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Early diagnosis in rheumatoid arthritis (RA) and axial spondyloarthritis (axSpA) is 
essential to initiate timely interventions, such as medication and lifestyle changes, 
preventing irreversible joint damage, reducing symptoms, and improving long-term 
outcomes for patients. Since magnetic resonance imaging (MRI) of the wrist and 
hand, in case of RA and MRI of the sacroiliac joints (SIJ) in case of axSpA can identify 
inflammation before it is clinically discernible, this modality may be crucial for early 
diagnosis. Artificial intelligence (AI) techniques, together with machine learning 
(ML) and deep learning (DL) have quickly evolved in the medical field, having an 
important role in improving diagnosis, prognosis, in evaluating the effectiveness 
of treatment and monitoring the activity of rheumatic diseases through MRI. The 
improvements of AI techniques in the last years regarding imaging interpretation 
have demonstrated that a computer-based analysis can equal and even exceed the 
human eye. The studies in the field of AI have investigated how specific algorithms 
could distinguish between tissues, diagnose rheumatic pathology and grade 
different signs of early inflammation, all of them being crucial for tracking disease 
activity. The aim of this paper is to highlight the implementation of AI models in MRI 
with focus on diagnosis of RA and axSpA through a literature review.

KEYWORDS

artificial intelligence, machine learning, deep learning, magnetic resonance imaging, 
rheumatoid arthritis, axial spondyloarthritis

1 Introduction

RA is an autoimmune and inflammatory condition that mainly affects the small joints of the 
hands and can cause a high degree of disability. It is associated with high morbidity and increased 
socioeconomic burden (1, 2).

Joint inflammation and pain are the main causes that lead to deterioration of the quality of 
life in the first years, the loss of cartilage and the intraarticular space, together with joint 
deformities and later ankylosis representing the cause of disability in advanced disease (1).
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Diagnosing RA involves a comprehensive assessment, including 
clinical, laboratory, and imaging findings. Blood tests are often 
performed to check for the presence of rheumatoid factor (RF) and 
anti-citrullinated protein antibodies (ACPAs). While the presence of 
these antibodies can support a diagnosis of RA, their absence does not 
rule it out. Also, elevated levels of C-reactive Protein (CRP) and 
Erythrocyte Sedimentation Rate (ESR) indicate the presence of 
inflammation, which is common in RA.

Thus, early diagnosis and treatment are essential to effectively 
manage RA and prevent joint damage. The “treat-to-target” (T2T) 
strategy is an approach used in the management of RA to optimize 
treatment outcomes by setting specific treatment targets and adjusting 
therapy based on regular assessments of disease activity. The primary 
goal is to achieve and maintain remission or low disease activity, 
thereby preventing joint damage and improving long-term outcomes 
for individuals with RA. Nowadays, imaging plays an important role 
in both diagnostic and management of RA (3).

AxSpA is a type of inflammatory arthritis that primarily affects 
the spine and SIJ. There are two subtypes of axSpA: non-radiographic 
axSpA (nr-axSpA) and axSpA (axSpA). There are some common 
features associated with axSpA: the presence of the human leukocyte 
antigen B27 (HLA-B27), the presence of inflammatory back pain, the 
inflammation of the spine and SIJ, the inflammation at the sites where 
ligaments and tendons attach to the bone, known as entheses, and the 
higher prevalence in young male patients (4, 5).

If there is a high clinical suspicion of axSpA and the conventional 
radiography is normal, the basic procedure for diagnosing this 
pathology is to perform a MRI of SIJ, this being the most accurate 
imaging method for diagnosing sacroiliitis. The most sensitive method 
that allows the highlighting of bone marrow edema (BME) and 
periarticular inflammation is MRI, compared to low dose computed 
tomography (CT) that only allows the identification of subchondral 
bone erosions and ankylosis (6, 7).

