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Objectives: This study used machine learning algorithms to identify 
important variables and predict postinduction hypotension (PIH) in patients 
undergoing colorectal tumor resection surgery.

Methods: Data from 318 patients who underwent colorectal tumor 
resection under general anesthesia were analyzed. The training and test 
sets are divided based on the timeline. The Boruta algorithm was used to 
screen relevant basic characteristic variables and establish a model for 
the training set. Four models, regression tree, K-nearest neighbor, neural 
network, and random forest (RF), were built using repeated cross-validation 
and hyperparameter optimization. The best model was selected, and a 
sorting chart of the feature variables, a univariate partial dependency profile, 
and a breakdown profile were drawn. R2, mean absolute error (MAE), mean 
squared error (MSE), and root MSE (RMSE) were used to plot regression 
fitting curves for the training and test sets.

Results: The basic feature variables associated with the Boruta screening 
were age, sex, body mass index, L3 skeletal muscle index, and HUAC. In the 
optimal RF model, R2 was 0.7708 and 0.7591, MAE was 0.0483 and 0.0408, 
MSE was 0.0038 and 0.0028, and RMSE was 0.0623 and 0.0534 for the 
training and test sets, respectively.

Conclusion: A high-performance algorithm was established and validated 
to demonstrate the degree of change in blood pressure after induction to 
control important characteristic variables and reduce PIH occurrence.
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1 Background

Postinduction hypotension (PIH) is a common complication that 
occurs during the induction of general anesthesia in clinical practice. 
Because the arterial blood pressure is lower than the lower limit of the 
vascular autoregulation curve, it may lead to ischemia in important 
organs (such as the heart, brain, and kidneys) (1). Many clinical 
studies have shown an association between PIH and organ 
dysfunction, including postoperative acute kidney injury, myocardial 
injury, and postoperative 30-day mortality (2, 3). Previous studies 
have shown that PIH is caused by multiple factors; however, the exact 
pathophysiological mechanisms are not fully understood. PIH is 
induced by multiple factors, such as the patient’s physical condition 
and anesthesia management (4).

Malnutrition is the main risk factor for adverse perioperative 
outcomes. Patients undergoing gastrointestinal tumor surgery may 
present with varying degrees of malnutrition, sarcopenia, and 
myosteatosis (5). Sarcopenia refers to the gradual loss of skeletal 
muscle mass and strength and is a cause for concern because it may 
result in many adverse outcomes in older adults, including physical 
disability, poor quality of life, and increased mortality. Myosteatosis is 
an ectopic fat depot that increases and is negatively correlated with 
muscle mass, strength, and mobility, disrupting metabolism (insulin 
resistance and diabetes). Studies have shown that sarcopenia and 
myosteatosis are associated with an increased incidence rate, 
postoperative complications, and overall reduction in survival (6–8). 
Abdominal computed tomography (CT) can diagnose sarcopenia and 
myosteatosis, while muscle mass can reflect an individual’s tolerance 
to general anesthesia. We  assumed that the parameters measured 
using CT might impact the incidence of PIH. Therefore, we collected 
preoperative clinical data and CT imaging parameters from patients 
undergoing colorectal cancer surgery to explore risk factors for PIH 
(9, 10).

In the past 5 years, only one systematic review has described the 
risk factors for PIH, and research has shown that aging, ASA, 
emergency surgery, low baseline blood volume, and long-term intake 
of ACEI/ARB, propofol, and fentanyl are risk factors for PIH, while 
weight gain is a protective factor (11). Therefore, accurately identifying 
high-risk factors for PIH and taking corresponding measures are 
effective methods to reduce its occurrence. In recent years, the use of 
artificial intelligence (AI) has increased rapidly in the medical field. 
Machine learning, as a major branch of AI, has the advantages of more 
stable model construction and more accurate prediction and is widely 
used in clinical prediction and other aspects. This study applied 
machine learning algorithms to determine risk factors of the degree 
of changes in blood pressure after induction and establish predictive 
models to assist clinicians in developing accurate, personalized 
management plans for patients in a timely manner.

2 Materials and methods

2.1 Research subjects and data collection

The Ethics Committee of Shijitan Hospital approved the study 
protocol and waived the requirement for informed consent. This 
single-center retrospective study obtained perioperative clinical data 
from the electronic medical records of 318 patients who underwent 

colorectal tumor resection surgery between September 1, 2018, and 
September 1, 2021.

