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Pulmonary Fibrosis (PF) is an immedicable respiratory condition distinguished

by permanent fibrotic alterations in the pulmonary tissue for which there is

no cure. Hence, it is crucial to diagnose PF swiftly and precisely. The existing

research on deep learning-based pulmonary fibrosis detection methods has

limitations, including dataset sample sizes and a lack of standardization in

data preprocessing and evaluation metrics. This study presents a comparative

analysis of four vision transformers regarding their e�cacy in accurately detecting

and classifying patients with Pulmonary Fibrosis and their ability to localize

abnormalities within Images obtained from Computerized Tomography (CT)

scans. The dataset consisted of 13,486 samples selected out of 24647 from

the Pulmonary Fibrosis dataset, which included both PF-positive CT and normal

images that underwent preprocessing. The preprocessed imageswere divided into

three sets: the training set, which accounted for 80% of the total pictures; the

validation set, which comprised 10%; and the test set, which also consisted of 10%.

The vision transformer models, including ViT, MobileViT2, ViTMSN, and BEiT were

subjected to training and validation procedures, during which hyperparameters

like the learning rate and batch size were fine-tuned. The overall performance of

the optimized architectures has been assessed using various performance metrics

to showcase the consistent performance of the fine-tuned model. Regarding

performance, ViT has shown superior performance in validation and testing

accuracy and loss minimization, specifically for CT images when trained at a

single epoch with a tuned learning rate of 0.0001. The results were as follows:

validation accuracy of 99.85%, testing accuracy of 100%, training loss of 0.0075,

and validation loss of 0.0047. The experimental evaluation of the independently

collected data gives empirical evidence that the optimized Vision Transformer

(ViT) architecture exhibited superior performance compared to all other optimized

architectures. It achieved a flawless score of 1.0 in various standard performance

metrics, including Sensitivity, Specificity, Accuracy, F1-score, Precision, Recall,

Mathew Correlation Coe�cient (MCC), Precision-Recall Area under the Curve

(AUC PR), Receiver Operating Characteristic and Area Under the Curve
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(ROC-AUC). Therefore, the optimized Vision Transformer (ViT) functions as a

reliable diagnostic tool for the automated categorization of individuals with

pulmonary fibrosis (PF) using chest computed tomography (CT) scans.

KEYWORDS

pulmonary fibrosis, vision transformer, ViT, classification, computed tomography (CT),

deep learning, detection

1. Introduction

Pulmonary fibrosis encompasses a collection of pulmonary

ailments characterized by permanently forming scar tissue within

the lung. The progressive deterioration of lung function occurs

due to the stiffening and thickening of the lung interstitium,

which refers to the tissues between the air sacs due to the

formation of scar tissue—the circumstance mentioned above

results in the demise of the individual under medical care (1).

Idiopathic pulmonary fibrosis (IPF), a connective-tissue disease,

and chronic pneumonitis with hypersensitivity, toxicology of drugs,

and environmental exposures are commonly encountered origins

of pulmonary fibrosis (2). Idiopathic pulmonary fibrosis (IPF) is

frequently correlated with a poor prognosis, as observed survival

durations exhibit a median range of 2–5 years (3). The histological

patterns observed in pulmonary fibrosis can be classified into two

primary types: usual interstitial pneumonia (UIP) and non-specific

interstitial pneumonia (NSIP) (4). Idiopathic pulmonary fibrosis

(IPF) is a prominent and severe manifestation of pulmonary

fibrosis, distinguished by the existence of a characteristic interstitial

pneumonia (UIP) structure, as observed through histological

examination (5). As the disease progresses, significant fibrosis

and honeycombing lead to structural changes in the lungs and

impair the gas exchange (6). Patients commonly exhibit a gradual

emergence of symptoms, including exertional dyspnea and dry

cough, as fibrotic alterations gradually develop over months or

even years. Diagnosing pulmonary fibrosis entails a thorough

assessment integrating clinical, radiographic, and pathological

observations. The initial step involves a comprehensive evaluation

of the patient’s medical background and a physical examination

conducted by a respiratory physician or pulmonologist. The

focus of this evaluation generally revolves around the symptoms

exhibited by the patient, their medical history, and several possible

danger signs that have been associated with the occurrence

of pulmonary fibrosis. Various imaging modalities, including

chest radiography, computed tomography (CT), and magnetic

resonance imaging (MRI), are utilized to evaluate lung tissue

and identify pathological abnormalities. Radiologists are pivotal in

diagnosing by evaluating imaging tests and delivering a radiological

diagnosis. The visual examination of computed tomography

(CT) is crucial in assessing pulmonary fibrosis. Radiologists

carefully examine several characteristics, including reticulation,

traction bronchiectasis, and honeycombing, since these indicate

this condition. A lung biopsy may be conducted to validate the

diagnosis, entailing the extraction of a small specimen of lung tissue

for subsequent histological analysis. Pathologists analyze lung

tissue samples to establish a histopathological diagnosis, assessing

various characteristics like fibrosis, inflammation, and cellular

infiltration. The radiological and pathological findings demonstrate

a strong correlation with the patient’s clinical presentation and

medical history, thereby contributing to the establishment of a

conclusive diagnosis. Additional differential diagnoses, including

emphysema, bronchiectasis, and interstitial lung disease, are also

considered and eliminated as possibilities. Pulmonary fibrosis is

effectively managed and treated by diverse healthcare experts

with expertise in several disciplines. This multidisciplinary team

comprises respiratory physicians, radiologists, pathologists, and

surgeons. Treatment options for pulmonary fibrosis encompass a

range of procedures, such as drug administration, oxygen therapy,

lung transplantation, and other relevant therapeutic approaches.

Presently, there is a shortage of medical procedures that

can reverse or offer a conclusive remedy for pulmonary fibrosis.

Nevertheless, the utilization of pharmaceutical agents, such as

nintedanib and pirfenidone, has exhibited the capacity to impede

the progression of this ailment. According to sources (7, 8), it

is evident that the information provided Lung transplantation

is the only definitive therapeutic option for those who have

reached severe stages of the disease. The prompt detection and

appropriate intervention of medical disorders are paramount in

preserving overall health and improving long-term outcomes.

However, diagnosing this syndrome might provide challenges

due to the diverse range of clinical presentations and varying

advancement rates. Chest computed tomography (CT) scans are a

crucial diagnostic modality for assessing pulmonary fibrosis. This

technique facilitates identifying and tracking illness progression

and growth over time.

The primary distinguishing feature of conventional interstitial

pneumonia(UIP) is the identification of honeycombing, primarily

localized in the basal and subpleural regions (9). While a medical

lung biopsy is necessary to perform a conclusive diagnosis, a

unique interstitial pneumonia (UIP) pattern shown on computed

tomography (CT) within a pertinent clinical context is sufficient

to diagnose idiopathic pulmonary fibrosis(IPF) (10). Computed

tomography (CT) is crucial in analyzing medical conditions and

evaluating disease severity, fibrosis distribution, and temporal

progression (11). The present CT examination procedure requires

a manual scan assessment by skilled radiologists. Nevertheless,

this methodology is constrained by its subjective features and

the possibility of differing interpretations among people (12).

The utilization of quantitative CT analysis presents several

benefits in terms of providing an objective and longitudinal

evaluation. Nevertheless, the widespread clinical application of

image processing and quantitative feature derivation needs to be

improved by requiring specialized software and technical expertise

(13). The domain of artificial intelligence, particularly machine

learning, has experienced significant advancements, and a growing
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preference for the development of computer-aided diagnostic

(CAD) systems.

These systems aim to automate disease classification and

discover patterns in medical images. Multiple deep learning-based

techniques are nowadays used to detect and classify pulmonary

fibrosis. LSTM has been influential in detecting pulmonary fibrosis

from chest CT scans. In contrast, Convolutional neural networks

(CNNs) have been recognized as a promising methodology in

the field of computer-aided diagnostic (CAD) systems to identify

patterns indicative of pulmonary fibrosis through the analysis of

computed tomography (CT) images (14, 15). Nevertheless, utilizing

deep learning techniques necessitates a substantial quantity of

meticulously curated data for training purposes, which may be

laborious and financially burdensome.

