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Background: Sepsis is a life-threatening condition caused by a dysregulated 
response to infection, affecting millions of people worldwide. Early diagnosis and 
treatment are critical for managing sepsis and reducing morbidity and mortality 
rates.

Materials and methods: A systematic design approach was employed to build a 
model that predicts sepsis, incorporating clinical feedback to identify relevant data 
elements. XGBoost was utilized for prediction, and interpretability was achieved 
through the application of Shapley values. The model was successfully deployed 
within a widely used Electronic Medical Record (EMR) system.

Results: The developed model demonstrated robust performance pre-
operations, with a sensitivity of 92%, specificity of 93%, and a false positive rate of 
7%. Following deployment, the model maintained comparable performance, with 
a sensitivity of 91% and specificity of 94%. Notably, the post-deployment false 
positive rate of 6% represents a substantial reduction compared to the currently 
deployed commercial model in the same health system, which exhibits a false 
positive rate of 30%.

Discussion: These findings underscore the effectiveness and potential value of the 
developed model in improving timely sepsis detection and reducing unnecessary 
alerts in clinical practice. Further investigations should focus on its long-term 
generalizability and impact on patient outcomes.
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1 Introduction

Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response 
to infection that impacts millions of people around the world (1–3). Early diagnosis and 
treatment are crucial in managing sepsis, a life-threatening medical condition leading to 
increased morbidity and mortality rates (4). There are some established scoring systems for 
assessing the risk of sepsis (5–8). These systems assign risk scores based on a set of predefined 
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criteria. Due to the complexity of sepsis and its nonlinear association 
with patient characteristics (e.g., vitals and labs), these tools are 
limited in terms of distilling predictive insights from the patient 
profile. Therefore, there has been a growing interest in using machine 
learning algorithms as decision-support tools for sepsis detection 
(9–12). While there is an abundance of articles on the topic, there is 
still a need for improving the interpretability of models and 
investigating model deployment in operation in hospitals.

Machine learning as a concept was introduced in 1959 by Arthur 
Samuel in the quest to grant computers the ability to learn without 
being explicitly programmed (13). It has been proven to be  very 
beneficial in many medical and healthcare delivery applications 
including the early detection of diseases, robotic-assisted surgeries, 
extracting insights from clinical text (e.g., reports, physician notes, 
etc.), and labeling medical images with potential diagnosis (14–20). 
Predictive modeling in particular can serve as a decision-support tool 
in clinical settings (21–25). Generating predictive scores for patients 
can lead to better prioritization of healthcare delivery, early 
appropriate interventions, and streamlining patient care workflows 
in general.

Machine learning models have been increasingly considered for 
predictive modeling research in healthcare. However, most published 
articles have not reported successful implementations of proposed 
models, leading to a huge gap between theory and practice. This fact 
emphasizes the inevitable need for practical research that addresses the 
predictive model lifecycle from conceptualization to operationalization. 
In this study, we present an end-to-end machine learning model for 
the early detection of sepsis, enlightening the adoption and integration 
of the proposed model within the clinical workflow.

This study presents an operationalizable machine-learning model 
that consolidates clinical data from different sources (e.g., vitals, labs, 
medications, etc.) to detect sepsis early, allowing for early interventions 
and administration of the health of patients. In this paper, we make 
four main contributions:

 • It proposes a framework for identifying, mapping to the database, 
and examining with clinical subject matter experts a list of sepsis 
predictive data elements.

 • It proposes an operationalizable machine-learning model for the 
early detection of sepsis with high sensitivity and specificity.

 • It integrated the prediction model with the clinical workflow 
through the integration of the model with a widely adopted EMR 
system in the U.S.

 • It provides an interpretability and explainability analysis of the 
machine learning model.

2 Materials and methods

2.1 Research methodology overview

We adopted a systematic approach for conducting the research 
and building the models in this paper. The institutional review board 
(IRB) of Virtua Health approved this study. Figure 1 illustrates the 
overall process. We  began by evaluating the performance of a 
commercially available sepsis prediction model that was integrated in 
Virtua Health’s EMR system. We  identified issues present in this 
commercially available model and used that as a launching point for 

developing a new sepsis prediction model. After pinpointing these 
problems, we conducted a comprehensive analysis of sepsis prediction 
models in the literature and extensive discussions with the clinical 
team. Based on these investigations, we identified a list of potential 
predictive data elements for sepsis, validated the list with clinical 
subject matter experts, mapped the data elements to the clinical 
database, and developed SQL queries to retrieve the data from the 
various sources (i.e., tables) in the database. Then, we  cleaned, 
preprocessed, transformed, and performed feature engineering on the 
retrieved dataset. Based on the resulting dataset, we developed and 
trained the machine learning model. The model was evaluated 
through error and classification performance analyses. After that, 
we prepared the model artifacts for cloud deployment and integration 
with the EMR system. Then, we  collected post-deployment 

FIGURE 1

Research methodology workflow.
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performance data to evaluate the deployed version of the model. 
Finally, we set up the monitoring pipeline for the model in operation.