Thus, early diagnostic and treatment of axSpA are crucial in managing 
symptoms and preventing long-term complications. The treatment aims 
to alleviate symptoms, reduce inflammation, maintain function, and 
improve the overall quality of life for individuals affected by the condition. 
The approach to treatment can involve a combination of medications, 
physical therapy, and lifestyle modifications. For individuals with more 
severe or persistent symptoms, the biologic and targeted disease-modifying 
anti-rheumatic drugs (DMARDs) are able to prevent the loss of functional 
capacity, if administered before to the structural lesions (4, 5, 8, 9).

AI is a branch of computer science with the capability to emulate 
human intelligence (10, 11), which has been successfully implemented 
in the field of medical imaging in the past few decades. ML is one of 
the main subdivisions of AI and which relies on the use of algorithms 
for processing input data and aid the physician in various clinical 
setting (12). DL, a subset of ML, is based on the utilization of artificial 
neural networks (ANN) with the capacity to address complex 
requirements and work with large data sets with limited need for 
human intervention. It can address complex requirements without the 
need for human brain intervention. This subdivision has experienced 
substantial growth in recent years, standing as the primary area of 
interest within the field of AI and is set to undergo continuous 
evolution (13–17). The notable development of Convolutional Neural 
Networks (CNNs) within DL has led to significant achievements in 
the field of imaging by efficiently addressing problems based on image 
acquisitions (14, 18–20) (Figure 1). CNNs are neural networks trained 
to receive various input data, for example imaging scans, and are 

subsequently capable of classifying them based on the received 
features (output data) (18, 21).

The fundamental stages of an AI algorithm are illustrated in 
Figure 2. From the image acquisition to the last stage of result analysis, 
image processing is essential, undergoing multiple stages before 
reaching a diagnosis (22).

Over the past few years, there has been a rise in the number of 
publications exploring the role of AI in rheumatic diseases, reflecting 
the important current interest among rheumatologists in employing 
it for research (23).

When searching (23) for papers published in Pubmed from 2017 to 
2021, related to the involvement of AI in rheumatic diseases, one can 
observe the increase in publications in 2021 compared to 2017 (Figure 3).

While the adoption of AI models for assessing inflammatory 
changes in RA and axSpA through MRI is still in its early stages, there 
is a significant number of studies on AI based on radiographs, 
ultrasound and CT images that have been published over the last years.

It is important to mention that in recent years, there has been an 
increase in the number of medical AI algorithms approved by the 
United States Food and Drug Administration (FDA), especially in the 
field of radiology. Thus, one example is the approval of an AI model, 
aimed efficiently on the diagnosis of knee osteoarthritis (OA) by 
conventional radiography.

AI algorithms on hand radiographs, including CNN, have been 
created and used for diagnosing RA, with an accuracy up to 95% (24, 
25). Numerous publications have mentioned different algorithms for 
identifying and grading bone erosions, on hand radiographic images 
(24, 26, 27).

In a recent study, it was found that severity scores obtained 
through a DL-based model analyzing hand radiographs closely 
matched those assigned by the human eye (24, 28). Furthermore, AI 
models have also demonstrated effectiveness in detecting narrowing 
of joint spaces on radiographs (24, 27, 29).

FIGURE 1

Illustrative depiction showcasing the interconnection among artificial 
intelligence, machine learning, deep learning, and convolutional 
neural networks.
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Different AI models have been designed to assess synovitis 
through musculoskeletal ultrasound. Wu et al. created an algorithm 
incorporating DL to evaluate the severity of RA by classifying synovial 
proliferation observed through ultrasound (24, 30).

Moreover, studies focused on the use AI on CT images for 
automated detection and quantification of bone erosions suggest that 
this could enhance the precision of disease progression assessment 
when compared to traditional radiography (24, 31, 32).

However, rheumatic diseases have always represented a challenge 
for physicians, through their potentially disabling nature in which a 
prompt diagnosis is essential. MRI represent one of the most sensitive 
imaging methods for detecting inflammatory and structural changes 
occurring in non-radiographic axSpA, radiographic spondyloarthritis 
(SA) – formerly known as ankylosing spondylitis (AS), RA, OA and 

other rheumatic diseases. MRI allows detailed visualization of soft 
tissues, such as tendons, ligaments and joint capsule, as well as bone 
structures, compared to other imaging methods. However, MRI has 
certain limitations such as high cost, prolonged examination time, and 
the fact that interpretation depends on the experience of the radiologist. 
Thus, with the help of DL, sequence acquisition time can be reduced, 
acquisition protocols and interpretation could be improved, all with 
the goal of swiftly obtaining high quality assessments (12, 33).