Moreover, these methods can be computationally expensive

and require powerful hardware. Similarly, transfer learning-

based techniques like VGG, ResNet, Inception, Xception, and

EfficientNet provide a higher level of accuracy because thesemodels

get pre-trained weights and fine-tune them on smaller datasets,

leading to improved accuracy and faster results and less data

requirement compared to training a model from scratch. However,

transfer learning requires a pre-trained model relevant to the

specific task, and the level of accuracy of the pre-trained model can

influence the accuracy of the fine-tuned model. Another method,

multimodal fusion, combines data from multiple modalities, such

as medical images, clinical data, and genomic data, to detect

pulmonary fibrosis. The integration of many modalities enhances

the precision of pulmonary fibrosis detection. The application

of this methodology is constrained due to its reliance on a

substantial volume of data from many modalities, which may

provide challenges in terms of acquisition. Moreover, integrating

data from different modalities can be challenging, and the data

quality can affect the model’s accuracy.

Attention mechanisms like STN, DANet, CBAM, and ViT are

deep learning models that focus on specific parts of the input

data, such as particular objects or regions of an image. This can

help improve pulmonary fibrosis detection accuracy by identifying

the most critical features in medical images using less data and

computations. Some pioneering studies have demonstrated the

potential of Vision Transformer (ViT) models in medical imagery

(16, 17). For example, Vision Transformer (ViT) models have

shown notable precision in identifying COVID-19 by analyzing

chest CT scans and X-rays (18). We have chosen to apply ViT

for detection and classification in this study because of several

advantages over traditional convolutional neural networks (CNNs).

ViTs capture long-range dependencies in images, improving the

analysis of diverse features. They are computationally efficient,

handle large datasets well, and use a sparse representation that

filters out irrelevant information. ViTs generalize to unseen data,

are easily interpretable, and robust to image variations. They can

also handle multi-modal input, such as images and text, which is

helpful in medical imaging.

In lung cancer screening, ViT architectures have outperformed

CNNs in classifying malignant lung nodules on low-dose CT (19).

Furthermore, Vision Transformer (ViT)models have demonstrated

exceptional performance in breast cancer classification using

ultrasound images, surpassing existing benchmarks (20). However,

CAD systems have yet to be widely adopted into clinical practice

for pulmonary fibrosis. Challenges include model generalization

across different scanners and protocols, integration into clinical

workflows, and acceptance among radiologists (21). Standardized

benchmark datasets with expert ground truth labels are lacking

but are needed to evaluate model performance and clinical

utility robustly. Even though deep learning holds promise for

computerized pulmonary fibrosis detection, most studies have

had small sample sizes and lacked external validation. Building

large annotated datasets for network training is expensive

and time-consuming (22). While curated open-source medical

imaging datasets have catalyzed progress in domains like diabetic

retinopathy and skin cancer classification (23, 24), Utilizing

the OSIC Pulmonary Fibrosis Progression dataset facilitates

researchers in training advanced deep learning models. The present

study introduces a novel deep learning model, FibroVit, which

aims to facilitate the automated identification of pulmonary fibrosis

by analyzing chest computed tomography (CT) scans. The key

contributions are:

1. Application of vision transformer for automated pulmonary

fibrosis pattern recognition in HRCT chest.

2. Development of FibroVit, a customized Vision Transformer

optimized for detecting fibrotic features and predicting

pulmonary function decline.

3. Assembly of a large dataset with >5000 labeled CT scans for

network training and performance benchmarking.

4. Explainability-driven validation of model predictions against

expert radiologist assessments.

5. Release of source code and pre-trained models to the research

community under an open-access license.

The FibroVit architecture is initialized using a vision transformer,

specifically the ViT-base-patch16-224 model. The present model

has undergone pre-training on the ImageNet-21k dataset,

comprised of natural images. The weights from the vision

transformer are utilized for this initialization process (25).

Fine-tuning is then performed with lung CT scans to learn

domain-specific features relevant to pulmonary fibrosis. Network

training leverages the OSIC benchmark dataset. External validation

is undertaken using an independent test set not used during

training or hyperparameter tuning.

2. Related work

The introduction of Transformers in 2020 has significantly

heightened the significance of the Vision Transformer model. This

model relies heavily on deep learning for anomalies formalized in

chest X-ray and CT images. The utilization of ViT architectures is

presently growing in the domain of medical research diagnostics.

A wide range of studies have extensively documented that exhibit

notable accuracy (26). This paper comprehensively examines the

deep learning techniques used by previous scholars in diagnosing

and detecting pulmonary fibrosis disease. In the past few years,

there has been a noticeable rise in scientific focus on using artificial

intelligence (AI) for computer-assisted medical making decisions

in the domain of pulmonary fibrosis. This attention is mainly

directed toward analyzing computed tomography (CT) images. The

primary reasons for this phenomenon arise from the exponential
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benefits that can be obtained and the inherent difficulties that arise

from a clinical standpoint (27). In pathological images, scholars

have proposed an algorithmic technique employing Convolutional

Neural Networks (CNN) to categorize histological subclasses of

lung cancer cells. Moreover, amethodology has been recommended

to differentiate between benign and malignant cells (28, 29).

In their study, Shi et al. (30) researched to develop an automated

method for identifying regions impacted by gastric cancer in

photographs of gastric histopathology samples. The researchers

employed a convolutional neural network (CNN) decoder in

their methodology to extract relevant features and incorporate

an attention mechanism. The samples used in this research were

non-pulmonary histopathology specimens. Anthimopoulos et al.

(31) utilized a deep convolutional neural network to categorize

various patterns identified in lung tissue, like reticulation ground

glass opacity, honeycombing, consolidation, and micronodules.

The achievement was attained by meticulously examining two-

dimensional patches extracted from computed tomography (CT)

images. In their research, Christodoulidis et al. (32) presented a

transfer learning approach that integrates multiple data sources

and utilizes already trained deep convolutional neural networks.

These neural networks were trained on diverse texture datasets.

The primary aim of this study was to accurately classify regions

of lung tissue in computed tomography (CT) scans based on their

two-dimensional image characteristics. Li et al. (33) introduced

a novel approach that employs an autoencoder stacking model.

The model that has been suggested consists of four levels, each

composed of four autoencoders. The main goal was to extract

enhanced characteristics from computed tomography (CT) images.

The four autoencoders were connected sequentially, forming

a chain. Subsequently, the mentioned chain was linked to a

densely connected layer and a softmax classifier. Consequently, the

definitive model was obtained.

Amyar et al. (34) conducted a study wherein they created a

deep neural network framework specifically tailored to analyze CT

images. The study introduced a network design that consisted of

a 10-layer encoder component and a 9-layer decoder component

for picture reconstruction. An additional decoder component

comprising nine layers was incorporated to accomplish picture

segmentation. Xu et al. utilized a VNet and an inception residual

network as their chosen methodologies for feature extraction in

their inquiry. The networks were integrated with a region proposal

network to effectively and accurately detect regions of interest (35).

To tackle the matter of unclear boundaries in cancer images, a

new approach called Boundary-Aware Transformer (BAT) is put

forth by Wang et al. (36). The researchers included the boundary-

wise attention gate into the Transformer design to enhance

the effective exploitation of existing boundary-related knowledge.

Integrating auxiliary supervision into the boundary-wise attention

gate framework enables the optimization of training efficiency

for the BAT model. The efficacy of their boundary-wise prior is

confirmed through an experimental analysis conducted on the ISIC

2016+PH2 dataset (37) and the ISIC 2018 dataset (38).

Similarly to this, Wu et al. (39) present a feature adaptive

transformer network (FAT-Net) that combines transformer

branches with a convolutional neural network (CNN) in the

encoder. The researchers have developed a decoder and feature

adaptation module that optimizes memory usage and effectively

integrates features from both branches. The initial exploration

of employing a vision transformer for COVID-19 identification

from computed tomography (CT) scans was conducted by Ambita

et al. (40). The study used various vision transformers to complete

picture classification tasks, including ViT-L 16, ViTL 32, ViT-B 16,

ViT-H 14, and ViT-B 32.