2.2 Data identification and collection

To construct the sepsis prediction model, we  conducted a 
literature review to determine potential data elements (10, 26, 27). 
We compiled an initial list of data elements from various categories 
such as demographics, vitals, labs, medications, and lines, drains and 
airways (LDAs). Then, we  consulted with clinical subject matter 
experts to gain insight into the data and solicit feedback and additional 
data elements from their perspectives. We  performed a mapping 
analysis on the final list of data elements, in which we examined the 
correspondence of the data elements to the data items in the EMR’s 
front end (i.e., Epic hyperspace). We also generated a related list of 
tables and columns in the backend database from these mappings. 
This analysis is essential for obtaining the appropriate data elements 
for predictive modeling. Next, we  used advanced SQL queries to 
extract the data from different sources in the Clarity database of the 
Epic EMR. We collected data for patients who were 18 years or older 
and who were admitted as inpatients at one of Virtua Health’s five 
hospitals (Virtua Marlton Hospital, Virtua Mount Holly Hospital, 
Virtua Our Lady of Lourdes Hospital, Virtua Voorhees Hospital, and/
or Virtua Willingboro Hospital). We restricted the patient population 
to those who were admitted to the inpatient hospitals between January 
2020 and July 2022. The initial cohort for model training and 
validation consisted of 17,750 inpatient encounters (70% for training 
the model and 30% for validation). To avoid any potential bias from 
nonrandom split, we used random splitting in this paper. Our dataset 
came from 5 hospitals in our system that are located in a similar 
geographical area. Since we deployed the same model across the whole 
system, we wanted to make sure that every data sample from every 
hospital had the same chance of being selected. We  believe that 
random splitting is a better method for our study, as it reflects the 
real-world scenario of applying the same model to the entire health 
system. The choice between a random or nonrandom partition of the 
dataset into training and validation sets relies on the specific context 
of the study. We  strongly recommend conducting a thorough 
investigation and rigorous testing of both methods.

We obtained the sepsis label (i.e., patient is septic) and the 
corresponding timestamp from the database by recording the first time 
of sepsis occurrence in the patient encounter (e.g., 14th hour since 
admission). For this purpose, the clinical team provided a list of sepsis 
International Classification of Diseases (ICD-10) diagnosis codes (44 
sepsis-related diagnoses). The diagnosis coding adhered to the Sepsis-3 
definition (1). See Section 3.1 for descriptive statistics of the dataset.

The model’s post-deployment performance was evaluated by 
collecting model scores and patient final DRGs from the Epic Clarity 
database (only patients with documented final DRG were included). 
Sepsis DRGs 870, 871, or 872 were considered for identifying septic 
patients to validate performance. Selection of these DRGs was made 
in collaboration with clinical team at Virtua Health. DRG 870 is for 
Septicemia or Severe Sepsis with Mechanical Ventilation 
(MV) > 96 Hours. DRG 871 is for Septicemia or Severe Sepsis without 
MV > 96 h and with Multiple Chronic Conditions (MCC). DRG 872 
is for Septicemia or Severe Sepsis without MV > 96 h and 
without MCC.

2.3 Variable selection and data processing

Data processing was performed on the retrieved dataset to prepare 
it for machine learning modeling. We adopted several steps of analysis 
and processing including data encoding, imputation, aggregation, 
and scaling.

The original dataset contained around 86 variables spanning 
several categories such as demographics, vitals, initial sepsis screening, 
labs, medications, LDAs, and comorbidities. Demographic variables 
are Age, Gender, Is_Married, Emergency Department (ED) Length of 
Stay, and Inpatient Length of Stay. Vitals variables are Temperature, 
Respiratory Rate, Systolic Blood Pressure, Diastolic Blood Pressure, 
Mean Arterial Pressure, Heart Rate, and Oxygen Saturation. Initial 
sepsis screening in the ED variables are Level of Consciousness, Are 
there Two or More Signs of Sepsis, and History of Sepsis. LDA 
variables are the Count of Central Venous Catheters, Count of Closed 
Suction Drains, Count of Endotracheal Tubes, Count of Feeding 
Tubes, Count of Incisions, Count of Peripheral IVs, Count of PICCs, 
Count of PORTs, Count of Pressure Ulcers, Count of SWAN-GANZ 
Catheters. Labs are Absolute Lymphocyte Manual Count, Absolute 
Neutrophil Manual Count, Base Excess Arterial, Calcium, Chloride, 
CO2, Creatinine, FiO2, Glucose, HCO3, Hematocrit Automated 
Count, Hemoglobin, Hemoglobin A1C, Lactate, Lymphocyte 
Automated Count, Magnesium, Mean Corpuscular Hemoglobin 
Concentration, Monocyte Automated Count, Neutrophil Automated 
Count, Nucleated RBC Automated Count, PaCO2, pH Blood, 
Phosphate, Platelet Automated Count, POC Glucose, Potassium, 
Procalcitonin, RBC Automated Count, RBC Distribution Width 
Automated Count, RBC Morphology, Reticulocyte, and WBC 
Automated Count. Counts of the following medications: Alpha Beta 
Blockers, Analgesic Antipyretics, Antianginals, Antifungals, 
Antihypertensives, Beta-Adrenergic Agents, Beta Blockers, Beta 
Blockers Cardiac Selective, Beta-lactam Antibiotics, Cephalosporins, 
Coronary Vasodilators, Fluoroquinolones, Glucocorticoids, Leukocyte 
Stimulators, Narcotic Analgesics, Penicillins, Proton Pump Inhibitors, 
Sodium Saline, and Vancomycin and Glycopeptides. Comorbidities 
are Chronic Kidney Disease, Chronic Liver Disease, Congestive Heart 
Failure, Chronic Obstructive Pulmonary Disease, Coronary Artery 
Disease, Diabetes, HIV, Hypertension, and Obesity.