Our purpose is to highlight the current state of AI research in 
MRI for the detection of inflammatory changes in RA and axSpA and 
to understand the potential role of implementing these techniques in 
clinical practice. Thus, the integration of AI in imaging has the 
potential to significantly improve diagnostic accuracy, efficiency, and 
patient outcomes.

2 Magnetic resonance imaging 
features

MRI is a non-invasive and non-irradiating method that allows a 
comprehensive multiplanar tomographic examination of joints, 
highlighting the bone structure, articular cartilage, synovial 
membrane, periarticular structures (ligaments, tendons) but also fluid 
accumulations (34).

T1-Weighted (T1W) sequences are very useful because they have 
a short acquisition time, provide concise anatomical details (bone 
erosions have low signal on T1W images) and can also highlight 
inflammation after the administration of the contrast agent (35). On 
the TW sequences, the fat tissue and the soft tissue highlighted by the 
administration of the contrast substance displays a strong signal. 
Because gadolinium (Gd) uptake is influenced by tissue vascularity 
and perfusion, the inflamed synovium, which is highly vascularized 
and perfused, becomes clearly visible. In T1W with fat saturation (FS) 
postcontrast acquisitions, FS allows the differentiation between the 

FIGURE 2

Stages of an AI algorithm.

FIGURE 3

Evolution of publication patterns in Pubmed regarding AI.
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inflamed synovial membrane and the adjacent tissues (35, 36), thus 
making possible the easy recognition of the inflammatory process (35).

T2-Weighted (T2W) sequences allow the visualization of features 
such as BME, fluid (Figure 4) as well as fat tissue, while T2W FS 
sequence is very useful in differentiating BME from lipomatous 
degeneration of bone structures (35, 36).

Another sequence that uses FS is the Short Tau Inversion Recovery 
(STIR) sequence, which allows a uniform and global suppression of the 
fat tissue, but which is not specific for its identification, the signal 
intensity of the tissues being similar in the short T1W and long 
T1W sequences.

Other sequences with affinity for fluid identification are proton 
density (PD) sequences with FS, T2 FS (saturation technique is the 
same in both sequences), and inversion recovery (IR) sequences 
(STIR/Turbo Inversion Recovery Magnitude (TIRM)  - a different 
modality from FS). T2 and IR sequences are highly sensitive to fluids, 
while PD provides a higher signal-to-noise ratio (SNR) (35).

To improve the specificity of MRI diagnosis, post-contrast T1WFS 
can also be applied to detect synovitis or tenosynovitis and exudate, 
these not being necessary to identify BME and erosions (35, 37).

2.1 Rheumatoid arthritis

In 1998, a committee within the Outcome Measures in 
Rheumatology (OMERACT) group, involved in MRI research of 
inflammatory arthritis, began to work with the aim of integrating the 
MRI changes appearing in RA, into clinical trials. Currently there is an 
MRI score that is used in RA  - Rheumatoid Arthritis Magnetic 
Resonance Imaging Scoring (RAMRIS) that was developed in 2000 (34, 
38). It involves evaluation of subchondral bone erosions, BME and 
synovitis. The detection of BME through MRI can predict the location 
of later development of bone erosions and is thus considered a precursor 
lesion of the latter. Synovitis, which is easily highlighted by MRI, is in an 
interdependent relationship with the histological appearance (34, 39–42).

The OMERACT task force involved in the MRI research of RA 
suggests a standard protocol of sequences, with the aim of highlighting 
the inflammatory and destructive changes occurring at the level of the 
joints, these being (38, 43):

 - T1W sequences in two planes, before and after the intravenous 
contrast administration.

 - T2W sequence with FS; if not possible, a STIR sequence.