In their study, Lee et al. (41) introduced a unique framework

called Template Transformer Networks for Segmentation

(TETRIS). This framework incorporates shape priors to enhance

the segmentation process. The TETRIS technique integrates

an end-to-end trainable Spatial Transformer (STN) to deform

a shape template and align it with the underlying region of

interest. Additionally, integrating these prior beliefs into the

advanced Convolutional Neural Network (CNN) and U-Net

models (42) commonly utilized for binary classification tasks,

was implemented. Furthermore, a comparative analysis was

conducted between U-Net and FCN by integrating the prior

shape. Nevertheless, the Fully Convolutional Network (FCN) (43)

exhibited suboptimal performance, resulting in a Dice Score of

0.79. Table 1 gives an outline of the results attained by earlier

researchers using various models to categorize PF. We were

therefore motivated to offer our optimized and enhanced deep

learning model based on the prior studies and their accompanying

constraints, which are listed in Table 1. This study aims to propose

a model that attains the highest possible diagnostic accuracy for

identifying and classifying CT scan slices that indicate the presence

of pulmonary fibrosis (PF) in typical chest CT scan pictures. This

model aims to reduce the amount of data needed and the duration

of the training process.

3. Methodology

3.1. System design

Figure 1 comprehensively summarizes the present

investigation. The initial stage involves the collection of the

dataset, which is a crucial step. And then, there are subsequent

data preprocessing procedures, such as data selection and

the conversion of grayscale images into RGB. The Following

stage revolves around data augmentation, aimed at rendering

the data suitable for seamless integration into the vision

transformer. Consequently, the model is then trained using

carefully curated data. The ultimate aim of the testing model is

to classify the CT scan output into normal or fibrotic categories.

Ultimately, the model’s performance is assessed through diverse

performance metrics.

3.2. Dataset

In this particular inquiry, the images of chest CT scans were

procured from Kaggle as JPG( (PulmonaryFibrosis_dataset_Final

| Kaggle). The dataset consists of images taken from a chest CT

scan. There are two categories of images: normal (7,198 images)

and pulmonary fibrosis (17,449 images). The data presented in

Figure 2 shows the unprocessed images of each category. The

chest CT scan images were partitioned into three distinct clusters,
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TABLE 1 A comprehensive compilation of pertinent studies pertaining to the classification of PF and their associated key discoveries, benefits, and

drawbacks.

References Year Data Type Model name Key Findings Advantages Limitations

Shi et al. (30) 2022 Histopathology

images

CNN decoder with

attention mechanism

Automated method for

identifying regions

impacted by gastric

cancer

Attention mechanism

can help to focus on

relevant features

The acquisition of a

substantial quantity of

training samples is

necessary.

Anthimopoulos

et al. (31)

2016 CT images Deep convolutional

neural network

Categorized various

patterns identified in

lung tissue, such as

reticulation, ground glass

opacity, honeycombing,

consolidation, and

micronodules

Can extract features

from 2D patches of CT

images

Requires a large number

of training samples

Christodoulidis

et al. (32)

2017 CT images Transfer learning with

deep convolutional

neural networks

Accurately classified

regions of lung tissue in

CT scans based on their

two-dimensional image

characteristics

Can be trained on a

variety of texture

datasets

Requires a large number

of training samples

Li et al. (33) 2021 CT images Autoencoder stacking

model

Extracted enhanced

characteristics from CT

images

Can be trained on a

small number of training

samples

Can be computationally

expensive

Amyar et al. (34) 2020 CT images Deep neural network

with encoder-decoder

architecture

Segmented lung tissue in

CT images

Can be used for both

classification and

segmentation tasks

Requires a large number

of training samples

Xu et al. (35) 2020 CT images VNet and inception

residual network

Separated regions of

interest in CT images

Can be used for both

classification and

segmentation tasks

Requires a large number

of training samples

Wang et al. (36) 2021 Cancer images Boundary-Aware

Transformer (BAT)

Tackle the matter of

unclear boundaries in

cancer images

Utilizes pre-existing

knowledge about

boundaries

Requires a large number

of training samples

Wu et al. (39) 2022 CT images Feature adaptive

transformer network

(FAT-Net)

Combines transformer

branches with a

convolutional neural

network in the encoder

Optimizes memory

usage and effectively

integrates features from

both branches

Requires a large number

of training samples

specifically the training, validation, and test sets, in accordance with

an 80:10:10 ratio.

3.3. Data preprocessing

For detecting Fibrosis, Normal, and Fibrosis cases using ViT

models, 13,486 images were selected from an initial set of 24,647

images. Of all the photos, 10,786 were assigned for training

purposes, with a ratio of 80%, while 1,350 images were allocated for

validation and testing purposes. The validation and testing ratios

were equally set at 10 and 10%, respectively. The 80-10-10 split

is a common practice in machine learning. The approach ensures

an equitable data distribution for training, validation, and testing

purposes. The training set, comprising 80% of the data, is used to

train the model. The validation set, accounting for 10% of the data,

assesses the model’s performance during training. Finally, the test

set, representing 10% of the data, evaluates the model’s ultimate

performance. A larger test set may not provide a more accurate

estimate or generalize well to new data. Cross-validation provides

a more robust estimate of performance. The 10% validation set

can be used for cross-validation, ensuring the model generalizes

well. Table 2 presents a comprehensive breakdown of the allocation

of CT scan slices among distinct categories within the training,

validation, and test datasets.

In the present study, performing pre-processing on the initial

images obtained from CT scans of the participants in the JPG

format is of utmost importance. This is necessary to ensure that

the CT images are compatible with the vision transformer that has

been previously established. The current study employs a range of

data pre-processingmethodologies, which are enumerated below

1. Randomly selecting comparable images from each category.

2. Conversion of the grayscale 2D image to an RGB image to enable

its compatibility with the Vision Transformer’s input format.

3.4. Ensuring test data separation

A strict separation between the test data and the model

development process was enforced to maintain the integrity of our

model’s evaluation. The test dataset, consisting of 1,350 images, was

kept completely isolated throughout the model training pipeline.

Specifically:

• The test data was not used for model development or

hyperparameter tuning.
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FIGURE 1

Detailed outline of the proposed system for detection of pulmonary fibrosis in chest CT scan.

• Only the training data (80%) and the validation data (10%)

were utilized during training and fine-tuning.

• Measures were taken to prevent any accidental leakage of

test data into the training or validation phases, ensuring our

model’s performance evaluation was conducted on unseen

data.

3.5. Data augmentation

A set of geometrical augmentations, including rotation,

horizontal and vertical flips, cropping, and resizing to dimensions

of 224 × 224. Additionally, the image is subjected to randomized

adjustments in brightness, contrast, saturation, and hue and

the application of ColorJitter and Gaussian blur (Figure 3).

Perceptive analytic transformations, affine transformations, affine

shear transformations, and a custom lambda function with a

50% probability are also randomly applied. Moreover, the current

investigation utilizes the vision transformer (vit-base-patch16-224-

in21k) for binary classification, necessitating specific input image

dimensions. The current models can acquire information and

perform picture classification tasks by assigning class labels, namely

PF and Normal. Consequently, the datasets used for training,

validation, and testing were annotated by giving suitable labels

to each class included within the corresponding image datasets.

Furthermore, the one-hot encoding method was utilized to create a

column representing the existence of the two distinct categories. A

binary value of “1” was assigned to each instance in the column if

the corresponding example was labeled fibrosis. In contrast, a value

of “0” was assigned to normal chest CT images. A representative

portion of the dataset was set aside as a test set before applying

any data augmentation techniques. Data augmentation was applied

exclusively to the training set, using different parameters for each

image to ensure that the augmented versions of the same image had

different transformations. It was ensured that test set images were

not used for augmentation, as this would introduce label leakage.

The original labels associated with each image were kept intact

when applying data augmentation. The model’s performance was

evaluated exclusively on the test set after training. By doing so, it

was possible to prevent overfitting to the training set and ensure

that the model generalized well to unseen data.