Some variables in the dataset are categorical. For example, the 
Is_Married variable can take two possible values: Yes or No, and the 
Gender variable can have values such as Male and Female. Therefore, 
we performed data encoding to transform the categorical values into 
numerical values for machine learning modeling. This step is because 
all machine learning algorithms operate on numerical data and 
computations. In this study, we applied label encoding, which is a 
common technique in machine learning literature. This technique 
assigns a distinct numerical value to each value of a categorical 
variable. A specific example of encoding the Is_Married variable is to 
assign 1 to the value “Yes” and 0 to the value “No.”

Many variables in the dataset were collected hourly, and the data 
collection resulted in data sparsity. To address this challenge, 
we calculated the mean value of each variable. For example, for a 
given encounter, we aggregated the features’ data before the sepsis 
onset or recording time, resulting in a one average value per feature. 
We  experimented with different aggregation timespans for each 
feature category. We  chose six hours as the timespan for vitals, 
meaning that we averaged out vitals collected in the last 6 h before 
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predicting sepsis. For labs, medication counts, and LDA counts, 
we used the lookback time since the patient was admitted. We chose 
the feature aggregation timespan by looking at how many values 
were available for aggregation in a certain time window (e.g., 6 h). 
Our dataset was very sparse, so we wanted to balance the timespan 
length and the number of values in it. For example, for vitals, 
we would get on average 3 values in the 6-h time window, which gave 
us a good estimate of the mean value in that period. The appropriate 
timespan for a dataset depends on its characteristics and the amount 
of data available. We suggest that researchers and practitioners try 
different timespans and select the one that produces the best 
performance. The purpose of this dataset was to develop a sepsis 
recognition model. We hypothesized that a model that can recognize 
septic characteristics hidden in the large dataset, obtained by the 
aggregation process, can help identify sepsis before onset if the 
model is applied to patient profile regularly. The model may detect 
that a patient’s profile at a certain time during the stay resembles a 
septic profile and will generate an alarm. As shown in the Results 
section, the recognition model was evaluated on its ability to identify 
sepsis at a specific number of hours before onset. A simulation 
analysis was conducted to determine this performance. In summary, 
the sepsis model was trained on the aggregated dataset that was 
further processed to handle null values and the scaling issue as 
discussed below.

As stated previously, the original dataset has many null values due 
to the hourly collection schema that was used, resulting in sparsity. 
Even after aggregating the dataset using averages, some variables still 
have a large proportion of missing values. Therefore, we decided to 
eliminate only the extremely sparse variables. We experimented with 
different thresholds and settled on 90%. This means that any variable 
that has 90% or more missing values is removed from the dataset. This 
threshold might seem high, but we reasoned that for some patients, a 
variable that is mostly null for the whole population might be very 
valuable in detecting sepsis if it has a value for those specific patients. 
In other words, we allow the model to learn from the patterns of 
missing values in the dataset. The machine learning algorithm that 
we chose for the sepsis prediction model can handle datasets with null 
values well.

To avoid the bias and inefficiency caused by the heterogeneity of 
scales among the variables in the aggregated dataset, we applied a 
Min-Max transformation to standardize all variables to a common 
range of [1, 5] as shown in Equation 1.

 

X
X X

X X
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−( )
−( )

× −( ) +min

max min

max min min

 

1

where Xnew denotes the standardized variable, X denotes the 
original variable, X

min
 and Xmax denote the minimum and the 

maximum values of the original variable respectively, max minand  
denote the upper and lower bounds of the standardized range (i.e., 5 
and 1 respectively).

2.4 Model development

We used predictive modeling (28) to assign sepsis risk scores to 
patients based on their features. For sepsis prediction, the sepsis score 

and the patient’s characteristics have a complex and nonlinear 
relationship, which necessitates the application of an advanced 
machine learning algorithm. In this paper, we employed the Extreme 
Gradient Boosting algorithm (XGBoost).

XGBoost is a state-of-the-art algorithm for predictive modeling 
that employs the tree-boosting framework (29). Tree boosting is a 
machine learning technique that combines multiple weak learners into 
a strong learner. The weak learners are usually decision trees that have 
a limited depth or number of leaves. The idea is to train the trees 
sequentially, each one trying to correct the errors of the previous ones. 
The final prediction is obtained by a weighted vote of the individual 
trees. In this paper, we used the XGBoost package in Python, which is 
a scalable and efficient implementation of tree boosting. XGBoost has 
several advantages over other boosting methods, such as 
regularization, parallelization, and handling of missing values. 
We tuned the hyperparameters of XGBoost using grid search. Grid 
search is a method for finding optimal or near-optimal combinations 
of hyperparameters for machine learning algorithms. 
Hyperparameters are parameters that set the configuration of the 
learning process and cannot be updated or adjusted using the training 
data itself. The hyperparameters that were changed, through 
hyperparameter tuning, from default values in the XGBoost package 
in Python are presented below in a key-value format: {“colsample_
bytree”: 0.1, “gamma”: 4, “learning_rate”: 0.08, “max_delta_step”: 5.24, 
“max_depth”: 0, “min_child_weight”: 97, “n_estimators”: 255, “reg_
alpha”: 18, “reg_lambda”: 2, “sampling_method”: “gradient_based,” 
“tree_method”: “hist”}.