High-frequency MRI (≥1.5 T) joint assessment using the RAMRIS 
system typically includes metacarpophalangeal (MCP) joints 1–5 and 
the most affected wrist (MCP 1 being a recent addition). For these 
measurements, the most accurate assessment is possible by 
intravenous administration of the contrast agent (34). Synovitis and 
joint space narrowing are some of the main imaging features in RA 
which can be observed through MRI and have also been validated as 
outcomes measures (34, 44).

The RAMRIS system involves the assessment of both 
inflammatory features (such as synovitis and BME) and destructive 
lesions (such as erosions and joint space narrowing) that occur in the 
joints of patients with RA (34, 38, 45–47). Implementing this score in 
the imaging assessment allows for a more accurate monitoring of the 
disease over time.

The RAMRIS score is calculated as follows:

 - a value from 0 to 3 is assigned for synovial inflammation, where 
0 means the absence of any change and 3 represents 
severe damage;

 - the presence of BME is evaluated from 0 to 3 depending on the 
volume of the affected bone (0-no edema, 1–1-33% edematous, 
2–34-66% edematous and 3–67-100% edematous);

 - bone erosions are scored from 0 to 10, depending on the affected 
bone surface (0 - no erosions, 1–1-10% of eroded bone, 2–11-
20%, etc.).

With regard to bone erosions and edema, the RAMRIS score 
includes 23 areas at the level of each hand, each modified area 
receiving a score from 0 to 10 for erosions, respectively 0 to 3 for 
edema, depending of the degree of damage. In the case of 
synovitis, the distal radio-ulnar joints, the radio-carpal and 
intercarpal joints, as well as the II-V MCP joints are noted with a 
score from 0 to 3.

The standard imaging technique used in RA clinical trials is the 
RAMRIS score (1). Through MRI acquisitions, it has been shown in 

FIGURE 4

Magnetic resonance imaging of the hands and sacroiliac joints in patients with rheumatoid arthritis and axial spondyloarthritis.

https://doi.org/10.3389/fmed.2023.1280266
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Nicoara et al. 10.3389/fmed.2023.1280266

Frontiers in Medicine 05 frontiersin.org

randomized controlled trials that there are significant differences 
between the efficacy of DMARDs at less than 6 months and even at 
less than 3 months, even in small groups of patients (1, 48–50). It has 
been shown that to identify differences in disease progression between 
two treatment groups in patients with early arthritis, plain radiography 
of the forefeet, both hands and wrists using Sharp/van der Heijde 
score requires twice the number of patients and twice the follow-up 
time compared to MRI performed at the MCP joints and the wrist of 
one hand (1, 48).

2.2 Axial spondyloarthritis

A definition of the active inflammatory changes occurring at the 
level of the SIJ, namely sacroiliitis, highlighted by MRI with the aim of 
classifying axSpA, was elaborated by the Assessment of 
SpondyloArthritis international Society (ASAS) in 2009. New 
methods of characterization of axSpA that include the notion of 
“ASAS-positive MRI” appeared in the same year. Currently, the notion 
of ASAS MRI has been widely adopted for the interpretation of the 
images obtained by MRI of the sacroiliac joints in everyday 
practice (4).

A diagnosis of axSpA is usually established in younger 
patients, which tipically manifest as chronic lower back pain with 
onset before 45 years of age. The ASAS classification criteria 
includes multiple other disease features (positive HLA-B27, 
uveitis, arthritis, increased CRP, enthesitis, dactylitis, psoriasis, 
etc.) in addition to imaging confirmation through radiography or 
MRI (for active sacroiliitis).

In the past 10 years, MRI studies of the spine and SIJ in patients 
with axSpA have significantly increased our understanding of the 
disease’s progression, it enabled early diagnosis and served as an 
objective endpoint for therapeutic trials. The correct technique for 
examining the SIJ involves sections in an oblique coronal plane at 
the level of the sacrum, using T1W turbo spin-echo (TSE), T2W 
gradient-echo (GRE) sequences, with in-phase (IP) and out-of-
phase (OOP) sequences, as well as the STIR sequence with 4 mm 
thick slices. At least 10–12 slices are needed to cover the entire 
surface of the sacrum, from anterior to posterior. The 
administration of the contrast substance helps to identify 
inflammatory changes and should be  followed by T1WFS 
sequences to better differentiate inflamed tissues from lipomatous 
degeneration (51).

