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Background: Liver metastasis is one of the primary causes of death for the 
patients with pancreatic neuroendocrine tumors (PNETs). However, no curative 
therapy has been developed so far.

Methods: The anti-tumor efficacy of a genetically engineered tumor-targeting 
Salmonella typhimurium YB1 was evaluated on a non-functional INR1G9 liver 
metastasis model. Differential inflammatory factors were screened by Cytometric 
Bead Array. Antibody depletion assay and liver-targeted AAV2/8 expression vector 
were used for functional evaluation of the differential inflammatory factors.

Results: We demonstrated that YB1 showed significant anti-tumor efficacy 
as a monotherapy. Since YB1 cannot infect INR1G9 cells, its anti-tumor effect 
was possibly due to the modulation of the tumor immune microenvironment. 
Two inflammatory factors IFNγ and CCL2 were elevated in the liver after YB1 
administration, but only IFNγ was found to be  responsible for the anti-tumor 
effect. Liver-targeted expression of IFNγ caused the activation of macrophages 
and NK cells, and reproduced the therapeutic effect of YB1 on liver metastasis.

Conclusion: We demonstrated that YB1 may exhibit anti-tumor effect mainly 
based on IFNγ induction. Targeted IFNγ therapy can replace YB1 for treating liver 
metastasis of PNETs.
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Introduction

Pancreatic neuroendocrine tumors (PNETs) account for 
about1-2% of pancreas-originated tumors (1, 2). Except for small 
insulinoma, all other PNETs should be  considered potentially 
malignant, although the malignancy is much lower than pancreatic 
ductal adenocarcinomas (1, 3). While functional PNETs cause a 
serious of clinical symptoms such as hypoglycemia, diarrhea, 
gastrointestinal ulcer, etc., which drive the patients to clinical attention 
at an earlier stage; non-functional PNETs (NF-PNETs) grow 
asymptomatically. About 40% of all patients were incidentally 
diagnosed (4, 5), and liver metastases were already present in about 
half of the patients at first visit (1, 2), which has a worse outcome than 
local or regional tumors, with a median survival duration of about 
only 2 years (1). Therefore, the development of treatments for 
unresectable or metastatic PNETs, especially NF-PNETs, is 
urgently needed.

Immune therapy is one of the leading anti-tumor strategies. It 
was originally established by Doctor William B Coley as bacterial-
mediated anti-tumor therapy (6), developed into diverse mode of 
immune cell-mediated therapy nowadays. Recently, genetically 
engineered bacteria were created as new anti-tumor bullets. 
Salmonella is a facultatively anaerobic bacterium which has brilliant 
anti-tumor ability. In order to eliminate its toxicity, several 
attenuated strain such as VNP20009 (7), A1-R (8) and YB1 (9) have 
been artificially engineered or screened out as potential anti-
tumor drugs.

YB1 was designed as an obligate anaerobic salmonella strain. It 
was first demonstrated to be effective in treating breast cancer and 
later neuroblastoma (10). It enriched in the necrotic region of the 
tumor and recruited neutrophil granulocyte to kill the tumor cells. 
However, it was discovered later that YB1 also functioned well in 
tumors without obvious necrosis region, such as hepatic cell 
carcinoma (11). This made it possible that YB1 may have additional 
anti-tumor mechanisms such as blood vessel targeting, which has 
been reported in other salmonella strains. In addition, it has been 
shown that YB1 administration can induce IFNγ secretion and 
activate NK cells to eliminate tumor cells. However, it is questionable 
whether IFNγ can be used as a monotherapy to treat tumor metastasis, 
considering that systemic infusion of IFNγ could not inhibit the 
tumor metastasis to the lung (12).

Since it is relatively dangerous to apply live bacteria in the clinical 
treatment of cancer, the clear understanding of the underlined 
mechanism and the development of the replacement therapy is of 
significant importance. In this study, we demonstrated that YB1 could 
inhibit the liver metastasis in a PNET mouse model through IFNγ, 
and liver-targeted expression of IFNγ could reproduce the anti-
metastasis efficacy of YB1 and hold great potential as a new therapeutic 
strategy for treating liver metastasis of tumors.