2.5 Explainability analysis

To interpret the predictions of our machine learning model, 
we applied SHAP (SHapley Additive exPlanations), a framework that 
computes feature importance values for each prediction (30). SHAP 
values are derived from Shapley values, which are a fair allocation of 
the payoffs among the players in a cooperative game. In our context, 
the features were the players and the prediction outcomes were the 
payoffs. SHAP allowed us to measure how each feature influences the 
prediction, in a positive or negative direction, and also capture the 
feature interactions.

2.6 Model deployment

We implemented the model into the clinical workflow to enhance 
its usability by clinicians. For this purpose, we hosted the model on 
Epic Nebula (Epic Systems, Verona, WI, United States) and integrated 
it with the EMR system (Epic Systems, Verona, WI, United States) (see 
Figure 2). The model artifacts were configured and tested using the 
Epic Slate Environment (Epic Systems, Verona, WI, United States). 
This integration allowed for seamless data transfer from the Chronicles 
database to the model in the cloud for sepsis scoring and score 
delivery back to the system for alert generation and dashboard 
visualization. Input data was provided to the model through 
workbench reports that were customized for the sepsis model. 
We configured a batch job to execute the model every hour. Best 
Practice Alert (BPA) was configured to alert the clinicians every hour 
about patients who have a high risk of developing sepsis (31). The 
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clinicians can respond to the BPA by following the recommended 
intervention protocols or by dismissing the alarm if it is not applicable.

3 Results and discussion

In this study, we built a model to predict sepsis in the hospital 
by training a model on retrospective EMR data, consisting of 
elements related to demographics, labs, vitals, etc. Importantly, 
each case was known to either include a sepsis diagnosis or did not. 
Table 1 presents the fundamental characteristics of the population. 
The population in the sepsis prediction model training dataset 
consisted of f 17,750 observations, representing a diverse group of 
individuals. The average age in the dataset was 54.83 years, with a 

standard deviation of 25.27 years, indicating a wide range of age 
groups. In terms of sex, the dataset shows a relatively equal 
distribution, with males accounting for 44% and females for 56% 
of the population. About 34% of the individuals in the dataset were 
married. The dataset also included information on hospital stays, 
with an average inpatient length of stay (LOS) of 207.16 h, 
accompanied by a high standard deviation of 988.76 h, suggesting 
significant variation in this measure. Additionally, the dataset 
includes data on ED visits, with an average LOS of 4.26 h and a 
standard deviation of 3.53 h. These characteristics and other 
clinical data elements reflect the diverse demographics and 
healthcare experiences captured in the training dataset, providing 
valuable information for the machine learning algorithm to learn 
and make predictions.

FIGURE 2

Model deployment and operationalization.

TABLE 1 Demographics of the population in the training dataset.

Characteristic All sample Septic patients

Value Value

Mean (std) Mean (std)

Total number of observations 17,750 1,554

Age 54.83 (25.27) years 69.79 (16.46) years

Gender Male: 44%; Female: 56% Male: 50%; Female 50%

Is married? 34% 43%

Inpatient length of stay (LOS) 207.16 (988.76) hours 235.64 (242.82) hours

Emergency department LOS 4.26 (3.53) hours 5.46 (2.82) hours

Sepsis timespan (admission to onset) 3.97 (5.99) hours
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We trained a sepsis prediction model using the XGBoost algorithm 
and used it to predict whether a case included a sepsis diagnosis in our 
held-out testing dataset. We then compared the model’s prediction of 
sepsis or no sepsis to the known sepsis or no sepsis diagnosis from the 
EMRs. Figure 3 displays the confusion matrix of the sepsis prediction 
model on the test dataset, generated using a sepsis score threshold of 0.05 
(a score above 0.05 means sepsis and below means no sepsis). The counts 
of true positive (TP), true negative (TN), false positive (FP), and false 
negative (FN) predictions are presented in Figure 3. The sepsis prediction 
model demonstrated a sensitivity (true positive rate) of 92%, indicating 
92% of the sepsis cases in the test dataset were correctly identified by the 
model. The sepsis prediction model demonstrated a specificity (true 
negative rate) of 93%, indicating 93% of the non-sepsis cases in the test 
dataset were correctly identified by the model. The false positive rate, 
calculated as 1 – specificity, was 7%. This signifies that the model 
incorrectly predicted sepsis in 7% of the cases that were truly negative for 
sepsis. While a lower false positive rate is desirable, the combination of 
high sensitivity and specificity suggests that the model performs well in 
accurately predicting sepsis and distinguishing it from non-sepsis cases. 
Overall, the high sensitivity and specificity achieved by the sepsis 
prediction model in Figure 3 contribute to its accurate identification of 
sepsis cases. A high sensitivity ensures that a significant number of true 
positive sepsis cases are correctly detected, while a high specificity 
guarantees a low number of false positive predictions. These attributes are 
crucial in enabling healthcare professionals to promptly identify sepsis 
cases and administer appropriate interventions efficiently, thereby 
enhancing patient care and outcomes.