3.6. Vision transformer model

The vision transformer is based on the original transformer

model. The input image is converted into multiple patches and

fed into the model. It comprises various components, as shown in

Figure 4. The vision transformer’s structure is described below.

3.6.1. Input image patches
The first step in the Vision Transformer (ViT) model entails

dividing the input image into patches that do not overlap. The

determination of the patch size adjustment is contingent upon the

hyperparameter, which considers both the dimensions of the input

image and the available computational resources. Subsequently,

the patches are subjected to linear embedding, resulting in a
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FIGURE 2

A Chest CT scan sliced into multiple images.

TABLE 2 A comprehensive categorization of chest CT scans is performed

inside each class, as well as throughout the training, validation, and

testing datasets.

Dataset Normal Fibrosis Total

Testing 675 675 1,350

Validation 675 675 1,350

Training 5,393 5,393 10,786

Total 6,743 6,743 13,486

sequential arrangement of vectors that the transformer may

effectively process.

3.6.2. Patch embedding
The patch embedding layer is like a translator that converts

input patches into a sequence of numbers that a transformer model

can understand. It has three parts: a linear transformation for

changing the patches, a function called ReLU to make the numbers

more practical, and a dropout layer. The dropout layer is a standard

tool in machine learning, and it helps prevent a model from

memorizing the training data too much by randomly leaving some

information out. This way, the model learns to handle randomness

and becomes better at making predictions.

3.6.3. Positional encoding
The integration of positional encoding within the

Vision Transformer (ViT) model serves the purpose of

retaining the spatial information present in the input

image. It improves the contextual meaning of the patch

embeddings. Positional encoding is a technique that

enhances each input vector within a sequence by integrating

a fixed vector defined by its position. The fixed vector is

achieved through training, which improves the model’s

understanding of the spatial connections across patches of

an image.
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FIGURE 3

Examples of the CT images with applied augmentation techniques.

FIGURE 4

The proposed ViT model architecture for pulmonary fibrosis detection.

Frontiers inMedicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2023.1282200
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Waseem Sabir et al. 10.3389/fmed.2023.1282200

3.6.4. Encoder block
The encoder block plays an important role, in the ViT model.

Its main function is to handle the sequence of patch embeddings

and effectively capture their interconnections. The encoder block

consists of three components; a head self-attention layer, a feed

forward neural network (FFNN), and an additional multi-head self-

attention layer. To determine the probabilities of the output the

work, from the self-attention layer is passed through a linear layer

and then subjected to a softmax activation function.

3.6.5. Multi-head self-attention
The multi-head self-attention layer plays a role, in the

transformer concept. It helps the model understand how different

parts of the input sequence are connected. The self-attention

layer measures the similarity between elements in the sequence.

This information creates a weighted combination. This process is

repeated times, with starting points to explore similarities. The

results are then transformed linearly to produce the outcome.

3.6.6. Feed-forward neural network (FFNN)
A feed-forward neural network, also known as FFNN is a type

of neural network. In this network, each neuron, in one layer is

connected to every neuron in the layer. This particular kind of

network is mostly used in natural language processing. Its purpose

is to analyze the output generated by the head self-attention layer

and transform it into a feature space, with increased dimensions.

The FFNN comprises two linear layers connected by a Rectified

Linear Unit (ReLU) activation function. This design makes it

easier for the network to combine and represent the non-linear

connections between input patches.

3.6.7. Classification layer
The Vision Transformer (ViT) model gives a result by taking

the output from the second multi-head self-attention layer, putting

it through a linear layer, and then using a softmax activation

function. The softmax part of the model changes the input into a

chance distribution over multiple classes so the model can give a

chance distribution that includes potential paths.

3.7. ViT

The Vision Transformer (ViT) is a cutting-edge deep learning

model that has been specifically designed for the purpose of

computer vision tasks. Google Research introduced it in the year

2020 (44). It uses a transformer-based structure for computer

vision tasks initially designed for natural language processing.

The proposed model utilizes a decomposition technique to divide

the input image into distinct patches. These patches are then

transformed into a sequential arrangement of vectors by a linear

embedding procedure. The patches are then subjected to multiple

transformer encoder layers to capture dependencies and acquire

significant image representations. The model has a classification

head that makes predictions using the acquired embeddings.

ViT demonstrates exceptional performance across various vision-

related tasks through pre-training and fine-tuning.

3.8. Mobile ViT2

MobileViT2 (45) is a vision transformer model designed

for efficient inference on mobile devices. It has a larger input

size and more transformer encoder layers than MobileViT and

utilizes regularization techniques for enhanced generalization

performance. The model is pre-trained on ImageNet-21k and

fine-tuned on ImageNet-1k for classification. Incorporating

fused kernel additions and executed code optimizations has

significantly improved inference speed, resulting in 4–5 times faster

performance than the original ViT model. MobileViT2 achieves

a top-1 accuracy of 75.6% on ImageNet and performs 3.2 times

better than MobileViT. It represents a cutting-edge advancement

in mobile vision tasks, enabling efficient and accurate performance

on limited computational resources.

3.9. ViTMSN

ViTMSN (Masked Siamese Networks) is an architecture for

self-supervised learning that aims to acquire image representations

(46). The primary innovation of ViTMSN is the incorporation

of a multi-scale neighborhood aggregation method, enabling the

network to effectively analyze the contextual information of a

picture across several scales. The objective above is accomplished by

partitioning the image into patches of a predetermined size, without

any overlap, and subsequently embedding these patches into a

sequential arrangement of vectors using a linear approach. The

subsequent sequence is inputted into a transformer encoder, which

is processed by self-attention mechanisms to acquire knowledge

about the interconnections among various image components.

ViTMSN has been shown to achieve state-of-the-art performance

on several image classification benchmarks, including ImageNet.

Its ability to capture long-range dependencies and contextual

information has made it a popular choice for object detection,

segmentation, and generation tasks.

3.10. BEiT

The BEiT (47) model is a vision transformer model for

image representation learning. It uses a bidirectional transformer

encoder architecture to learn contextual representations of image

patches.The primary concept is pre-training the model by

predicting masked visual tokens based on contextual information,

like BERT’s masked language modeling technique. This enables

the model to acquire significant visual representations without

depending on manual image annotations. Fine-tuning the pre-

trained BEiT model on various downstream tasks, such as image

classification, has demonstrated exceptional performance, leading

to state-of-the-art outcomes. In general, the findings of the

BEiT study show that bidirectional transformers can acquire
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very effective representations from visual input through self-

supervised learning, thereby diminishing the reliance on annotated

image datasets.

4. Algorithm

1. Initialize Hyperparameters:

learning_rate = 0.0001

batch_size = 56

num_epochs = 1

weight_decay_rate = 1.0

2. Create Base Model:

base_model = ViT_Base_Patch16_224

3. Build Fibrosis Model:

fibrosis_model = base_model.output

fibrosis_model = GlobalAverage

Pooling2D

if dropout_rate > 0: fibrosis_model =

Dropout(0.5)(fibrosis_model)

( if dropout_rate > 0)

fibrosis_model = Dense(len(classes)

,activation="sigmoid")

(fibrosis_model)

4. Build the Complete Model:

model = Model(inputs=base_model. input,

outputs=fibrosis_model)

5. Set Base Model Layers as Trainable:

for layer in base_model.layers:

layer.trainable = True

6. Create Callbacks:

callback_list = [... ]

7. Model Compilation:

model.compile(loss="binary

_crossentropy",optimizer="adam",

metrics=["accuracy"])

8. Train the Model:

history = model.fit_generator

(train_generator, epochs=num_epochs,

validation_data=val_generator,

callbacks=callback_list)

5. Model training

For detecting Fibrosis, Normal, and Fibrosis cases using ViT

models, 13,486 images were selected from an initial set of 24,647

images. Of all the photos, 10,786 were assigned for training

purposes, with a ratio of 80%, while 1,350 images were allocated for

validation and testing purposes. The validation and testing ratios

were equally set at 10 and 10%, respectively. The application of

the data augmentation approach was used in order to enhance

the overall quality of the training process and validation data.