Materials and methods

Cell culture

Gold hamster INR1G9 cells (13) were cultured in RPMI 1640 
(GIBCO, US) medium (11.2 mM glucose) supplemented with 5% fetal 
bovine serum and 105 U/L penicillin and 100 mg/L streptomycin. 

293 T cells (ATCC) were cultured in high glucose DMEM (GIBCO, 
US) medium supplemented with 10% fetal bovine serum.

Bacteria culture

Bacterial strain YB1was kindly provided by Dr. JD Huang (HKU, 
China). YB1 was grown in LB medium, with supplements of 25 μg/mL 
Chloramphenicol, 50 μg/mL Streptomycin and 100 μg/mL 
2,6-Diaminopimelic acid (DAP) (Sigma, US), with shaking at 220 rpm 
over night at 37°C. The concentration of the overnight culture was 
determined by plating with series of dilution.

In vitro infection assay

INR1G9 cells were seeded at 2.5 × 104/well in 24-well plate 24 h 
before infection. 5 × 106 YB1 from overnight culture were centrifuged 
and resuspended in culture medium for INR1G9 cells. Then the 
bacteria and INR1G9 cells were co-cultured for 2 h. INR1G9 cells were 
washed with D-Hanks and further cultured in 50 μg/mL Gentamycin 
supplemented medium to remove the extracellular bacteria for 
another 24 h.

Xenograft tumor models

The Animal Ethics Committee of China–Japan Friendship 
Hospital reviewed and approved all animal experiments (No. 180210), 
which were performed according to the Principles of Laboratory 
Animal Care. 6-8-week-old female nude (nu/nu) mice from Charles 
River Laboratories, Inc. were used in this study. Mice were maintained 
under specific-pathogen-free conditions and had access to food and 
water ad libitum. The feeding conditions were as follows: 24 ± 2°C; 
50 ± 10% relative humidity; 12 h light/dark cycle. Mice were 
acclimatized to the laboratory conditions for 5–7 days prior to 
experimentation. The animal protocol was designed to minimize pain 
or discomfort to the animals. For intra-spleen inoculation, the mice 
were anesthetized with an intraperitoneal injection of 1% pentobarbital 
sodium (45 mg/kg). The skin was disinfected with 75% alcohol and an 
oblique incision was made on left side to pull out the spleen. 1 × 106 
INR1G9 cells in 25 μL FBS-free culture medium were injected into the 
spleen using BD insulin syringe® until visible splenic capsule swelling. 
After injection and needle withdrawal, dry cotton swab was used for 
hemostasis and cell leakage oppression. Then the spleen was replaced 
into the abdominal cavity and the skin was sutured (14). Since the 
growth of INR1G9 tumor did not cause obvious body weight loss and 
changes of physical conditions, no euthanasia was carried out before 
the planned end of the experiment. At the end of the experiment, the 
animals were e euthanized by the intraperitoneal injection of 0.1 mL 
of 200 mg/mL pentobarbitone sodium.

In vivo infection by YB1

5 × 107 bacteria were harvested from overnight culture, 
centrifuged, resuspended in 100 μL PBS, and injected into the tail vein 
of the mice (n = 10) one week after INR1G9 inoculation. The mice 
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were kept for another 3 weeks and then euthanized to harvest the 
tumors. For the antibody neutralizing assay, rat anti-IFNγ or anti-
CCL2 antibodies (Bioxcell, US) (2 mg/kg) were injected 
intraperitoneally twice a week for three weeks after YB1 treatment.