The positive predictive value (PPV) and negative predictive value 
(NPV) are two metrics that measure how well a model can correctly 
identify sepsis cases and non-sepsis cases, respectively. The PPV 
indicates the proportion of patients who are truly septic among those 
who are predicted to be septic by the model. The NPV indicates the 
proportion of patients who are truly non-septic among those who are 

predicted to be non-septic by the model. As shown in Figure 3, the 
PPV of our model is 63%, which means that 63% of the patients who 
are flagged as septic by the model actually have sepsis. The NPV of our 
model is 99%, which means that 99% of the patients who are cleared 
as non-septic by the model do not have sepsis. These values are 
relatively high, considering that the sensitivity of our model is 92% and 
the specificity is 93%. A high PPV and NPV imply that our model has 
a low false positive rate and a low false negative rate, which are crucial 
for sepsis prediction. A false positive result could lead to unnecessary 
treatment and complications, while a false negative result could delay 
or miss the diagnosis and treatment of sepsis, which could be fatal.

The ROC curve is a graphical representation of the performance 
of a binary classification model, such as the sepsis prediction model in 
this context. It demonstrates the trade-off between the true positive 
rate (sensitivity) and the false positive rate (1-specificity) for various 
classification thresholds. In the case of sepsis prediction, the ROC 
curve showcases the model’s ability to correctly identify patients who 
have sepsis (true positives) while minimizing the number of false 
positives. Figure 4 presents the receiver operating characteristic (ROC) 
curve of the sepsis prediction model, showcasing its performance prior 
to implementation. The curve is derived from the testing dataset, 
which comprises 30% of the available data used for model 
development. The area under the curve (AUC) for this model is an 
impressive 0.97, indicating a high level of accuracy and discrimination 
(correctly predicting cases of sepsis and correctly predicting cases with 
no sepsis) in predicting sepsis. With an AUC of 0.97, the sepsis 
prediction model demonstrated exceptional performance in 
distinguishing between sepsis and non-sepsis cases. The higher the 
AUC value, the better the model’s ability to differentiate between the 
two classes. This implies that the model exhibits a high sensitivity in 
identifying sepsis cases while maintaining a low false positive rate. 
Consequently, this model holds promising implications for accurately 
predicting sepsis, providing healthcare professionals with a valuable 
tool for early intervention and improved patient outcomes.

Another way to assess the performance of the proposed sepsis 
prediction model is to use the precision-recall curve, especially when 
the dataset is highly skewed (proportion of septic patients is very small 
compared to nonseptic patients). This curve shows how the precision 
(the proportion of true positives among the predicted positives) and 

FIGURE 3

Confusion matrix of the sepsis prediction model. Sensitivity was 92% 
and specificity was 93% with a 7% false positive rate. Colorbar 
represents the count of cases.

FIGURE 4

Receiver operating curve of the sepsis prediction model: pre-
deployment performance.
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the recall (the proportion of true positives among the actual positives) 
vary across different thresholds of the model’s output. The higher the 
AUC, the better the model is at identifying sepsis cases correctly. In 
our case, the sepsis prevalence in the validation dataset is only 0.13, 
which means that the chance prediction level (the expected precision 
if the model randomly assigns labels) is also 0.13. However, our model 
achieves an AUC (under the precision-recall curve) of 0.69, which 
indicates that it has a much higher ability to distinguish sepsis from 
non-sepsis than a random guess. Figure 5 illustrates the precision-
recall curve for our model and shows how it outperforms the chance 
prediction level across all thresholds. This implies that our model can 
be useful for early detection and intervention of sepsis, which can 
potentially reduce mortality and morbidity.

After developing a model with high sensitivity and specificity, 
we investigated which features (predictors) contribute most to the sepsis 
prediction score. We approached this by computing Shapley values. 
Figure 6 provides valuable insights into the Shapley values of features and 
their correlation with the sepsis score. The Shapley values represent the 

FIGURE 5

Precision-recall curve of the sepsis prediction model: pre-
deployment performance.

FIGURE 6

Highly important features and their corresponding Shapley values. The grey color depicts the missing values (NaN) in a certain feature.
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contribution of each feature to the final prediction. The feature range 
values are visually depicted through a color spectrum from blue to red, 
indicating low to high values, respectively. The grey color represents 
missing values (i.e., NaN). The x-axis represents the Shapley values, while 
the alignment of the feature violin plots illustrates how the feature values 
influence the sepsis risk score. Positive Shapley values indicate that 
corresponding feature drive the sepsis scores towards 1, implying a 
greater likelihood of sepsis in patients with such values. Notably, Figure 6 
highlights that Lactate is the most important predictor in this dataset, as 
higher Lactate values correspond to a higher risk of being septic. The 
figure goes on to list the top  20 most important features and their 
contribution to the sepsis score. By examining Figure  6, healthcare 
professionals and researchers can gain insights into the factors that 
significantly influence the prediction of sepsis. Understanding the 
impact of specific features on the sepsis risk score enables healthcare 
providers to identify critical indicators and prioritize appropriate 
interventions for patients who may be at a higher risk of developing 
sepsis. For example, it may be worth prioritizing acquiring lab results on 
lactate and neutrophil count in a timely manner so that the model can 
assess the risk of sepsis early.