The inflammatory changes that appear at the level of the SIJ, 
highlighted by MRI, can be  presented in the form of enthesitis, 
capsulitis or BME (Figure 4), the latter being visualized adjacent to the 
joint surface, hyperintense in T2WFS sequences or in postcontrast 
enhancement T1W sequences (4, 52, 53).

The main MRI changes in SIJ that develop in axSpA are: BME 
(acute inflammatory lesion), lipomatous degeneration (chronic lesions 
that replace areas of BME), backfill (fat metaplasia within an erosion 
cavity) and the neoformation of bone tissue, eventually leading to 
ankylosis (4, 54–56).

According to ASAS, MRI scans suggestive of sacroiliitis should 
include presence of subchondral BME in at least two consecutive slices 
or in at least two different locations in a single slice. This was defined 
in order to exclude other structural or inflammatory changes such as 
enthesitis or capsulitis (4, 57, 58).

3 Applications of artificial intelligence 
based on MRI in rheumatoid arthritis

At this moment, the prevalent approach for the preclinical 
diagnosis of RA involves assessing ACPA and RF, yet the sensitivity of 
detecting these biomarkers is not notably high (24, 59, 60). The 
advancement of AI, ML and DL has resulted in a plethora of studies 
showcasing the potential of AI to aid in the early diagnosis, disease 
activity monitoring, and management of RA, through the analysis of 
clinical data, imaging, and laboratory samples. Figure 5 highlights 
studies which described the performance of various AI models 
implemented in the assessment of inflammatory changes through 
MRI in patients with RA.

Tripoliti et  al. (61) devised a method for measuring and 
segmenting inflammatory changes in the hands using MRI T1W 
contrast sequences, involving 25 patients previously diagnosed with 
RA. The study demonstrated a sensitivity of 97,71% and a positive 
prediction rate of 83,35%. However, the number of false positive 
results was quite high, due to the identification of objects in the tendon 
sheaths that cannot be entirely eliminated, which suggests further 
improvement to eliminate false positive results.

Schlereth et al. (62) showcased the feasibility of automatically 
segmenting bone erosions, edema, and synovitis in the hands of 60 RA 
patients undergoing a 48-week treatment with the janus kinase 
inhibitor baricitinib. The segmentation was achieved using a 3D 
residual network (ResNet-3D), and assessments were conducted 
through the RAMRIS score and pre- and post-contrast T1W and T2W 
coronal MRI sequences. Noteworthy is the correlation between higher 
percentages of the area under the receiver operating characteristic 
curve (AUROC) and the area under the precision-recall curve 
(PR-AUC) with increased accuracy of the AI model. Throughout the 
treatment, a reduction in the RAMRIS score was observed, decreasing 
from 20,6 at week 0 to 18,3 at week 48. The AUROC results for bone 
erosions were 86 ± 2%, and PR-AUC was 83 ± 4%, while for edema, 
they were 78 ± 14 and 83% ± 10%, respectively. For synovitis, the 
AUROC was 60 ± 4%, and PR-AUC was 69 ± 3%, considering a smaller 
number of regions of interest (ROI). These findings suggest that the 
neural network model holds promise for potential future applications 
in clinical practice, offering high precision.

More et  al. (22) introduced a DL model named ResNet50 for 
assessing the severity of RA in the knee, relying on the Kelgren 
Lawrence (KL) classification system, using MRI T1W, T2W and PD 
sequences. The study demonstrated a high level of accuracy at 96,85%, 
precision of 98,31%, area under curve (AUC) of 0,98 and a mean 
absolute error (MAE) of 0,015.

Aizenberg et  al. (63) studied the feasibility of an automated 
approach for quantifying BME in the wrists of patients with early RA 
using MRI. The MRI images underwent processing through three 
distinct stages. It was determined that the automated technique for 
quantifying BME serves as a highly effective alternative to the visual 
assessment of BME. The correlation between the two methods—
automatic and visual—proved to be  robust, with a high Pearson 
correlation coefficient (p) (r = 0,83, p < 0,001).