Furthermore, the models underwent a process of fine-tuning

for a single epoch, employing an Adam optimizer alongside

a consistent learning rate of 0.0001. The ViT-Base-Patch16-224

model was configured with a batch size of 56. It is important

to mention that the optimal hyperparameters were determined

using experimental methodologies. In the evaluation context,

various metrics were utilized, encompassing Precision, Recall, F1

Score, Accuracy, AUC_PR, AUC_ROC, and Matthews Correlation

Coefficient (MCC). The algorithm’s pre-processing, development,

and evaluation were done using Python and Pytorch on a powerful

NVIDIA Tesla T4 GPU and 12 GB of RAM.

6. Model optimization

The optimization process for the model involved the systematic

tuning of two critical hyperparameters: batch size and learning

rate. Initially, a conservative batch size of 4 was selected.

However, larger batch sizes were considered and evaluated as

the optimization progressed. Ultimately, it was determined that

a batch size of 56 was the most promising choice, providing a

balance between computational efficiency and model convergence.

Simultaneously, the learning rate, which governs the step size taken

during gradient descent, was subjected to meticulous adjustments.

The learning rate was refined through iterative experimentation,

starting from an initial value 0.01. After a thorough exploration,

a substantially reduced learning rate of 0.0001 was identified

as the optimal choice for the model, exhibiting the most

consistent performance improvements. The model’s accuracy and

generalization exhibited remarkable enhancements by optimizing

these two fundamental parameters, surpassing its earlier iterations.

This meticulous optimization process ultimately enabled the model

to achieve superior results in its intended tasks while efficiently

utilizing computational resources. The optimization of the model’s

fundamental parameters was a long and an iterative process that

required carefully balancing performance gains with computational

costs. Many rounds of experiments were conducted to tune the

hyperparameters governing model capacity and regularization.

The final optimized model demonstrated significantly improved

accuracy and generalization ability compared to prior versions.

7. Performance evaluation metric

To conduct a comprehensive performance evaluation, the

pre-trained vision transformer underwent an assessment on

independent 10% test data using a range of parameters such as

Recall, F1 Score, Accuracy, Precision, AUC_PR, AUC_ROC, and

MCC.

Accuracy =
TP+TN

TP+TN+FP+FN

Precision =
TP

TP+FP

Recall =
TP

TP+FN
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F1 =
2·Precision·Recall
Precision+Recall

Sensitivity =
TP

TP+FN

Specificity =
TN

TN+FP

The process of categorizing patient CT scan slices into two

distinct groups, specifically pulmonary fibrosis (PF) and normal CT

scans, involved the application of specific terminology, including

true negative (TN), true positive (TP), false negative (FN),

and false positive (FP). The terminology mentioned above was

employed to denote the precise recognition of PF-positive pictures

(true positives or TP), the exact identification of standard CT

images (true negatives or TN), the erroneous classification of

classic CT images as PF-positive (false positives or FP), and the

failure to recognize PF-positive images (false negatives or FN),

correspondingly. The examination of the suggested technique was

carried out by employing a combination of image-based and

case-based evaluations. The assessment of IPF probability was

conducted using image-based evaluation, wherein patch images

were presented to the Vision Transformer (ViT) model, and the

resulting outcomes were gathered. The average likelihoods of

ViT-output IPF were computed for each instance in the case-

based classification. Subsequently, this value was employed to

differentiate instances of idiopathic pulmonary fibrosis (IPF) from

those that were not indicative of IPF.

8. Results

The present study involved fine-tuning and validating already

present Vision Transformer models to accurately categorize

slice images of chest CT into Normal and PF case. The

performance of four sophisticated Vision Transformer models,

MobileViTV2, ViTMSN, ViT, and BEiT, was assessed using

established performance measures. The models were optimized

using the AdamW optimizer, employing a constant learning rate

of 0.0001. Regarding validation accuracy, MobileViTV2 obtained a

commendable accuracy rate of 98.36%, but ViTMSN beat it with an

even higher accuracy rate of 99.63%. The ViT model demonstrated

exceptional performance, attaining a validation accuracy of 99.85%,

and BEiT also performed well with a validation accuracy of 99.78%.

Moving on to testing accuracy, MobileViTV2 recorded a testing

accuracy of 90.29%. ViTMSN showed robustness with a testing

accuracy of 98.51%. Remarkably, the ViT model achieved a perfect

testing accuracy of 100%, showcasing its remarkable ability to

classify chest CT slice images. MobileViTV2 had a training loss

of 1.8041, ViTMSN exhibited a significantly lower training loss of

0.2722, while the ViT model demonstrated remarkable efficiency

with a training loss of just 0.0024. BEiT also performed well,

with a training loss of 0.0269. Validation loss, another critical

metric, demonstrated the ViT model’s excellence again, with a

shallow value of 0.0054. MobileViTV2 had a validation loss of

0.1391, ViTMSN of 0.0191, and BEiT of 0.0082, all indicating

their capability to maintain low error rates during validation.

The performance evaluation of selected models was performed

using Precision, Recall, F1 Score, AUC_PR, AUC_ROC, and MCC.

Precision, which measures the accuracy of positive predictions, was

exceptional for ViT, standing at a perfect 1.0. The other models,

MobileViTV2, ViTMSN, and BEiT, also showed high precision

values of 0.9823, 0.9712, and 0.9782, respectively, highlighting their

ability to make accurate positive predictions. Recall, representing

the proportion of actual positives correctly predicted, was perfect

(1.0) for ViT, ViTMSN, and BEiT, indicating their capability to

capture all positive cases. MobileViTV2 had a slightly lower recall

of 0.8177. The F1 Score, which balances precision and recall,

reached a perfect 1.0 for ViT, while the other models were close,

with values of 0.9424 for MobileViTV2, 0.9854 for ViTMSN, and

0.9890 for BEiT. AUC_PR (Area Under the Precision-Recall Curve)

was robust for all models, with MobileViTV2 having the lowest

value at 0.8366. ViT MSN has a value of 0.9712, and BEiT has

0.9782. The ViT again outperformed other models with value 1.

AUC_ROC (Area Under the Receiver Operating Characteristic

Curve) also showed strong performance, withMobileViTV2 having

the lowest value at 0.8276 and ViT with the outstanding 1.

ViTMSN has an AUC_ROC of 0.9851 BEiT of 0.9888. Lastly,

the Matthews Correlation Coefficient (MCC) assessed binary

classification quality, and all models exhibited high MCC values,

with MobileViTV2 having the lowest at 0.8312 while ViTMSN

0.9707, BEiT 0.9780 and ViT with 1, emphasizing the effectiveness

of ViT model in classifying chest CT slice images into Normal and

PF cases. The performance of the four Vision Transformer models,

ViT, ViTMSN, BEiT, and MobileViTV2, in categorizing chest

CT slice images into Normal and PF cases, was evaluated using

standard performance metrics. ViT achieved the highest sensitivity

and specificity, with values of 1 and 1, respectively. ViTMSN had

a sensitivity of 1.0 and a specificity of 0.9837, while BeIT had a

sensitivity of 0.9955 and a specificity of 1.0. MobileViTV2 had a

sensitivity of 1.0 and a specificity of 0.9779. These results suggest

that all four models performed well in accurately categorizing chest

CT slice images, with ViT and BeIT being the top performers.

The results obtained from utilizing a distribution of 80% training

data, 10% validation data, and 10% testing data to fixed optimized

learning rate for four vision transformer learning models over

the course of an epoch can be found in Table 3 and Figure 5.

The optimal learning rate was achieved through a sequence of

iterative procedures.

The Vision Transformer (ViT) model, trained with a learning

rate of 0.0001, demonstrated exceptional performance in accurately

categorizing Fibrosis positive images. The model attained a level of

accuracy for validation of 99.85% and an accuracy in the testing

of 100%. Furthermore, the model exhibited validation and training

losses of 0.047 and 0.075 correspondingly. The capability of ViT

to identify pulmonary fibrosis in its initial stages is particularly

remarkable. The model demonstrated exceptional performance

with a testing accuracy of 100%, suggesting its proficiency in

detecting cases during their early stages. The confusion matrix

shown in Figure 6 describes its accuracy. Early detection can

enhance patient outcomes and facilitate more efficient treatment

planning. The implementation of timely interventions has the

potential to decelerate the advancement of the disease, mitigate

symptoms, and improve the prognosis. In contrast, the ViT model

demonstrates a remarkable equilibrium between accuracy and

recall, achieving a precision and recall value of 1.0, thereby reducing

false positives and false negatives. The degree above of precision

guarantees timelymedical care to people in needwhile concurrently
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TABLE 3 A comparative assessment of the performance exhibited by four vision transformer models under a constant learning rate.