A major aim of this study was to investigate the performance 
of a sepsis predictive model in operation in the hospital. Figure 7 
illustrates the performance of the sepsis prediction model after 
deployment in operational settings. Post-deployment 
performance was based on a data collected from the system (Five 
hospitals) during operations (three-week period), comprising 
records of 1,896 patients, including 98 septic and 1,798 non-septic 
cases. It displays the sensitivity and specificity of the model at 
various thresholds ranging from 0.02 to 1, with increments of 
0.01. The performance of the model in operations aligns closely 
with its pre-deployment performance, exhibiting a sensitivity of 
91% and a specificity of 94% at a 0.05 threshold. These high 
values indicate the model’s ability to accurately identify both 
septic and non-septic patients. Moreover, the model achieves a 
low false positive rate of 6%, implying that only a small portion 
of non-septic patients are incorrectly flagged as septic. This low 
false positive rate has significant implications for patient 
outcomes, as it reduces the burden of nurse fatigue and minimizes 
the need for clinicians’ continuous checking due to false alarms. 

Comparatively, the false positive rate of 6% achieved by our 
sepsis model is substantially lower than that of a commercially 
available model adopted within the organization (30%). In other 
words, with our new sepsis predictive model, we  reduced the 
number of false positive cases by 80%. This remarkable reduction 
demonstrates the superiority of our model in terms of minimizing 
unnecessary alerts and ensuring that healthcare providers can 
focus their attention on patients who genuinely require 
intervention for sepsis. The high performance of the sepsis 
prediction model, with its low false positive rate and high 
sensitivity, not only improves patient outcomes but also enhances 
the efficiency of healthcare professionals. Importantly, our model 
which was trained on a large retrospective dataset, maintains 
high specificity when running in the hospital setting.

It is worth mentioning that a possible source of bias in our 
evaluation is the effect of the model’s predictions on clinicians’ 
decisions. By receiving regular updates from the model (every hour), 
clinicians may have changed how they treated patients based on the 
model’s suggestions. This feedback loop could have inflated the 
model’s performance. We think this bias deserves more attention and 
discussion. It highlights the need to consider how models fit into 
clinical workflows and how clinicians interact with them. This issue 
should be further explored and debated to understand the model’s 
real-world relevance.

4 Conclusion

In conclusion, the systematic design approach employed in 
this study, integrating clinical feedback and utilizing XGBoost 
with interpretability techniques, led to the successful development 
and deployment of a robust sepsis detection model. The model 
demonstrated high sensitivity and specificity pre-operations. 
Importantly, it maintained comparable performance after 
deployment, with a significantly reduced false positive rate 
compared to the currently deployed commercial model. These 
results highlight the potential value of the developed model in 
improving sepsis management and reducing alert fatigue in 
clinical practice.

Future research should address several important areas. 
Firstly, investigations should focus on assessing the 
generalizability of the model across different healthcare settings 
and patient populations, considering variations in clinical 
practices and data availability. Secondly, long-term studies are 
needed to evaluate the impact of the model on patient outcomes, 
such as mortality rates, length of hospital stay, and resource 
utilization. Additionally, efforts should be made to enhance the 
interpretability of the model further, enabling clinicians to better 
understand and trust its predictions. Moreover, further studies 
exploring the integration of the model with clinical decision 
support systems or real-time monitoring tools could provide 
valuable insights into its practical implementation and 
effectiveness. The selection of the feature aggregation timespan 
should be  accomplished systematically by testing several 
timespans and evaluate model performance. Finally, the variation 
in how timely and accurately the sepsis diagnoses are recorded in 
routine clinical practice, which could affect the validity of the 
timestamp for model development, should be examined.

FIGURE 7

Operations performance of the sepsis prediction model. Sensitivity 
was 91% and specificity was 94% at a 0.05 risk threshold.

https://doi.org/10.3389/fmed.2023.1284081
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Mahyoub et al. 10.3389/fmed.2023.1284081

Frontiers in Medicine 09 frontiersin.org

Data availability statement

The data analyzed in this study is subject to the following licenses/
restrictions: data in the present study are not available due to 
agreements made with the IRB of Virtua Health. Requests to access 
these datasets should be directed to AS, ashukla@virtua.org.

Ethics statement

The studies involving humans were approved by Virtua Health 
Institutional Review Board FWA00002656. The studies were 
conducted in accordance with the local legislation and institutional 
requirements. The ethics committee/institutional review board waived 
the requirement of written informed consent for participation from 
the participants or the participants’ legal guardians/next of kin 
because the research involved no more than minimal risk to subjects, 
could not practically be carried out without the waiver, and the waiver 
will not adversely affect the rights and welfare of the subjects. This 
requirement of consent was waived on the condition that, when 
appropriate, the subjects will be provided with additional pertinent 
information about participation.

