatability, and fast speed in making 
comparisons, can help doctors to considerably enhance the sensitivity 
of diagnosis, reduce the labor burden, and lower the human error rate 
(23). In addition to the prediction of benignity and malignancy of the 
pulmonary nodules, the AI system demonstrates prediction efficiency 
of prioritization in the subgroups with different clinical characteristics, 
and can even assist clinicians in prioritizing between the types of 
pulmonary lobectomy to be  used by providing a comprehensive, 
objective analysis integrating the distribution of the nodules, tumor 
grade, size, and shape (24).

Different types of software vary in sensitivity and specificity due to 
different algorithms used. According to the research by Li et al. (22), the 
deep learning-based computer-aided diagnosis (DL-CAD) system 
detected 700 nodules with a sensitivity of 86.2% (95% CI, 84.1–88.8%; 
p < 0.001), and 96.5% (95% CI, 93.4–99.5%) for nodules ≥5 mm in 
diameter. Wan et al. (25) applied a vessel-suppression function and a 
deep-learning-based computer-aided-detection (VS-CAD) analyzer to 
distinguish malignant from benign nodules, and achieved a sensitivity 
of 93.6%, with a specificity of 39.3%. The study by Setio et al. (26) 
showed that a pulmonary nodule diagnostic system using multi-view 
convolutional neural networks (ConvNets) reached a high true-positive 
rate of 85% in the judgment of malignancy. Yoo et al. (27) assessed the 
performance of a deep learning-based nodule detection algorithm, 
achieving a sensitivity and specificity of 86.2% (95% CI, 77.8–94.6%) 
and 85.0% (95% CI, 81.9–88.1%), respectively. In this study, 
we conducted a retrospective validation of σ-Discover/Lung, a well-
trained model with high sensitivity and specificity, by examining its 
prediction of benign and malignant pulmonary nodules for cases with 
surgical treatment performed during the period from January 2018 to 
April 2021 in the Affiliated Zhongshan Hospital of Dalian University. 
Each AI outcome was expressed as a percentage as the prediction of 
malignancy risk. Results showed that the AI system reached a 100% 

FIGURE 5

ROC curves for the DL algorithm-based model in the prediction of benignity and malignancy of pulmonary nodules in different positions. Position 1: 
left upper lobe; position 2: left lower lobe (all malignant, not included in this figure); position 3: right upper lobe; position 4: right middle lobe; and 
position 5: right lower lobe.

TABLE 3 Comparison of the AI prediction results divided by nodule density.

Subgroup Sensitivity Specificity PPV NPV Accuracy

Divided by nodule density

  Solid nodule (n = 111) 82.08% 43.18% 68.75% 61.29% 66.67%*

  Subsolid nodule (n = 149) 93.40% 51.22% 83.19% 70.00% 80.54%*
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lesion detection rate for the pulmonary nodules with surgical treatment, 
missing none of the 260 cases. Its accuracy in predicting the benignity 
and malignancy of nodules measuring 5–30 mm in diameter was 
75.77%, with a sensitivity of 89.60%, and specificity of 48.28%. PPV and 
NPV were 77.50 and 70.00%, respectively, and the AUC was 0.755, 
which confirmed that the AI model could be applied for the judgment 
of benign and malignant pulmonary nodules, and is more valuable in 
the prediction of malignant nodules.

In general, the smaller the pulmonary nodules measure on the 
chest CT, the more difficult they are for accurate prediction. In the 
study of Mehta et al. (28), a diameter of 5 mm was regarded as the 
positive cutoff value for pulmonary nodules, and their results showed 
that the malignancy rate was 15.3% for nodules measuring more than 
10 mm in diameter, while for nodules measuring 5–10 mm it was 

1.3%, and for nodules measuring less than 5 mm, only 0.4% (29). 
Nevertheless, it is necessary to deal with pulmonary nodules smaller 
than 10 mm with caution (30), as they are exactly within the most 
difficult size range for clinical judgment, and early diagnosis of 
malignant nodules measuring 5–10 mm is essential for timely surgery, 
smaller resection area, and better prognosis (31). In this study, the 
cases were classified into three subgroups based on nodule diameter 
(5–10, 10–20, and 20–30 mm) and the AUC was 0.778, 0.771, and 
0.686, respectively, which demonstrated that the AI system had fairly 
good diagnostic effectiveness for all the pulmonary nodules measuring 
5–30 mm in diameter, and especially for the ones measuring 5–10 mm 
(both inclusive) in diameter.