Model Optimizer Learning rate Validation
accuracy (%)

Testing accuracy (%) Training loss Validation loss

MobileViTV2 AdamW 0.0001 98.36 90.29 1.8041 0.1391

ViTMSN AdamW 0.0001 99.63 98.51 0.2722 0.0191

ViT AdamW 0.0001 99.85 100 0.0024 0.0054

BEiT AdamW 0.0001 99.78 98.88 0.0269 0.0082

FIGURE 5

The values of Precision, Recall, F1 Score, AUC PR, AUC ROC, and MCC of four vision transformers.

minimizing superfluous examinations or procedures. The high

precision and recall of ViT contribute to enhanced diagnostic

accuracy, hence mitigating the impact of false alarms.

The excellent diagnostic accuracy of ViT results in improved

resource allocation efficiency within healthcare settings. By

reducing the number of false-positive cases, there is a decrease

in the need for unneeded diagnostic procedures, resulting in cost

savings and improved utilization of resources. This intervention

has advantageous implications for healthcare practitioners as it

enhances the overall patient experience by reducing unneeded

interventions. The capacity of ViT to promptly detect and manage

instances of pulmonary fibrosis holds considerable ramifications

for public health. The implementation of timely intervention,

supported by precise diagnosis, has the potential to mitigate the

total societal impact of the condition. This phenomenon can lead

to reduced healthcare expenditures, a drop in hospital admissions,

and enhanced long-term management of pulmonary fibrosis

on a broader scope, significantly contributing to strengthening

public health.

The Vision Transformer (ViT) model demonstrates superior

performance to other vision transformer models in the specific

classification task, attaining a testing accuracy of 100%. The model

achieves perfect recall and precision, with a rate of 100%, when

categorizing PF and regular chest CT scan images. The Vision

Transformer (ViT) model demonstrates a high level of suitability

in accurately categorizing pulmonary fibrosis (PF) images when

compared to standard chest computed tomography (CT) images,

as indicated by a perfect F1-score, Area Under the Curve (AUC)

and Matthews Correlation Coefficient (MCC) of 1.00. The already

trained Vision Transformer models achieve peak accuracy within a
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single epoch. Based on the data presented in Table 4, it is evident

that the already-trained Vision Transformer (ViT) model exhibits

superior performance compared to the other pre-trained deep

learning models investigated in the research. The ViT, which has

been pre-trained, demonstrates proficient classification capabilities

when applied to PF-positive images. The Vision Transformer

(ViT)model demonstrates enhanced precision, accuracy, Matthews

correlation coefficient (MCC), AUC_PR and ROC_AUC, and

F1-score.

9. Discussion

Pulmonary fibrosis is a medical illness that poses a possible

threat to life and is distinguished by the absence of a conclusive

remedy. Therefore, it is crucial to diagnose the condition quickly

and efficiently. The scientific community has proposed a variety of

image processing and deep learning models as potential solutions

to tackle this problem.

The present investigation introduces an optimized, fine-

tuned pre-existing vision transformer model to differentiate

between pulmonary and non-pulmonary fibrosis CT scans.

Initially, the CT scan images were preprocessed to meet the

prerequisites of the vision transformer. It was pursued by executing

data augmentation methods such as rotations, flips, cropping,

resizing, and randomized adjustments to brightness, contrast,

saturation, and hue. Moreover, other techniques, including

ColorJitter, Gaussian blur, affine transformations, and a custom

lambda function, were randomly employed during training to

avert overfitting.

Subsequently, the models underwent fine-tuning with

hyperparameters, such as epochs and learning rate, to enhance

their performance for the classification task. The four Vision

Transformer models, MobileViTV2, ViTMSN, ViT, and BeiT, were

used to select the best model. The fine-tuned ViT model exhibited

the highest validation (99.5%) and testing accuracy (100%) using

CT images.

The Vision Transformer (ViT) model also demonstrated a

minimal loss function of 0.0075 during the training phase and

0.0047 during the validation phase, despite training for a single

epoch. Furthermore, during the assessment of the ViT on the

independent test data subset, which accounted for 10% of the

entire dataset, it demonstrated outstanding performance across

a range of evaluation metrics. The measures employed in this

study encompassed the precision-recall curve, accuracy, F1-score,

precision, the area under the precision-recall curve (AUC_PR),

area under the receiver operating characteristic curve (ROC_AUC),

Matthew’s Correlation Coefficient (MCC), as well as the Sensitivity

and Specificity score, both of which were observed to be 1.00.

The MobileLungNetV2 system, as stated in (48), demonstrated

a high accuracy rate of 96.97% in classifying lung texture or

patterns associated with lung diseases, utilizing X-ray images. The

PGGAN model introduced in (49) exhibited a detection sensitivity

of 97.2% for classification performance. In (50) where different

deep learning, pre-trained CNN models were used to classify

pulmonary fibrosis, the modified, pre-trained ResNetv50V2 model

had a 100% accuracy rate.

FIGURE 6

The confusion matrix depicting the performance of the

highest-performing Vision Transformer (ViT) model is presented

below. The ViT model can accurately categorize 675 out of 675

photos according to the confusion matrix. The 675 correctly

identified photos are divided into two classes: 675 are in the positive

(PF) class and 675 are in the negative (normal) class.

Our proposed pre-trained ViT model exhibits the highest test

accuracy of 100%, validation accuracy of 99.85%, training loss of

0.0075, and validation loss of 0.0047. The remarkable achievement

was attained within a solitary training epoch, surpassing the

efficiency of all alternative deep learning techniques models.

The current study makes notable advancements in identifying

pulmonary fibrosis using deep-learning models. In terms of

precision, effectiveness, and resilience, the ViT model being

offered demonstrates superior performance compared to other

cutting-edge models, namely MobileLungNetV2, PGGAN, and

modified ResNetv50V2. The vision transformer model, first

designed to classify natural images, has demonstrated potential

in medical image analysis, particularly in the accurate diagnosis

of pulmonary fibrosis. The results of this work highlight the

importance of employing transfer learning and data augmentation

methods to enhance the efficacy of deep learning models in the

context of medical picture classification tasks. The findings of this

study are of significant relevance in the clinical context, as the

precise and prompt identification of pulmonary fibrosis plays a

crucial role in impacting patient outcomes. The excellent accuracy

and efficiency demonstrated by the ViT model indicate its potential

use as a diagnostic tool for pulmonary fibrosis among radiologists

and clinicians. This might lead to a reduction in the time and

resources now expended in the diagnostic process. Subsequent

investigationsmay delve into incorporating the Vision Transformer

(ViT) model within clinical processes to assess its efficacy within

authentic operational contexts.

A multidimensional approach is essential to validate and

seamlessly integrate the Vision Transformer (ViT) model into

clinical practice. This includes external validation on diverse

datasets to ensure the model’s generalizability, clinical validation

through real-world testing with the involvement of healthcare

professionals, and a keen focus on ethical and legal aspects
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TABLE 4 A comparison of di�erent performance metrics between the four vision transformers.

Model Precision Recall F1 Score AUC_PR AUC_ROC MCC Sensitivity Specificity

MobileViTV2 0.9823 0.8177 0.9424 0.8366 0.8276 0.8312 1 0.9779

ViTMSN 0.9712 1 0.9854 0.9712 0.9851 0.9707 1 0.9837

ViT 1 1 1 1 1 1 1 1

BEiT 0.9782 1 0.9890 0.9782 0.9888 0.9780 0.9955 1

FIGURE 7

The training loss of one epoch with 193 steps and validation loss of 15 steps.

such as patient consent and data privacy. Moreover, efforts

should be directed toward improving model interpretability

to make its decisions more transparent and understandable

for clinicians. Continuous monitoring and collaboration with

radiologists and clinicians play a vital role in enhancing the

performance of the model and tackling practical obstacles.