Author contributions

MM: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Validation, Visualization, Writing 

– original draft, Writing – review & editing, Software. RY: 
Conceptualization, Data curation, Writing – review & editing, 
Validation, Visualization. KD: Visualization, Writing – review & 
editing, Formal analysis, Investigation, Validation. AS: 
Conceptualization, Methodology, Project administration, Resources, 
Supervision, Writing – review & editing, Validation.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
 1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, 

et al. The third international consensus definitions for Sepsis and septic shock (Sepsis-3). 
JAMA. (2016) 315:801–10. doi: 10.1001/jama.2016.0287

 2. Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, 
et al. Assessment of global incidence and mortality of hospital-treated Sepsis. Current 
estimates and limitations. Am J Respir Crit Care Med. (2016) 193:259–72. doi: 10.1164/
rccm.201504-0781OC

 3. Fleischmann-Struzek C, Mellhammar L, Rose N, Cassini A, Rudd KE, Schlattmann 
P, et al. Incidence and mortality of hospital-and ICU-treated sepsis: results from an 
updated and expanded systematic review and meta-analysis. Intensive Care Med. (2020) 
46:1552–62. doi: 10.1007/s00134-020-06151-x

 4. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, 
regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global 
burden of disease study. Lancet. (2020) 395:200–11. doi: 10.1016/S0140-6736(19)32989-7

 5. Usman OA, Usman AA, Ward MA. Comparison of SIRS, qSOFA, and NEWS for 
the early identification of sepsis in the emergency department. Am J Emerg Med. (2019) 
37:1490–7. doi: 10.1016/j.ajem.2018.10.058

 6. Kilinc Toker A, Kose S, Turken M. Comparison of SOFA score, SIRS, qSOFA, and 
qSOFA + L criteria in the diagnosis and prognosis of Sepsis. Eurasian J Med. (2021) 
53:40–7. doi: 10.5152/eurasianjmed.2021.20081

 7. Mellhammar L, Linder A, Tverring J, Christensson B, Boyd JH, Sendi P, et al. 
NEWS2 is superior to qSOFA in detecting Sepsis with organ dysfunction in the 
emergency department. J Clin Med. (2019) 8:1128. doi: 10.3390/jcm8081128

 8. Lambden S, Laterre PF, Levy MM, Francois B. The SOFA score—development, 
utility and challenges of accurate assessment in clinical trials. Crit Care. (2019) 23:374. 
doi: 10.1186/s13054-019-2663-7

 9. Moor M, Rieck B, Horn M, Jutzeler CR, Borgwardt K. Early prediction of Sepsis in 
the ICU using machine learning: a systematic review. Front Med. (2021) 8:607952. doi: 
10.3389/fmed.2021.607952

 10. Fleuren LM, Klausch TLT, Zwager CL, Schoonmade LJ, Guo T, Roggeveen LF, et al. 
Machine learning for the prediction of sepsis: a systematic review and meta-analysis of 
diagnostic test accuracy. Intensive Care Med. (2020) 46:383–400. doi: 10.1007/
s00134-019-05872-y

 11. Wang X, Wang Z, Weng J, Wen C, Chen H, Wang X. A new effective machine 
learning framework for Sepsis diagnosis. IEEE Access. (2018) 6:48300–10. doi: 10.1109/
ACCESS.2018.2867728

 12. Singh YV, Singh P, Khan S, Singh RS. A machine learning model for early 
prediction and detection of Sepsis in intensive care unit patients. J Healthc Eng. (2022) 
2022:1–11. doi: 10.1155/2022/9263391

 13. Li J, Xi F, Yu W, Sun C, Wang X. Real-time prediction of Sepsis in critical trauma 
patients: machine learning-based modeling study. JMIR Form Res. (2023) 7:e42452. doi: 
10.2196/42452

 14. Segal Z, Kalifa D, Radinsky K, Ehrenberg B, Elad G, Maor G, et al. Machine 
learning algorithm for early detection of end-stage renal disease. BMC Nephrol. (2020) 
21:518. doi: 10.1186/s12882-020-02093-0

 15. Wang W, Lee J, Harrou F, Sun Y. Early detection of Parkinson’s disease using deep 
learning and machine learning. IEEE Access. (2020) 8:147635–46. doi: 10.1109/
ACCESS.2020.3016062

 16. Chana S. Robotic assistants, AI and machine learning in maxillofacial surgery. Br 
J Oral Maxillofac Surg. (2020) 58:e193. doi: 10.1016/j.bjoms.2020.10.176

 17. Chen K, Zhang J, Beeraka NM, Sinelnikov MY, Zhang X, Cao Y, et al. Robot-
assisted minimally invasive breast surgery: recent evidence with comparative clinical 
outcomes. J Clin Med. (2022) 11:1827. doi: 10.3390/jcm11071827

 18. Spasic I, Nenadic G. Clinical text data in machine learning: systematic review. 
JMIR Med Inform. (2020) 8:e17984. doi: 10.2196/17984

 19. Houssein EH, Mohamed RE, Ali AA. Machine learning techniques for biomedical 
natural language processing: a comprehensive review. IEEE Access. (2021) 9:140628–53. 
doi: 10.1109/ACCESS.2021.3119621