Immunohistochemistry, 
immunofluorescence, and antibodies

For histological analysis, INR1G9 tumors were fixed in 4% PFA/
PBS overnight, and then prepared into paraffin sections for H&E 
staining. For immunohistochemistry, the deparaffinized sections were 
pretreated with 10 mM sodium citrate buffer for antigen unmasking, 
blocked in 3% H2O2 followed by normal serum, incubated with rabbit 
anti-salmonella (Abcam, UK) at 4°C overnight. Sections were 
incubated with HRP-conjugated goat anti-rabbit antibody (DAKO, 
Denmark) at room temperature for 1 h. Diaminobenzidine 
tetrachloride was used for color development, and the slides were 
counterstained with hematoxylin. For immunofluorescence on 
cultured cells, the cells were fixed with 4% PFA/PBS for 10 min 
followed by permeabilization using 0.2% Triton X-100/PBS for 10 min 
before staining. For immunofluorescence on tissues sections, the livers 
of the mice (n = 3) injected with AAV vectors were fixed in 4% PFA/
PBS for 2 h, balanced in 30% sucrose/PBS overnight, and then 
prepared into frozen sections before staining. Immunofluorescent 
staining was performed according to the standard procedure. The 
primary antibodies used were: mouse anti-iNOS (Abcam, UK), mouse 
anti-NK1.1 (Novus, CH), rat anti-F4/80 (R&D, US). The secondary 
antibodies used were Alex Fluor® 488 Donkey Anti-Rabbit IgG 
(H + L), Alex Fluor® 555 Donkey Anti-Rat IgG (H + L) and Alex 
Fluor® 555 Donkey Anti-Mouse IgG (H + L) (Invitrogen, US). DAPI 
was used to stain the cell nuclei.

Detection of inflammatory factors in the 
liver

A small piece of mouse liver (n = 5) was taken, weighed, 
homogenized in PBS with 0.1% Triton X-100 and protease inhibitors 
(Roche, Switzerland) and centrifuged to remove the precipitations. 
The inflammatory factors including IL-12, p70, TNF, IFNγ, CCL2, 
IL-10, IL-6 were detected using Cytometric Bead Array (CBA) Mouse 
Inflammation Kit (BD, US). The supernatant was incubated with the 
capture beads and the detector reagents in one tube. The fluorescent 
intensity in APC channel was used to discriminate the capture beads 
and the PE intensity was used to detect cytokine levels. The CBA assay 
was performed on BD FACSCantoplus™. To measure IFNγ alone in 
the mice liver injected with AAV vectors through the tail vein (n = 3), 
IFN γ Factor ELISA Kit (Beijing 4A Biotech, China) was used 
according to the instructions.

Construction of AAV2/8 packaging 
plasmids

AAVpro® Helper free system (AAV2) system was purchased from 
Takara, Japan. In order to construct liver specific promoter, two copies 
of ApoE enhancer followed by AAT promoter sequence (15) was 

synthesized and cloned into the HindIII/NruI sites in pAAV-CMV to 
replace the CMV promoter and generate pAAV-AAT. In order to track 
the distribution of AAV in vivo, the EGFP gene (sequence from 
pEGFP-C1, Clontech, US) was synthesized and constructed into the 
EcoRI/BamHI sites of pAAV-AAT to obtain pAAV-EGFP. To generate 
IFNγ-expression AAV vector, the mouse IFNG coding sequence 
(NM_008337.4) was synthesized and constructed into the EcoRI/
BamHI site of pAAV-AAT to obtain pAAV-IFNr. In order to obtain 
AAV2/8 with liver specific infection, the VP1 gene of AAV8 was 
synthesized1 and cloned into SwaI/NdeI sites in pRC2-mi342 vector 
to replace the VP1 of AAV2 and generate pAAV2/8.

Packaging of AAV2/8

In order to package chimeric AAV2/8, 6 × 106 293 T cells were 
inoculated into T75 flask 24 h in advance, and 9 μg pHelper, pAAV2/8 
and AAV expression vectors (pAAV-AAT, pAAV-EGFP or pAAV-
IFNr) were cotransfected into 293 T cells, and the solution was 
changed after 12 h. After 60 h, 15 mL culture supernatant was collected. 
Cells were digested and collected. Cell precipitates were resuspended 
with 3 mL lysis buffer (50 mm Tris, 150 mM NaCl, 2 mM MgCl2, pH 
8.0) and freeze-thawed repeatedly for three times. The lysate was 
centrifuged at 3,000 rpm x 5 min to remove cell debris. Benzonase 
(100u/mL) was added and incubated at 37°C for 1 h. 15 mL 
supernatant, 3 mL cell lysate and 4.5 mL PEG8000 solution (40% 
PEG8000, 2.5 N NaCl) were mixed and ice bathed for 2 h, centrifugated 
for 2,500 g x 30 min at 4°C. The precipitation was resuspended with 
13 mL DMEM, and passed through 0.45 μm filter to remove 
impurities. After ultracentrifugation for 150,000 g × 3 h at 4°C, the 
precipitation was resuspended with 2 mL serum-free 1,640 medium 
(16). AAV was titrated by real-time PCR using AAVpro titration kit 
(TaKaRa, Japan).