Clear clinical guidelines and standards should be established,

outlining when and how the model should be used, and cost-

effectiveness should be assessed to determine the impact on

patient care. By meticulously addressing these considerations, the

ViT model can become a valuable diagnostic tool, enhancing

the accuracy and efficiency of pulmonary fibrosis diagnosis in

clinical settings.

10. Conclusions and future work

This study showcases the enhanced performance of the Vision

Transformer in accurately detecting and differentiating pulmonary

fibrosis from chest CT scans. Our methodology has attained

classification accuracy at the cutting edge of current research in

the field, specifically in the classification of CT images exhibiting

positive pulmonary fibrosis (PF) characteristics. This achievement

surpasses the performance of similar approaches documented in

recent literature.

After undergoing optimization, the Vision Transformer (ViT)

model exhibited outstanding performance in terms of classification

accuracy. The model demonstrated accuracy for validation of

99.85% and attained a flawless accuracy of 100% when utilizing

data obtained from a chest CT scan. The Vision Transformer (ViT)

achieved a training dataset loss equal to 0.0024 and a validation

dataset loss of 0.0054 following a single training session single

training session as shown in Figure 7.

Future objectives include optimizing the ViT elements through

ablation studies and expanding the dataset to handle multi-class

classification of various interstitial lung diseases. The model will

be trained to differentiate between diseases including emphysema,

bronchiectasis, and sarcoidosis with high accuracy. Additionally,

transfer learning and ensemble learning techniques will be explored

to enhance performance. The ViT models demonstrate a notable
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level of precision and can autonomously detect and classify diverse

respiratory ailments, encompassing COVID-19, pneumonia, and

lung cancer. Evaluating the trained model’s precision in detecting

specific regions of interest in CT scan pictures illustrating

pulmonary fibrosis requires a crucial collaborative alliance with

medical professionals. This study’s main aim is to evaluate the

healthcare practitioner model’s correctness comprehensively. To

optimize the performance of the Vision Transformer (ViT) model,

our study aims to conduct ablation experiments to assess the

influence of several components, including the loss function,

optimizer, flatten layer, learning rate, and pre-trained models, on

its overall accuracy. This approach aims to augment the resilience

of designs to boost their efficacy in addressing classification

tasks. To enhance the generalization capabilities of ViT across

diverse patient groups and image variations, our study aims to

explore the application of modern data augmentation approaches.

Furthermore, our attention will be directed toward enhancing the

comprehensibility of the model’s prognostications by generating

heatmaps that accentuate regions of significance within CT scans.

A comprehensive clinical validation process will assess the model’s

practicality in real-world scenarios. This process will involve blind

testing using diverse CT scans obtained from multiple medical

centers and the participation of healthcare specialists.

We will explore the possibility of integrating other medical

imaging modalities, such as magnetic resonance imaging (MRI)

or positron emission tomography (PET) scans, to expand the

model’s diagnostic capabilities like detection of the specific

types of fibrosis patterns. Transfer learning methods will be

investigated to adapt the model for detecting other lung

diseases, broadening its clinical utility. We will also assess

the feasibility of deploying the model in healthcare settings,

including computational requirements, scalability, and regulatory

compliance. To ensure responsible and secure deployment in

healthcare environments, we will address ethical considerations

such as data privacy and regulatory compliance (e.g., HIPAA or

GDPR). By following these comprehensive steps, we can advance

the application of the Vision Transformer in diagnosing pulmonary

fibrosis and other lung diseases, ultimately improving patient care

and healthcare outcomes.

Our objective is to optimize the performance of the Vision

Transformer in diagnosing lung diseases by conducting

ablation studies, improving its generalization capabilities,

interpretability, and clinical utility, and addressing ethical

considerations. By following a structured approach, we

can ensure the real-world applicability and effectiveness of

this powerful tool in improving patient care and healthcare

outcomes.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found at: https://www.kaggle.com/datasets/icmicm/

pulmonaryfibrosis-dataset-final/code?datasetId=1411520&amp;

sortBy=relevance.

Ethics statement

Ethical review and approval was not required for the study

on human participants in accordance with the local legislation

and institutional requirements. Written informed consent from the

patients/ participants was not required to participate in this study

in accordance with the national legislation and the institutional

requirements.

Author contributions

MW: Conceptualization, Methodology, Visualization,

Writing—original draft. MF: Investigation, Methodology,

Supervision, Writing—review & editing. NA: Formal analysis,

Funding acquisition, Project administration, Resources, Writing—

review & editing. MA: Investigation, Resources, Validation,

Writing—review & editing, Funding acquisition. GS: Formal

analysis, Investigation, Methodology, Validation, Writing—review

& editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Acknowledgments

The researchers affiliated with Project number

(RSPD2023R521) are affiliated with King Saud University in

Riyadh, Saudi Arabia.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inMedicine 15 frontiersin.org

https://doi.org/10.3389/fmed.2023.1282200
https://www.kaggle.com/datasets/icmicm/pulmonaryfibrosis-dataset-final/code?datasetId=1411520&amp;sortBy=relevance
https://www.kaggle.com/datasets/icmicm/pulmonaryfibrosis-dataset-final/code?datasetId=1411520&amp;sortBy=relevance
https://www.kaggle.com/datasets/icmicm/pulmonaryfibrosis-dataset-final/code?datasetId=1411520&amp;sortBy=relevance
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Waseem Sabir et al. 10.3389/fmed.2023.1282200

References

1. Kärkkäinen M, Nurmi H, Kettunen HP, Selander T, Purokivi M, Kaarteenaho
R. Underlying and immediate causes of death in patients with idiopathic pulmonary
fibrosis. BMC Pulm Med. (2018) 18:69. doi: 10.1186/s12890-018-0642-4

2. Spagnolo P, Kropski JA, Jones MG, Lee JS, Rossi G, Karampitsakos T, et al.
Idiopathic pulmonary fibrosis: disease mechanisms and drug development. Pharmacol
Therapeut. (2021) 222:107798. doi: 10.1016/j.pharmthera.2020.107798

3. Kelly BT, Thao V, Dempsey TM, Sangaralingham LR, Payne SR, Teague
TT, et al. Outcomes for hospitalized patients with idiopathic pulmonary
fibrosis treated with antifibrotic medications. BMC Pulm Med. (2021) 21:239.
doi: 10.1186/s12890-021-01607-2

4. Fernandes L, Nasser M, Ahmad K, Cottin V. Interstitial pneumonia with
autoimmune features (IPAF). Front Med. (2019) 6:209. doi: 10.3389/fmed.2019.00209

5. Aburto M, Herráez I, Iturbe D, Jiménez-Romero A. Diagnosis of
idiopathic pulmonary fibrosis: differential diagnosis. Med Sci. (2018) 6:73.
doi: 10.3390/medsci6030073

6. Wolters PJ, Blackwell TS, Eickelberg O, Loyd JE, Kaminski N, Jenkins G, et al.
Time for a change: is idiopathic pulmonary fibrosis still idiopathic and only fibrotic?
Lancet Respirat Med. (2018) 6:154–60. doi: 10.1016/S2213-2600(18)30007-9

7. King TE Jr., Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg
MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis.
N Engl J Med. (2014) 370:2083–92. doi: 10.1056/NEJMoa1402582

8. Richeldi L, Costabel U, Selman M, Kim DS, Hansell DM, Nicholson AG, et al.
Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med.
(2011) 365:1079–87. doi: 10.1056/NEJMoa1103690

9. Sumikawa H, Johkoh T, Colby TV, Ichikado K, Suga M, Taniguchi H,
et al. Computed tomography findings in pathological usual interstitial pneumonia:
relationship to survival. Am J Respirat Crit Care Med. (2008) 177:433–9.
doi: 10.1164/rccm.200611-1696OC

10. Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ,
et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT
clinical practice guideline. Am J Respirat Crit Care Med. (2018) 198:e44–68.
doi: 10.1164/rccm.201807-1255ST

11. Hansell DM, Goldin JG, King TE, Lynch DA, Richeldi L, Wells AU. CT staging
and monitoring of fibrotic interstitial lung diseases in clinical practice and treatment
trials: a position paper from the Fleischner Society. Lancet Respirat Med. (2015)
3:483–96. doi: 10.1016/S2213-2600(15)00096-X

12. Joskowicz L, Cohen D, Caplan N, Sosna J. Inter-observer variability of
manual contour delineation of structures in CT. Eur Radiol. (2019) 29:1391–9.
doi: 10.1007/s00330-018-5695-5

13. Kauczor HU, Wielpütz MO, Jobst BJ, Weinheimer O, Gompelmann
D, Herth FJ, et al. Computed tomography imaging for novel therapies of
chronic obstructive pulmonary disease. J Thorac Imaging. (2019) 34:202–13.
doi: 10.1097/RTI.0000000000000378

14. Tang H, Kim DR, Xie X. Automated pulmonary nodule detection using 3D
deep convolutional neural networks. In: 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018). Washington, DC: IEEE (2018). p. 523–6.