 20. Tang H, Hu Z. Research on medical image classification based on machine 
learning. IEEE Access. (2020) 8:93145–54. doi: 10.1109/ACCESS.2020.2993887

 21. Le S, Pellegrini E, Green-Saxena A, Summers C, Hoffman J, Calvert J, et al. 
Supervised machine learning for the early prediction of acute respiratory distress 
syndrome (ARDS). J Crit Care. (2020) 60:96–102. doi: 10.1016/j.jcrc.2020.07.019

 22. Kim J, Chang H, Kim D, Jang D-H, Park I, Kim K. Machine learning for prediction 
of septic shock at initial triage in emergency department. J Crit Care. (2020) 55:163–70. 
doi: 10.1016/j.jcrc.2019.09.024

https://doi.org/10.3389/fmed.2023.1284081
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
mailto:ashukla@virtua.org
https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.1164/rccm.201504-0781OC
https://doi.org/10.1164/rccm.201504-0781OC
https://doi.org/10.1007/s00134-020-06151-x
https://doi.org/10.1016/S0140-6736(19)32989-7
https://doi.org/10.1016/j.ajem.2018.10.058
https://doi.org/10.5152/eurasianjmed.2021.20081
https://doi.org/10.3390/jcm8081128
https://doi.org/10.1186/s13054-019-2663-7
https://doi.org/10.3389/fmed.2021.607952
https://doi.org/10.1007/s00134-019-05872-y
https://doi.org/10.1007/s00134-019-05872-y
https://doi.org/10.1109/ACCESS.2018.2867728
https://doi.org/10.1109/ACCESS.2018.2867728
https://doi.org/10.1155/2022/9263391
https://doi.org/10.2196/42452
https://doi.org/10.1186/s12882-020-02093-0
https://doi.org/10.1109/ACCESS.2020.3016062
https://doi.org/10.1109/ACCESS.2020.3016062
https://doi.org/10.1016/j.bjoms.2020.10.176
https://doi.org/10.3390/jcm11071827
https://doi.org/10.2196/17984
https://doi.org/10.1109/ACCESS.2021.3119621
https://doi.org/10.1109/ACCESS.2020.2993887
https://doi.org/10.1016/j.jcrc.2020.07.019
https://doi.org/10.1016/j.jcrc.2019.09.024


Mahyoub et al. 10.3389/fmed.2023.1284081

Frontiers in Medicine 10 frontiersin.org

 23. Prosperi M, Guo Y, Sperrin M, Koopman JS, Min JS, He X, et al. Causal inference 
and counterfactual prediction in machine learning for actionable healthcare. Nat Mach 
Intell. (2020) 2:369–75. doi: 10.1038/s42256-020-0197-y

 24. Mahyoub MA, Lam SS, Wang Y, Khasawneh MK, Williford J. Neural-network-
based resource planning for health referrals creation unit in care management 
organizations. Proceedings of the IISE annual conference. (2020). ProQuest 
p. 1092–1097

 25. Mahyoub MA, Lekham LA, Alenany E, Tarawneh L, Won D. Analysis of drug 
consumption data using data mining techniques and a predictive model using 
multi-label classification. Proceedings of the IISE annual conference. Orlando 
ProQuest (2019), 864–869

 26. Bedoya AD, Futoma J, Clement ME, Corey K, Brajer N, Lin A, et al. Machine 
learning for early detection of sepsis: an internal and temporal validation study. JAMIA 
Open. (2020) 3:252–60. doi: 10.1093/jamiaopen/ooaa006

 27. Lin P-C, Chen K-T, Chen H-C, Islam MM, Lin M-C. Machine learning model to 
identify Sepsis patients in the emergency department: algorithm development and 
validation. J Pers Med. (2021) 11:1055. doi: 10.3390/jpm11111055

 28. Kuhn M, Johnson K. Applied predictive modeling. New York, NY: Springer (2013).

 29. Chen T, Guestrin C, Xgboost A Scalable tree boosting system. Proceedings of the 22nd 
ACM SIGKDD international conference on knowledge discovery and data mining. KDD 
‘16. New York, NY, USA: Association for Computing Machinery (2016). p. 785–794.

 30. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Advances 
in Neural Information Processing Systems. Curran Associates, Inc. (2017). Available at: 
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-
Abstract.html

 31. Fry C. Development and evaluation of best practice alerts: methods to optimize 
care quality and clinician communication. AACN Adv Crit Care. (2021) 32:468–72. doi: 
10.4037/aacnacc2021252

https://doi.org/10.3389/fmed.2023.1284081
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1038/s42256-020-0197-y
https://doi.org/10.1093/jamiaopen/ooaa006
https://doi.org/10.3390/jpm11111055
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.4037/aacnacc2021252

	Development and validation of a machine learning model integrated with the clinical workflow for early detection of sepsis
	1 Introduction
	2 Materials and methods
	2.1 Research methodology overview
	2.2 Data identification and collection
	2.3 Variable selection and data processing
	2.4 Model development
	2.5 Explainability analysis
	2.6 Model deployment

	3 Results and discussion
	4 Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	References