In vivo treatment of AAV2/8

In order to detect the liver specific targeting of AAV2/8, 107/100 μL 
AAV-EGFP virus was injected into the mice through tail veins. After 
7 days, the heart, liver, pancreas, stomach, intestine and spleen were 
taken, and the green fluorescence signal in each organ was observed 
under fluorescence stereomicroscope (M205FA, Leica). In order to 
treat the tumor with AAV vector, 107/100 μL AAV-IFNr or AAV vector 
AAV-AAT were injected into the tail vein of mice (n = 5) after INR1G9 
cells were injected into the spleen. Four weeks later, the livers were 
harvested to detect the tumor growth.

Statistical analysis

Images were processed and analyzed by ImageJ®. Student’s t-test 
was used to compare the differences between two groups. In case of 
more than two-group comparisons, one-way analysis of variance 
followed by the Tukey’s post hoc test was used. All statistical analyses 

1 https://www.ncbi.nlm.nih.gov/nuccore/af513852
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were performed using the GraphPad Prism software version 7.04 
(GraphPad Software, Inc.). *p < 0.05, **p < 0.01, ***p < 0.001 or 
****p < 0.0001 was considered significant as indicated in the 
figure legends.

Results

YB1 cannot infect INR1G9 effectively in 
vitro

INR1G9 cells were isolated from gold hamster insulinoma cell 
In-111-R1 by single cell cloning and recently established as a 
non-functional PNET cell model (14). We tested whether YB1 could 
infect INR1G9 cells under normal culture condition. We also used 
hepatocellular carcinoma cell line Huh7.5 as a positive control. 
We found that the replication foci were present in a very small fraction 
of INR1G9 cells (Supplementary Figure S1A), while vast amount of 
YB1 were present in most of the Huh7.5 cells 
(Supplementary Figure S1B), showing that the infection of YB1 on 
INR1G9 cells was inefficient in vitro.

Monotherapy of YB1 strongly inhibit 
INR1G9 liver metastasis without tumor cell 
targeting

We have demonstrated that while INS-1 can hardly form liver 
metastatic foci by intrasplenic injection, INR1G9 cells could be applied 
as an efficient liver metastasis model (14). The metastatic foci had a 
white-to-bloody appearance. The metastasis rate was 100% in less a 
month, and the number of metastatic foci reached to more than one 
hundred in about half of the mice.

We tested the anti-tumor efficacy of YB1 on INR1G9 liver 
metastasis model. YB1 was administrated through tail vein one week 
after tumor implantation, and tumor growth was examined 3 weeks 
after treatment. As a result, YB1 strongly inhibited the liver metastases, 
and the color of the metastatic tumor turned much paler than those 
untreated (Figure  1A). The number of metastatic foci reduced 
remarkably (Figure  1B), and the size of the metastatic foci also 
decreased significantly (Figure  1C). At the same time, the size of 
spleen increased significantly as consequence of salmonella infection 
(Figure 1D). Four of ten liver even did not have obvious metastatic 
foci. The inhibition of liver metastases was verified by H&E staining 
(Figures  1E–H). We  also observed calcification sites without any 
tumor cells around, suggesting that some metastatic tumor cells may 
be  eliminated by the treatment (Figure  1I). When checking the 
distribution of the bacteria in the tumors, we found that they were 
rarely detected in the live tumor cells, but mainly in the necrotic 
tumor area and regions outside of the tumors (Figures 1J–L).

IFNγ is necessary for efficient YB1 therapy

As previously reported that YB1 proliferates well in the liver (9), 
and bacterial infection may activate the immune system and promote 
the anti-tumor effect of the body, we speculate that the level of local 
inflammatory factors in the liver may change after YB1 infection, so 

as to activate the innate immune system. We took the liver of mice 
infected with YB1 for one week and detected IL-12, p70, TNFα, IFNγ, 
CCL2, IL-10 and IL-6 inflammatory factors. We found that the YB1 
infected group had higher IFNγ and CCL2 than the uninfected group, 
while other inflammatory factors tested showed no significant 
difference (Figures 2A–F).