In another study, Aizenberg (64) explored the feasibility of a 
method for quantifying tenosynovitis at the wrist through MRI in 
individuals with early RA. The model achieved very high correlation 
with visual assessment score of tenosynovitis (r = 0,93, p < 0,001). 
However, in contrast to the prior study, this one yielded false positive 
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results because blood vessels and synovitis within ROI were frequently 
misidentified as tenosynovitis during quantitative measurements.

Kubassova et  al. (65) introduced an automated model, 
Dynamika-RA, which significantly improved the quality of data by 
eliminating motion artifacts and reducing the time needed for MRI 
evaluation of synovitis in patients with RA. This advancement suggests 
the feasibility of incorporating this automated technique into clinical 
settings, with a focus on estimating disease progression and evaluating 
therapeutic efficacy.

A different automated model, created by Czaplicka et al. (66), 
focused on evaluating synovitis through MRI utilizing pre- and post-
contrast T1W sequences in RA patients. The study revealed a robust 
correlation between the automatically measured volume and the 
manually calculated synovitis volume, along with the RAMRIS scores.

Gaj et al. (67) developed an automatic segmentation algorithm 
concentrating on detecting synovitis lesions in the wrists of RA 
patients using conditional generative adversarial networks and a 
convolutional network for image segmentation (U-Net). Despite being 
trained on a relatively modest dataset, this algorithm exhibited a 
reasonably satisfactory performance, achieving a Dice coefficient 
of 0,78.

The research conducted by Crowley et  al. (68) assessed the 
viability, reability and feasibility of a computer-aided manual 
segmentation model in RA patients, comparing it with the RAMRIS 
scoring system. While the segmentation method demonstrated 
comparable consistency in quantifying erosions (intraclass correlation 
coefficient - ICC = 0,80) and high intraobserver reliability for both 
erosions (ICC = 0,994) and edema (ICC = 0,996), it exhibited lower 
interobserver reliability for BME (ICC = 0,46) and required a more 

extended timeframe (1–1,5 h for a single patient). In essence, the 
findings suggest that although the method may find application in 
clinical trials, significant challenges persist in terms of time and 
interobserver feasibility.

Further investigations have suggested the feasibility of integrating 
clinical and imaging data into a neural network capable of identifying 
inflammatory changes in RA. The ResNet neural network, as 
developed by Folle et al. (69), showcased the ability to differentiate 
among seronegative RA, seropositive RA, and psoriatic arthritis (PsA) 
based on inflammatory changes observed in MRI. The AUROC results 
indicated an accuracy of 75% in distinguishing seropositive RA vs. 
PsA, 74% for seronegative RA vs. PsA, and 67% for seropositive RA 
vs. seronegative RA. Notably, neural networks predominantly 
classified individuals with psoriasis as having PsA, implying the 
potential existence of a similar MRI pattern associated with PsA in the 
early stages of psoriatic disease.

4 Applications of artificial intelligence 
based on MRI in axial spondyloarthritis

The timely identification of axSpA through the correlation of 
clinical, imaging, and laboratory data holds immense significance 
for both healthcare professionals and patients. While radiography 
was the preferred method for evaluating SIJ many years ago, 
contemporary rheumatologists opt for MRI as the primary 
imaging choice. This shift is attributed to the MRI’s capability to 
detect early axSpA changes, surpassing the limitations 
of radiography.

FIGURE 5

Research articles exploring computer-based techniques, with a focus on AI, in the analysis of MRI data within RA RA/rheumatoid arthritis, BME/bone 
marrow edema, PsA/psoriatic arthritis.
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Research in the field of AI-based MRI assessment emphasizes the 
value of integrating models designed to recognize inflammatory 
changes associated with axSpA. These algorithms play a crucial role in 
achieving significant diagnostic outcomes, aiding not only in disease 
activity monitoring but also in disease management. Figure  6 
highlights recent studies describing various AI models implemented 
in the assessment of inflammatory changes through MRI in patients 
with axSpA.