15. Mehmood M, Rizwan M, Gregus ml M, Abbas S. Machine learning
assisted cervical cancer detection. Front Public Health. (2021) 9:788376.
doi: 10.3389/fpubh.2021.788376

16. Shamshad F, Khan S, Zamir SW, Khan MH, Hayat M, Khan FS, et al.
Transformers in medical imaging: a survey. Med Image Anal. (2023) 88:102802.
doi: 10.1016/j.media.2023.102802

17. Kothadiya D, Rehman A, Abbas S, Alamri FS, Saba T. Attention based deep
learning framework to recognize diabetes disease from cellular retinal images. Biochem
Cell Biol. (2023) 1–12. doi: 10.1139/bcb-2023-0151

18. Chetoui M, Akhloufi MA. Explainable vision transformers and
radiomics for covid-19 detection in chest x-rays. J Clin Med. (2022) 11:3013.
doi: 10.3390/jcm11113013

19. Al Rahhal MM, Bazi Y, Jomaa RM, AlShibli A, Alajlan N, Mekhalfi ML, et al.
Covid-19 detection in ct/x-ray imagery using vision transformers. J Pers Med. (2022)
12:310. doi: 10.3390/jpm12020310

20. Gheflati B, Rivaz H. Vision transformers for classification of breast ultrasound
images. In: 2022 44th Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC). Glasgow: IEEE (2022). p. 480–3.

21. Christe A, Peters AA, Drakopoulos D, Heverhagen JT, Geiser T, Stathopoulou
T, et al. Computer-aided diagnosis of pulmonary fibrosis using deep learning and CT
images. Investig Radiol. (2019) 54:627. doi: 10.1097/RLI.0000000000000574

22. Rolnick D, Veit A, Belongie S, Shavit N. Deep learning is robust to massive label
noise. arXiv preprint arXiv:170510694 (2017). doi: 10.48550/arXiv.1705.10694

23. Papachristou I, Bosanquet N. Improving the prevention and diagnosis
of melanoma on a national scale: a comparative study of performance in

the United Kingdom and Australia. J Public Health Policy. (2020) 41:28–38.
doi: 10.1057/s41271-019-00187-0

24. Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL, et al.
Identifying medical diagnoses and treatable diseases by image-based deep learning.
Cell. (2018) 172:1122–31. doi: 10.1016/j.cell.2018.02.010

25. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet: a large-scale
hierarchical image datab. In: 2009 IEEE Conference on Computer Vision and Pattern
Recognition. Miami, FL: IEEE (2009). p. 248–55.

26. Safdar S, Rizwan M, Gadekallu TR, Javed AR, Rahmani MKI, Jawad K, et al. Bio-
imaging-based machine learning algorithm for breast cancer detection. Diagnostics.
(2022) 12:1134. doi: 10.3390/diagnostics12051134

27. Walsh SL, Calandriello L, Silva M, Sverzellati N. Deep learning for classifying
fibrotic lung disease on high-resolution computed tomography: a case-cohort study.
Lancet Respirat Med. (2018) 6:837–45. doi: 10.1016/S2213-2600(18)30286-8

28. Teramoto A, Tsukamoto T, Kiriyama Y, Tsukamoto T, Yan K, Zhang L,
et al. Automated classification of lung cancer types from cytological images
using deep convolutional neural networks. BioMed Res Int. (2017) 2017:100205.
doi: 10.1155/2017/4067832

29. Mughal H, Javed AR, Rizwan M, Almadhor AS, Kryvinska N. Parkinson’s
disease management via wearable sensors: a systematic review. IEEE Access. (2022)
10:35219–37. doi: 10.1109/ACCESS.2022.3162844

30. Shi X, Wang L, Li Y, Wu J, Huang H. GCLDNet: gastric cancer lesion detection
network combining level feature aggregation and attention feature fusion. Front Oncol.
(2022) 12:901475. doi: 10.3389/fonc.2022.901475

31. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S. Lung
pattern classification for interstitial lung diseases using a deep convolutional neural
network. IEEE TransMed Imaging. (2016) 35:1207–16. doi: 10.1109/TMI.2016.2535865

32. Christodoulidis S, Anthimopoulos M, Ebner L, Christe A, Mougiakakou
S. Multisource transfer learning with convolutional neural networks for
lung pattern analysis. IEEE J Biomed Health Inform. (2016) 21:76–84.
doi: 10.1109/JBHI.2016.2636929

33. Li D, Fu Z, Xu J. Stacked-autoencoder-based model for COVID-19 diagnosis on
CT images. Appl Intell. (2021) 51:2805–17. doi: 10.1007/s10489-020-02002-w

34. Amyar A, Modzelewski R, Li H, Ruan S. Multi-task deep learning based CT
imaging analysis for COVID-19 pneumonia: classification and segmentation. Comput
Biol Med. (2020) 126:104037. doi: 10.1016/j.compbiomed.2020.104037

35. Xu X, Jiang X, Ma C, Du P, Li X, Lv S, et al. A deep learning system to
screen novel coronavirus disease 2019 pneumonia. Engineering. (2020) 6:1122–9.
doi: 10.1016/j.eng.2020.04.010

36. Wang J, Wei L, Wang L, Zhou Q, Zhu L, Qin J. Boundary-aware transformers
for skin lesion segmentation. In: Medical Image Computing and Computer Assisted
Intervention–MICCAI 2021: 24th International Conference. Strasbourg: Springer
(2021). p. 206–16.

37. Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, et al.
Skin lesion analysis toward melanoma detection: a challenge at the 2017 International
Symposium on Biomedical Imaging (ISBI), hosted by the International Skin Imaging
Collaboration (ISIC). In: 2018 IEEE 15th International Symposium on Biomedical
Imaging (ISBI 2018). Washington, DC: IEEE (2018). p. 168–72.

38. Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, et al.
Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the
International Skin Imaging Collaboration (ISIC). arXiv preprint arXiv:190203368
(2019). doi: 10.48550/arXiv.1902.03368

39. Wu H, Chen S, Chen G, Wang W, Lei B, Wen Z. FAT-Net:
feature adaptive transformers for automated skin lesion segmentation.
Med Image Anal. (2022) 76:102327. doi: 10.1016/j.media.2021.
102327

40. Ambita AAE, Boquio ENV, Naval PC Jr. COVIT-GAN: vision transformer for
covid-19 detection in CT scan images with self-attention GAN for data augmentation.
In: International Conference on Artificial Neural Networks. Springer (2021). p. 587–98.
doi: 10.1007/978-3-030-86340-1_47

41. Lee MCH, Petersen K, Pawlowski N, Glocker B, Schaap M. TETRIS:
template transformer networks for image segmentation with shape priors.
IEEE Trans Med Imaging. (2019) 38:2596–606. doi: 10.1109/TMI.2019.29
05990

42. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for
biomedical image segmentation. In:Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference. Munich: Springer (2015).
p. 234–41.

43. Li X, Dou Q, Chen H, Fu CW, Qi X, Belavỳ DL, et al. 3D multi-scale FCN
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