Since CCL2 functions in monocytes chemotaxis and IFNγ 
promote the M1 polarization of macrophages, we hypothesized that 
the upregulation of these two factors by YB1 may recruit and activate 
myeloid monocyte/macrophages. We observed clusters of infiltrating 
cells near the vasculature after YB1 injection (Figures 2G–I), and these 
cells were stained positive for M1 macrophage marker iNOS but not 
M2 marker CD163 (Figures 2J–L).

To verify whether IFNγ or CCL2 plays a role in YB1-mediated 
antitumor process, we gave neutralizing antibodies against IFNγ and/
or CCL2 twice a week after tail vein injection of YB1. The results 
showed that the neutralizing antibody of CCL2 alone could not 
weaken the antitumor effect of YB1, but in the neutralizing antibody 
group of IFNγ or IFNγ + CCL2, the antitumor effect of YB1 was 
significantly weakened (Figures 3A–G). These results suggested that 
the upregulation of IFNγ in the liver is indispensable for the anti-
tumor effect of YB1 therapy.

AAV-IFNr completely inhibit INR1G9 tumor 
growth in the liver

To verify that whether liver-targeted IFNγ has a similar anti-
tumor effect as YB1, we  prepared chimeric AAV2/8 specifically 
targeting the liver as an IFNγ delivery vector (Figure 4A). At the same 
time, AAV2/8 expressing EGFP (AAV-GFP) was prepared to observe 
the specific targeting of the virus vector to the liver. We found that one 
week after tail vein injection of AAV-GFP, there was significant green 
fluorescence in the liver, but not in other organs of mice (Figure 4B). 
We also detected IFNγ in the liver of AAV-IFNr infected mice two 
weeks post injection. It was found that IFNγ level was significantly 
higher in the liver of mice infected with AAV-IFNr than that of the 
negative control group (Figure 4C).

We evaluated the effect of AAV-IFNr on liver tumorigenesis. The 
injection of AAV empty vector alone could not have a significant effect 
on tumor formation. However, there was no visible tumor formation 
in the liver of mice injected with AAV-IFNr (Figure 5). These results 
proved that the liver-targeted IFNγ expression has a strong ability to 
inhibit tumor formation in the liver.

Macrophages and NK cells are activated 
upon AAV-IFNr treatment

We examined the activation of macrophages and NK cells in the 
liver after AAV-IFNr treatment. We found that no obvious activated 
M1 macrophage or NK cells were present in the PBS or empty vector 
group, there were significant number of cells stained positive for the 
activation marker iNOS for M1 macrophages (Figures 6A–D) and 
NK1.1 for NK cells (Figures 6E–H). The percentages of F4/80 positive 
cells representing for total macrophages showed no significant 
difference among these groups (Figures 6I–L). These data indicate that 
the expression of IFNγ promoted the M1 polarization of macrophages 

https://doi.org/10.3389/fmed.2023.1284120
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Hua et al. 10.3389/fmed.2023.1284120

Frontiers in Medicine 05 frontiersin.org

and the activation of NK cells, which may strengthen the IFNγ-
mediated antitumor effect.

Discussion

Immunotherapy, especially anti-CTLA-4/PD-1/PD-L1 antibodies, 
has been applied in multiple types of cancers. However, the tumor 
mutation burden, PD-L1 expression and T cell infiltrations are quite 
heterogeneous among tumors, which may account for the inconsistent 
treatment effect (17–19). For neuroendocrine tumors, clinical trials 
with immunotherapy as monotherapy or combinations have shown 
limited efficacy (20). Therefore, development of new therapy for this 
kind of tumor is of great importance. Activation of the innate 
immunity maybe one of the choices.

The genetically engineered salmonella strain YB1 or YB1-derived 
vectors has been reported to treat multiple types of tumors including 

breast cancer, hepatic cancer, neuroblastoma, and lung or liver 
metastases (9–12). Except for the extra anti-tumor agent incorporated 
in the YB1-derived vectors, the YB1 itself can efficiently stimulate the 
innate immunity to suppress tumor growth. In a lung metastasis 
model, YB1-induced IFNγ expression was found to be responsible for 
its anti-tumor effect (12). In the present study, we verified the role of 
IFNγ in a YB1-treated liver metastasis model.