Rzecki et al. (70) developed a DL-based automatic segmentation 
algorithm for identifying BME through MRI examinations of the SIJ 
in patients diagnosed with axSpA. Following the validation of 
automatic inflammatory change assessments through manual 
evaluations, sensitivity increased from 0,88 to 0,95, specificity from 
0,91 to 0,96, the Spearman correlation coefficient reached 0,866 
between manually and automatically calculated lesion volumes, and 
the ICC was 0,9477. These findings confirm that automatic detection 
of inflammatory lesions is feasible, demonstrating high precision in 
assessing lesion volume.

Bordner et  al. (71) created a DL model, named region-based 
convolutional neural network (mask-RCNN), designed to detect BME 
and predict the presence of active sacroiliitis on MRI based on the 
ASAS criteria (requiring BME to be identified in at least two different 
locations in a single slice). The model’s diagnostic efficacy in predicting 
active sacroiliitis according to ASAS criteria was assessed using 
sensitivity, specificity, Matthews correlation coefficient (MCC), 
accuracy and AUC. The study concluded that the model yielded 
results closely comparable to those of expert evaluations for both BME 
detection in the SIJ and the identification of active sacroiliitis 
according to ASAS criteria.

In another study Lee et al. (72) developed a DL model known as 
ResNet18-based network, using coronal oblique T1WFS contrast-
enhanced (CE) MRI sequences of the SIJ as input data for BME 

detection in patients with axSpA. The study achieved an accuracy of 
96,06% ± 2,83%, precision of 94,84% ± 3,73% and a recall rate of 100%. 
The results suggest that this study’s approach could serve as a valuable 
tool in clinical practice.

In a study, Lin et al. (73) introduced a DL model for the detection 
of BME utilizing STIR MRI sequences of the SIJ. The model’s results 
were compared with evaluations by a radiologist and a rheumatologist, 
exhibiting sensitivity and specificity similar with the radiologist’s 
assessment but surpassing that of the rheumatologist. Similarly, 
Faleiros et  al. (74) utilized ML techniques to demonstrate the 
capability of identifying BME in patients with axSpA using MRI STIR 
sequences with promising results.

A retrospective study conducted by Lee et al. (75) involved the 
creation of two DL models: the R-CNN network for identifying SIJ by 
extracting ROI from MRI STIR sequences and the Visual Geometry 
Group-19 (VGG-19) network for detecting BME in patients with 
axSpA. The average AUROC accuracy was 0,898 and 0,830 at the 
image level and 0,801 and 0,827 at the patient level. These findings 
highlight the potential of DL techniques in diagnosing active 
sacroiliitis via MRI according to the ASAS criteria.

Zheng et  al. (76) utilized a DL-driven MRI image assessment 
technique to detect inflammatory alterations in the hip among 
individuals with axSpA. The findings closely matched those of 
specialized radiologists, underscoring the substantial potential of this 
model to enhance diagnostic precision in axSpA patients, particularly 
emphasizing its relevance in clinical evaluations.

AxSpA diagnosis is based on the detection of both inflammatory 
changes and structural alterations (subchondral erosions, sclerosis, 
ankylosis) occurring at the SIJ. In the retrospective study conducted 
by Bressem et  al. (77), a DL model was developed for the MRI 
assessment of inflammatory and structural lesions in SIJ in patients 
with axial axSpA. The results revealed a sensitivity of 88% and 

FIGURE 6

Research articles exploring computer-based techniques, with a focus on AI, in the analysis of MRI data within axSpA axSpA/axial spondyloarthritis, 
BME/bone marrow edema.
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specificity of 71% for inflammatory changes, and a sensitivity of 85% 
and specificity of 78% for structural changes. The DL network 
achieved an AUC of 0,94, signifying a high level of performance.

Jans et al. (78) and Morbée et al. (79) conducted assessments of 
structural lesions using a synthetic CT, where the images obtained are 
generated from MRI sequences through a DL-based method. Their 
findings concluded that images obtained through synthetic CT 
demonstrated higher accuracy compared to T1W MRI sequences in 
detecting structural changes in patients with axSpA.