The inclusion criteria were age > 18 years, abdominal surgery, and 
surgical duration of at least 1.5 h. The exclusion criteria were severe 
respiratory system diseases (pulmonary embolism, COPD or asthma), 
severe neurological diseases (cerebral infarction, cerebral hemorrhage 
or Parkinson’s disease), severe cardiovascular system diseases (NYHA 
III or IV, arrhythmia or hypertension grade III), severe liver and 
kidney dysfunction (Child-Pugh B, C level, CKD Phase II or above), 
and affected patients with abdominal CT findings.

2.2 Anesthesia management and evaluation 
of the outcome variable

The patient entered the room, and a peripheral vein was used 
to monitor heart rate, blood pressure, and blood oxygen saturation 
(SpO2). The bispectral index was measured with a bispectral EEG 
monitor. General anesthesia was induced after the infusion of 
200–300 mL of the crystal liquid. General anesthesia was induced 
with remifentanil (TCI: Minto mode), with a target effect-site 
concentration (Cet) of 2 ng/mL, and the effect-site concentration 
was set to reach the same concentration as the TCI pump display. 
TCI induction was started with propofol, with Cet set to 2 μg/mL 
(TCI: improved Marsh mode). If induction was not achieved within 
3 min, the Cet was gradually increased by 0.5 μg/mL every 30 s until 
the consciousness sedation score (OAA/S) was 0. Finally, 
rocuronium 0.6 mg/kg was administered for tracheal intubation. 
After induction intubation, target propofol (Cet 2–4 μg/mL) and 
remifentanil (Cet 3.0–6.0 ng/mL) were achieved, and BIS values 
were maintained at 40–60. Propofol and remifentanil pumping was 
stopped for all patients at the end of the surgery, and they were 
admitted to the PACU after surgery.

Postinduction blood pressure change rate is taken as the outcome 
variable, which is collected as a continuous variable and defined as the 
rate of decrease in average blood pressure compared to baseline. The 
time frame of PIH was between anesthesia induction and surgical 
incision or 20 min after induction, whichever occurred first (11). 
When the induced blood pressure was lower than the baseline, 
postinduction blood pressure change rate was defined as a positive 
value, whereas when the induced blood pressure was higher than the 
baseline, postinduction blood pressure change rate was defined as a 
negative value. When postinduction blood pressure change rate is 
greater than 20%, it is defined as PIH (11).

2.3 CT imaging measures

The patients’ cross-sectional CT scans were assessed at the level of 
the third lumbar vertebra (L3). The bilateral psoas major, paraspinal, 
and abdominal muscles were determined sequentially and summed 
to obtain the total SMA at the L3 level (total SMA, cm2). The skeletal 
muscle index (SMI, cm2/m2) was defined as the total SMA at the L3 
level, standardized by patient height. Muscle quality was evaluated 
using the HU average calculation (HUAC) (12). The following 
equations were used: HUAC = [(RPHU*RPA) + (LPHU*LPA)] / 
(RPA + LPA) (RPHU: right psoas HU; RPA: right psoas area; LPHU: 
left psoas HU; LPA: left psoas area).
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2.4 Characteristic variables

Characteristic variables included age, sex, body mass index 
(BMI), Hb, ASA grade, TNM grade, age-adjusted Charlson 
Comorbidity Index, prognostic nutritional index [= 10*serum 
albumin (g/dL) +0.005*total lymphocyte counts (/mm3)], L3 SMI, 
HUAC, and PIH.

2.5 Statistical analysis and sample size

R (version 4.2.2) and RStudio (version 2023.06.0 + 421) were 
used for statistical analysis. The normal distribution of numeric 
variables was tested using the Shapiro–Wilk test. Continuous 
variables with a normal distribution are presented as the 
mean ± standard deviation (SD). Continuous variables with a 
non-normal distribution are presented as the median (IQR). 
Categorical data are expressed as numbers (%). If the percentage of 
missing values was more than 20%, it was excluded from the final 
completed dataset. However, if it was less than 20%, the missForest 
package was used for interpolation (13).