The antitumor effect of IFNγ has been identified for a long time. 
Binding of IFNγ to its receptor can stimulate JAK/STAT1 pathway and 
induce the expression of transcription factor IRF1, which further 
activates the downstream target gene expression (21). IFNγ receptor 
genes IFNGR1, IFNGR2 and the downstream effector IRF1 have been 
reported to be  expressed on a PNET cell line QGP-1, and IFNγ 
treatment could inhibit tumor growth and induce apoptosis in vitro, 
indicating a direct anti-PNET effect of IFNγ (22).

Other studies suggest that IFNγ mainly plays a role by 
activating adaptive immunity including upregulating of MHCI 

FIGURE 1

YB1 inhibited liver metastasis without infecting tumor cells in INR1G9 mouse models. (A) Representative pictures of the livers and spleens from mice 
inoculated with INR1G9 cells in the spleen and injected with PBS (1G9  +  PBS) or YB1 (1G9  +  YB1) through the tail veins (n  =  10). Scale bar: 500  μm. (B–D) 
The number of liver metastases (B), size of liver metastases (C) and the length of the spleen (D) was measured in the 1G9  +  PBS and 1G9  +  YB1 groups. 
(E–G) H&E staining of the liver sections of the mice inoculated with INR1G9 cells in the spleen and injected with PBS (E) or YB1 (F,G) through the tail 
veins. (H) Statistical analysis of the proportions of tumor area as represented in (E–G) (n  =  10). (I) H&E staining of the liver sections of the mice 
inoculated with INR1G9 cells in the spleen and injected with YB1 through the tail veins. Red arrows: calcification foci. (J,K) The mice liver sections from 
the 1G9  +  YB1 group were immunostained with anti-salmonella antibodies. Green arrows: INR1G9 metastatic tumors. (L) Quantitative analysis of YB1 
foci in the liver or tumor areas as represented in (J,K). Five immunostaining areas were randomly selected for normal liver, non-necrotic tumor and 
necrotic tumor, respectively. Scale bar in (E–G) and (J,K): 500  μm; scale bar in (I): 50  μm. Data are presented as mean  ±  SD. **p  <  0.01; ***p  <  0.001; 
****p  <  0.0001.
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FIGURE 2

IFNγ and CCL2 levels were elevated in INR1G9 inoculated mice livers after YB1 treatment with M1 macrophages recruited. (A–F) Mice were injected 
with PBS or YB1 through the tail vein following intrasplenic injection of culture medium or INR1G9 cells (n  =  5). The levels of inflammatory factors 
including IL12 p70 (A), TNF (B), IFNγ (C), CCL2 (D), IL10 (E), and IL6 (F) in the mice livers were measured using cytometric bead array. (G,H) H&E 
staining of the liver sections from the mice injected with PBS (G) or YB1 (H) through the tail vein and kept for one week (n  =  5). (I) Quantitative analysis 
of infiltration foci in the livers of PBS or YB1 injected mice as represented in (G,H) (n  =  5). (J,K) Immunohistochemistry of the liver sections in (I) with 
anti-iNOS (J) or anti-CD163 antibodies (K) to show M1 or M2 macrophages, respectively. (L) Quantitative analysis of the percentages of 
immunostaining positive cells in the infiltrated cells as represented in (J,K) (n  =  5). Data are presented as mean  ±  SD. Ns, non-significant; *p  <  0.05; 
**p  <  0.01; ***p  <  0.001; ****p  <  0.0001.
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expression in professional antigen presenting cells (23), recruiting 
cytotoxic T lymphocytes (24), promoting Th1 differentiation (25) 
and driving fragility of regulatory T cells (26). IFNγ pathway is 
also important for the anti-CTLA-4 therapy (27). However, 
we used thymus aplastic nu/nu mice for the tumor model in our 
study, which indirectly suggested that the adaptive immunity can 
be  missing for the anti-tumor effect of YB1 and IFNγ in 
our model.

It has been demonstrated that IFNγ functions by activating NK cells 
for the YB1-mediated lung metastasis therapy. IFNγ is also a key cytokine 
to fully activate macrophages (28). In addition to NK cells, we found that 
macrophages were also activated to M1 phenotypes by YB1 or AAV-IFNγ 
therapy. Therefore, we suggested that besides its direct anti-PNET role, 
IFNγ may also function through activating NK cells and macrophages to 
exhibit further antitumor effect. Further study is important to understand 
the role of macrophages in YB1 antitumor effect.