Based on imaging density, pulmonary nodules can be divided into 
solid nodules and subsolid nodules, with the latter being further 

FIGURE 6

ROC curves for the DL algorithm-based model in the prediction of benignity and malignancy of pulmonary nodules sizes.

TABLE 4 Comparison of the AI prediction results according to initial treatment applied, reason for consultation, and sex.

Subgroup Sensitivity Specificity PPV NPV Accuracy

According to initial treatment applied

  Anti-inflammatory treatment before surgery (n = 51) 82.22% 40.00% 80.43% 42.86% 71.67%

  Follow-ups without anti-inflammatory treatment 

before surgery (n = 100)
94.38% 52.63% 75.68% 85.71% 78.08%

  Immediate surgical treatment (n = 49) 87.18% 33.33% 77.27% 50% 72.22%

According to reason for consultation

  Physical examination (n = 153) 92.42% 45.83% 75.78% 76.74% 75.98%

  Appearance of symptoms (n = 47) 80.49% 60.00% 84.62% 52.94% 75.00%

According to sex

  Male (n = 81) 89.86% 46.15% 74.70% 72.00% 74.07%

  Female (n = 119) 89.42% 50.00% 79.49% 68.57% 76.97%
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divided into pure ground-glass opacity nodules (pGGNs) and mixed 
ground-glass opacity nodules (mGGNs) (32). According to research 
articles, subsolid nodules are more commonly detected in Chinese 
individuals compared with westerners, with a higher proportion being 
ground-glass opacity (GGO) (33, 34). The distribution of nodules 
included in the datasets reported in China and abroad also show 
significant differences (35, 36), with the latter mainly presenting as 
solid nodules and fewer as subsolid ones (37–39), and yet the 
malignancy rate is higher for subsolid nodules (40). This indicates that 
AI models trained on a foreign dataset are not necessarily fit for the 
diagnosis of pulmonary nodules in China. This study applied an AI 
model trained on a domestic dataset and examined its performance 
in diagnosing 260 cases confirmed by surgical pathology. The system 
did indeed show an advantage in judging subsolid nodules, as its 
predictive accuracy was higher for subsolid nodules than solid ones 
(80.54 vs. 66.67%, p < 0.05), with a sensitivity of 93.14% and PPV of 
83.19%. But there no significant differences between the pGGNs and 
mGGNs groups, the result might be caused by the data bias of subsolid 
nodules in this study. Classification by nodule position showed that 
the AUC for the model was 0.677, 0.758, 0.744, 0.982, and 0.725, 
respectively, for the nodules in the left upper lobe, left lower lobe, right 
upper lobe, right middle lobe, and right lower lobe. The AI diagnostic 
effectiveness was highest for the nodules in the right middle lobe, 
followed by those in the left lower lobe, which differed from the study 
results of Horeweg et al. (41), in which the malignancy detection rate 
was highest in the right upper lobe. The discrepancy might be caused 
by the limited number of benign cases in this study.

Many cases of early-stage lung cancer have been detected during 
physical examinations before symptoms appear (42). In this study, 
malignant nodules accounted for 76.30% of the cases (without 
symptoms) identified during physical examinations, suggesting that it 
would be  feasible to quickly improve the clinical diagnostic 
effectiveness for this subgroup by applying AI. On the other hand, 
there were no significant differences in the AI predictive accuracy 
between the cases identified during physical examinations and the 
cases identified during consultations for respiratory tract symptoms, 
or between the subgroups according to TNM staging, which could 
be explained by data bias, as the majority of the cases included in this 
study were at Stage I.

Lung cancer incidence in women has seen a continuing rise (43), 
among which adenocarcinoma accounts for the majority of cases and 

mainly presents as peripheral nodules on CT imaging (44). According 
to the current study, the malignancy rates for males and females were 
similar (74.07 vs. 76.97%, p > 0.05). Nor did the AI predictive accuracy 
show any significant difference between male and female (p > 0.05).