Boruta was used to screen the relevant basic characteristic 
variables in the training set (14). After standardizing the data, four 
models, regression tree, K-nearest neighbor, neural network, and 
random forest (RF), were built using repeated cross-validation and 
hyperparameter optimization in the training set (15). Repetitive cross-
validation divided the training set into 10 mutually exclusive subsets 
of the same size. One subset was used as a validation dataset for the 
model, whereas the other nine subsets were used to train the model. 
The appeal process was repeated 10 times. Thereafter, the best model 
was selected, and a sorting graph of the feature variables, a univariate 
partial dependency profile, and a breakdown profile were drawn. R2, 
mean absolute error (MAE), mean squared error (MSE), root mean 
squared error (RMSE), and regression fitting curves were obtained for 
the training and test sets (16–18). With the machine learning 
algorithms for regression models, six common supervised learning 
algorithms was chosen: regression tree (RT), K-nearest neighbor 
(KNN), support vector machine (SVM), neural network (NNET), 
extreme gradient enhancement (Xgboost), and random forest (RF). 
Among these, four of them was retained (RT, KNN, NNET, and RF) 
with relatively low MSE value.

The basic principle of the RF model is as follows:

 
Y H x I h x yy

k

n

k= ( ) = ( ) =( )
=
∑argmax

1

H(x) is a combination classification model; Y is the final 
classification result; hk(x) is a single decision tree classifier; y is the 
classification result of a single decision tree classifier; and I (·) is an 
indicative function.

For the regression prediction model, the calculated final sample 
size obtained through the pmsampsize function of RStudio was 244, 
less than the sample size of 318 included in this study, with function 
parameters set as follows: adjusted maximum R2 = 0.7; number of 
independent variable parameters to be included = 10; average outcome 
of postinduction blood pressure change rate = 0.2; and SD of 
postinduction blood pressure change rate = 0.15 (19).

3 Results

3.1 Flowchart and baseline clinical data

In total, 318 patients were included in the original study. The 
baseline parameters of the training and test sets are listed in Table 1. 
The incidence of PIH in our study was 59.92% (148/247) in the 
training set and 61.97% (44/71) in the testing set, as shown in Table 1. 
The processes of data inclusion, feature selection, model establishment, 
selection, visualization, and internal and external validation are shown 
in Figure 1. We collected clinical information from a total of 318 
patients, including 10 independent variables and 1 dependent variable, 
totaling 11 variables. Therefore, we  analyzed a total of 318 * 
11 = 3,498 data.

3.2 Feature variables selection using Boruta 
and model selection based on mse in the 
training set

Boruta analysis showed that age, sex, BMI, L3 SMI, and HUAC 
were the five feature variables included in the model (Figure 2A). 
Among the four models in this study, RF exhibited the lowest MSE, as 
shown in Figure 2B.

3.3 Regression fitting curves in the training 
and test set in RF

In Figure 3, for the training (A) and test (B) sets, the green line 
represents the RF model fitting curve, and the gray line represents 
the benchmark curve. R2 was 0.7708 and 0.7591, MAE values were 
0.0483 and 0.0408, MSE values were 0.0038 and 0.0028, and RMSE 
values were 0.0623 and 0.0534 for the training and test sets, 
respectively.

3.4 Sorting chart and univariate partial 
dependency profile of feature variables

The sorting chart and partial dependency profiles of the five 
feature variables were established using the RF model (Figures 4, 
5, respectively). In the importance ranking, we  can intuitively 
determine how much each feature variable contributes to the 
predicted variable. The partial dependency profile was used to 
analyze the RF model, showing the impact of each feature in the 
sample and the changing trend of postinduction blood pressure 
with each feature variable.

3.5 Breakdown profile of RF

The breakdown profile in Figure 6 shows the contribution of each 
variable to the prediction of a single sample. The model predicts that 
the value of a sample is 0.216 (the actual value of postinduction blood 
pressure change rate = 0.215), and the red and blue bars display the 
impact of each variable on the prediction. The predicted value was 
equal to the sum of the contributions of each feature.
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4 Discussion

The effect of muscle mass in Chinese patients has not been 
thoroughly studied, particularly in patients with perioperative cancer. 

The complex patterns and relationships between malnutrition, 
cachexia, sarcopenia, and myosteatosis in cancer patients, among 
which sarcopenia and myosteatosis are highly prevalent, may lead to 
health-related adverse consequences, including PIH (20, 21). CT of 

FIGURE 1

Flow chart of clinical data.