FIGURE 3

Anti-IFNγ but not anti-CCL2 abrogated the anti-tumoral effect of YB1. (A–F) H&E staining of the liver sections from the control mice (A) or mice with 
INR1G9 inoculated (B), INR1G9 inoculated and treated with YB1 (C), INR1G9 inoculated, treated with YB1 and anti-IFNγ (D), anti-CCL2 (E) or anti-IFNγ 
plus anti-CCL2 (F). Scale bar: 500  μm. (G) Statistical analysis of the proportions of tumor area as represented in (A–F) (n  =  5). Data are presented as 
mean  ±  SD. Ns, non-significant; *p  <  0.05; **p  <  0.01.

FIGURE 4

Liver-targeted expression based on AAV2/8 vectors. (A) Schematical diagrams of liver-targeted AAV2/8 vector containing the IFNγ-expressing cassette 
and packaging plasmids. (B) Green fluorescence detected in the liver, pancreas, stomach, colon and spleen from mice injected with AAV-EGFP or AAV 
vector for one week. (C) Relative IFNγ levels measured by ELISA in the livers of mice injected with PBS, AAV vector or AAV-IFNr (n  =  3). Data are 
presented as mean  ±  SD. **p  <  0.01.
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Besides antitumor effect, IFNγ has also been found to have a 
pro-tumorigenic effect in certain circumstance (29). Injection of 
recombinant IFNγ was tried in several anti-tumor clinical trials 

including chronic myelogenous leukemia (30), bladder carcinoma 
(31), ovarian cancer (32), adult T cell leukemia (29) and melanoma 
(33), but the results were mixed. Although IFNγ plays a crucial role in 

FIGURE 5

AAV-IFNr completely inhibited the liver metastases of INR1G9 cells. (A) Representative pictures of the livers from mice inoculated with INR1G9 cells in 
the spleen and injected with PBS, AAV vector or AAV-IFNr through the tail veins (n  =  5). (B) Statistical analysis of the number of liver metastases in the 
PBS, AAV vector and AAV-IFNr groups. Data are presented as mean  ±  SD. ****p  <  0.0001.

FIGURE 6

AAV-IFNr activated macrophages and NK cells in the liver. Detection of iNOS (A–C), NK1.1 (E–G) or F4/80 (I–K) by immunofluorescence in the liver of 
mice (n  =  3) injected with PBS (A,E,I), AAV vector (B,F,J) or AAV-IFNr (C,G,K) through tail vein for two weeks. Scale bar: 100  μm. The statistical analyses 
were presented as mean  ±  SD for iNOS (D), NK1.1 (H) and F4/80 (L) as indicated. ****p  <  0.0001. ns, non-significant.
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YB1-mediated suppression of lung metastasis, intravenous injection 
of recombinant IFNγ failed to inhibit lung metastasis (12). A possible 
explanation may be that systematically administration of IFNγ might 
not be able to achieve a desired concentration in the targeted organs. 
To circumvent this problem, we engineered targeted IFNγ expression 
vector based on the chimeric AAV2/8 which harbors the AAV2 
backbone and the AAV8 capsid conferring liver-specific targeting. 
AAV8 targets hepatocytes with high efficiency around 90–95% (34). 
AAV2/8 mediated FIX delivery to the liver showed safety and efficacy 
for hemophilia B patients (35). The reconstructed ApoE-AAT 
promoter further guaranteed liver-specific expression (15). The IFNγ 
level in the liver significantly elevated two weeks after treatment. 
Surprisingly, this liver targeted AAV-IFNγ expression vector 
reproduced an even stronger antitumor efficacy than YB1. Although 
the splenomegaly was observed as a side effect, the non-permanent 
expression of AAV vectors may limit this side effect in long term. 
Therefore, compared with systematically injection of IFNγ, targeted-
IFNγ supplement may be more effective for tumor treatment. Our 
study suggested that liver-targeted IFNγ expression holds great 
potential in PNETs liver metastasis. We also speculate that targeted 
IFNγ therapy may also be applied in other organs, which is worthy of 
further exploration.
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