Different pathologic types of pulmonary nodules vary in imaging 
characteristics. Numerous studies have confirmed that most long-term 
existed GGNs in the lung are mostly early lung adenocarcinoma or 
their precancerous lesions (45). In this study, the dataset mainly 
consisted of adenocarcinoma cases, while squamous cell carcinoma was 
rare. The former included 33 cases of AIS, 20 cases of MIA, and 107 
cases of IA, and the AI prediction accuracy was 90.90, 95, and 91.59%, 
respectively, without a significant difference in accuracy (p > 0.05). 
Similarly, Zhao et al. (46) found no significant differences in the AI 
predictive accuracy of tumor invasiveness between AAH-AIS, MIA, 
and IA, probably because the subtle differences in imaging 
characteristics among the pathologic subtypes of adenocarcinoma were 
difficult to acquire by the deep neural networks, and an imbalanced or 
inadequate training dataset could also restrict the diagnostic 
effectiveness of the system. In contrast, in the study of Shao et al. (47), 
the effectiveness of applying the maximum standardized uptake value 
(SUVmax) to distinguish between pathologic subtypes of pulmonary 
adenocarcinoma showed statistically significant differences, and Le 
et al. (35) concluded that the quantitative measurement using weighted 
random forest classifier had fairly good performance in the classification 
of pulmonary adenocarcinoma subtypes, both of which suggest that it 
would be feasible to enhance the AI predictive accuracy for pulmonary 
nodules by further intelligent optimization of the model.

In summary, the AI system demonstrated fairly good accuracy, 
sensitivity, and positive predictive value in the prediction of benignity 
and malignancy of the pulmonary nodules in this study, which could 
contribute to improving efficiency in clinical practice and to reducing 
missed diagnoses. It had better diagnostic effectiveness in predicting 
the malignancy risk for the small nodules measuring 5–10 mm in 
diameter, which is difficult for humans to determine. With regard to 
the different clinical characteristics, the AI model showed significant 
differences in the predictive accuracy between the subgroups 
according to the nodule position, and nodule density, suggesting it has 
an advantage in the prediction for these clinical subgroups. Generally 
speaking, the sensitivity of the AI prediction was high but the 
specificity was comparatively low in this study, which is a common 
issue that has needed to be addressed since the application of AI in 
this medical field (22). In addition, we collected only a limited number 
of pulmonary nodule cases with pathologic diagnosis as per the “gold 
standard,” and certain biased data, such as far fewer benign nodules 
than malignant nodules, affected the specificity of the model, resulting 
in high positive predictive value and low negative predictive value. It 
has been determined by many factors that at present the effectiveness 
of applying AI for the detection of pulmonary nodules, and the 
differentiation between benignity and malignancy, has not met clinical 
expectations, and larger datasets need to be used for the training of 
deep neural networks. As for future research, we  believe that 
improvement in the AI diagnostic effectiveness can be made possible 
by expanding the labeled database, increasing the amount of validation 
samples (especially with a larger number of benign cases), and training 
the model on a dataset with more comprehensive clinical information 
about the patients in addition to their lung conditions, alongside 
developments in the field of deep learning. An independent validation 
study using datasets collected from other institutes, regions, and races 

TABLE 5 Comparison of the AI prediction results according to 
adenocarcinoma subtype.

Subgroup Accuracy

Pathologic type

AIS (n = 33) 90.90%

MIA (n = 20) 95.00%

IA (n = 107) 91.59%

TNM staging

Tis (n = 36) 94.44%

T1 (n = 123) 88.62%

T2 (n = 6) 83.33%

T3 (n = 6) 100%

T4 (n = 2) 50%
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would be of high clinical importance. It is also worthy of further study 
whether the AI model has a significant predictive advantage for 
subgroups classified by other clinical characteristics, how to realize 
more accurate risk stratification for GGNs, and how to assist doctors 
in the clinical management of pulmonary nodules, the choice of types 
of surgery, and the assessment of prognosis.
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