TABLE 1 Baseline of clinical data.

Factor Train (n  =  247) Diagram Test (n  =  71) Diagram

Age (years) 66.00 (58.00, 72.00) ▁▃▆▇▂ 66.00 (57.50, 71.00) ▁▅▇▆▂

BMI (kg/m2) 23.44 (21.26, 25.37) ▂▇▇▂▁ 23.44 (21.14, 25.39) ▂▆▇▃▁

Hb (g/L) 124.0 (108.0, 137.0) ▂▃▇▇▂ 122.0 (107.5, 139.5) ▃▃▇▆▅

aCCI 5.00 (4.00, 7.00) ▇▇▃▂▁ 5.00 (4.00, 6.50) ▃▇▇▁▁

PNI 46.10 (42.25, 50.08) ▇▁▁▁▁ 46.85 (42.50, 48.98) ▁▂▆▇▂

L3 SMI (cm2/m2) 41.30 (35.31, 47.72) ▃▇▆▂▁ 43.46 (36.81, 49.87) ▅▇▇▆▂

HUAC 37.89 (33.72, 41.88) ▂▅▇▅▁ 38.46 (34.15, 42.46) ▁▂▃▇▃

Postinduction blood pressure change rate 0.239 (0.156, 0.319) ▁▁▅▇▃ 0.239 (0.166, 0.316) ▁▁▅▇▆

Gender Male 159 (64.37) 47 (66.20)

Female 88 (35.63) 24 (33.80)

ASA ASA-I 2 (0.81) 0 (0)

ASA-II 173 (70.05) 49 (69.01)

ASA-III 71 (28.74) 22 (30.99)

ASA-IV 1 (0.40) 0 (0)

TNM I 36 (14.57) 10 (14.08)

II 90 (36.45) 19 (26.76)

III 79 (31.98) 29 (40.85)

IV 42 (17.00) 13 (18.31)

PIH YES 148 (59.92) 44 (61.97)

NO 99 (40.08) 27 (38.03)
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the third section of the lumbar spine has been proven to be feasible 
and accurate for measuring body composition in patients with cancer. 
In particular, CT images of a specific lumbar vertebral landmark (L3) 
were significantly correlated with the overall muscles. However, due 
to the lack of unified cutoff values for sarcopenia and muscle steatosis 
in L3 SMI and HUAC, we used CT measurement data from L3 SMI 
and HUAC to predict postinduction blood pressure change rate (22). 
The sorting chart shows that HUAC and L3 SMI had the highest 
contributions to postinduction blood pressure change rate. HUAC and 
PIH were negatively correlated in the univariate partial dependence 
profile. When HUAC >35 or < 40, the postinduction blood pressure 
change rate curve decreases sharply and undergoes a qualitative 
change. The partial dependence plots of the L3 SMI and PIH showed 
curve fitting. When L3 SMI was <40 or > 55, the blood pressure after 
induction was lower than the baseline blood pressure. When L3 SMI 

>40 or < 55, the blood pressure after induction was equal to or higher 
than the baseline blood pressure. The mechanisms underlying muscle 
loss and degeneration and PIH may be  chronic inflammation, 
imbalance in activity/reactivity of the sympathetic and 
parasympathetic divisions of the autonomic nervous system, and 
neurohumoral adaptations (23).

Previous studies have shown that patients with lower BMI have a 
higher incidence of PIH (24). However, from the partial dependence 
profile, BMI >18 or < 24 and BMI >24 or < 32 resulted in a slight 
decrease and increase in blood pressure, respectively, after induction. 
Moreover, when the patient’s BMI was >32, as the BMI increased, 
there was a significant decrease in blood pressure after induction. This 
may be related to the pharmacokinetics and TCI parameter settings 
of propofol. Previous research has shown that age is a risk factor for 
PIH. The mechanism of PIH may be  related to aging, leading to 

FIGURE 3

The regression fitting curves on train and test set in RF model.

FIGURE 2

Feature variables selection using Boruta and model selection based on MSE.
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structural changes in the arterial blood vessels, decreased cardiac 
contractility, insufficient relative circulating blood volume, and 
weakened hemodynamic regulation ability (25). From the partial 
dependence profile, age was positively correlated with the occurrence 
of postinduction blood pressure change rate; that is, the older the 

patient, the greater the likelihood of PIH occurrence. A systematic 
review described the relationship between sex and PIH, but the results 
were contradictory, with the male sex being a risk factor in one study 
and the female sex in another (26, 27). This study indicates that men 
are more likely to experience induced hypotension than women.

Hemodynamic instability frequently occurs during tumor 
resection. A growing body of evidence suggests that intraoperative 
hypotension is associated with adverse postoperative outcomes. 
Postoperative complications of hypotension include renal 
complications: postoperative acute kidney injury, cardiac complications 
(postoperative myocardial injury and infarction), gastrointestinal 
complications (ulcers and ischemic colitis), neurological complications 
(spinal cord or central nervous system ischemia and postoperative 
cognitive impairment), and mortality (28). PIH accounts for 
approximately one-third of all cases of perioperative hypotension. 
Compared with hypotension during surgery, PIH is mainly caused by 
the patient’s own state and anesthesia management, is not related to the 
surgical process, and can be  prevented to a certain extent (29). 
However, relatively little research has been conducted on the risk 
factors for PIH. Based on the above reasons, it is particularly important 
to screen for postinduction blood pressure change rate risk factors and 
establish predictive models to provide scientific data for 
anesthesiologists to avoid a decrease in blood pressure after induction.

The selection of feature variables is an important part of modeling 
and is crucial in machine learning. This study used Boruta feature 

FIGURE 5

Univariate partial dependency profile of feature variables.

FIGURE 4

Sorting chart of feature variables.
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variable screening to achieve optimal and simplified subsets. The 
principle of the Boruta algorithm is to generate a “shadow attribute” 
for each variable and calculate the Z-score value for each variable 
using the RF model. When the Z-score was significantly higher than 
the highest shadow attribute value, the input variable was considered 
and retained as the dependent variable.

For machine learning, this study used the mlr3 ecosystem and 
its extension packages. The latest generation of R packages can 
be used for data preprocessing, pipelines, model fitting, selection, 
and visualization. After standardizing the data, repeated cross-
validation and hyperparameter optimization were used to establish 
and select the optimal machine learning model in the training set, 
and external validation was conducted. A postinduction blood 
pressure change rate RF model with accurate predictions was 
obtained using multiple evaluation parameters of the regression 
model. When training the model, we selected multiple machine 
learning methods and used repetitive cross-validation and 
hyperparameter optimization to fit the data for each method. 
Repeated cross-validation is an extension of cross-validation that 
can achieve more stable and reliable model evaluation and reduce 
the impact of random factors on the model results. The 
generalizability of the model can be  evaluated more fully by 
partitioning the training dataset multiple times. Second, the 
performance of the machine models is directly related to the 
hyperparameters. The better the hyperparameter adjustment, the 
better the resulting model. Finally, among the four candidate 

models, the optimal model with the lowest MSE was selected. 
During external validation, we used time-period validation and 
calculated multiple evaluation indicators of the regression model to 
verify the model’s robustness and generalizability (30).

The challenges of applying machine learning lie primarily in the 
lack of interpretability and repeatability of machine learning-
generated results, which may limit their application. Interpretable 
machine learning can effectively open the “black box” of machine 
learning (31, 32). In this study, the degree of contribution of each 
feature variable was explained through an importance sorting chart, 
and the trend of the result variable changing with the feature variable 
was explained through a univariate partial dependency profile and 
visualization prediction of random individual samples through a 
breakdown profile. This solves the problem of lack of interpretability 
in predictive models, allowing clinical doctors to take timely 
intervention measures for high-risk PIH.

The study limitations may have affected the results. First, 
we included multiple clinical factors but did not include non-clinical 
factors, such as the patient’s psychological factors. Second, this study 
used time-series segmentation to achieve external validation. In the 
future, the model requires an independent dataset to test its 
extrapolation and generalizability.

In conclusion, this study used machine learning algorithms to 
predict the risk of PIH in 318 patients who underwent colorectal 
tumor resection under general anesthesia. We analyzed 3,498 data 
points, identified important feature variables, and established a 

FIGURE 6

Breakdown profile.
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postinduction blood pressure change rate model with acceptable 
predictive ability.
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