Ye et  al. (80) developed and validated a nomogram model 
incorporating clinical risk factors and radiomic data to distinguish 
between axSpA and non-axSpA patients. The outcomes underscore 
the efficacy of this model, suggesting its potential implementation to 
enhance and simplify the process of making the best clinical decisions.

5 Discussion

The purpose of this review was to reveal the current state of AI 
integration in MRI for identifying inflammatory changes in RA and 
axSpA. The findings indicate that AI significantly contributes to the 
early detection of synovitis, BME, and bone erosions in these two 
rheumatic diseases, as supported by various studies (62, 63, 71, 75).

However, a constraint of this review is that it is focused only on 
the changes identified through MRI in two of the most common 
inflammatory joint pathologies, namely RA and axSpA. We mention 
that this research area was deliberately chosen because, in recent years, 
MRI has been on an upward trend regarding the early assessment of 
key changes in these two pathologies, surpassing radiography and CT.

Another limitation identified in our review is that the number of 
the studies to be  reviewed was pretty narrow, but based on our 
research, there is a significantly greater number of published papers 
over the years using AI models based on ultrasonography, radiography 
and CT, compared to the number of published studies using MRI to 
assess changes in RA and axSpA.

AI’s contribution has been demonstrated to enhance the accuracy 
of diagnosis in both RA and axSpA through the use of various datasets 
(Figure 7).

The increasing number of recent AI publications using MRI to 
assess RA and axSpA highlights the researchers’ interest for innovative 
methodologies, particularly the integration of neural networks with 
the aim to improve early diagnosis (81).

AI algorithms require thorough validation and testing using 
extensive and diverse datasets. This serves as a crucial measure to 
ensure their robustness and applicability across a broad spectrum of 
patient populations and clinical scenarios. Additionally, incorporating 
AI tools into existing clinical workflows poses distinctive challenges. 
These challenges encompass the creation of user-friendly interfaces, 
the implementation of comprehensive training programs for 
healthcare providers in AI usage, and the establishment of 
comprehensive guidelines for their application.

Adding to these challenges is the process of obtaining regulatory 
approval, a common obstacle when introducing any innovative 
medical technology. Furthermore, ethical considerations related to the 
use of AI, particularly concerning patient consent and data privacy, 
are yet to be thoroughly explored and resolved.

To navigate these complexities and bridge the gap between research 
and practice, fostering multidisciplinary collaborations is of paramount 

importance. Partnerships that involve AI researchers, clinicians, 
patients, policymakers, and regulatory bodies can facilitate the creation 
of expansive, representative datasets for algorithm training and 
validation. They can also assist in developing comprehensive guidelines 
for AI use in healthcare and creating strategies to effectively integrate 
AI into clinical practice.

The field of rheumatology stands to gain significantly from the 
integration of AI, and concerted efforts are expected to eventually 
overcome these challenges. This would lead to the incorporation of 
these state-of-the-art tools as a routine aspect of our clinical toolkit, 
fundamentally transforming our approach to diagnosing, classifying, 
and managing rheumatic diseases.

It is noteworthy in this context that the majority of the existing 
research on the application of MRI in rheumatology is retrospective. 
Therefore, there is a clear need for additional prospective studies. 
These studies would validate the use of MRI in clinical practice and 
offer a more comprehensive understanding of the potential and 
limitations of AI in this domain (12).

While recent studies on AI applications have shown promising 
results, specific constraints and challenges still hinder their seamless 
integration into clinical practice (18). AI methods require a diverse 
and extensive set of training data for both testing and validation. This 
is a fundamental step that AI techniques must undergo to attain 
viability and applicability across a broad spectrum of patients (72). AI 
faces a limitation in its proficiency for a specific task within a 
predefined context, restricting its ability to make decisions beyond the 
known task or context (73, 82–86). Essentially, AI is trained for a 
particular function and operates within a predetermined framework. 
For instance, AI algorithms are usually trained for a singular task, yet 
patients undergoing imaging examinations often exhibit multiple 
pathologies, requiring an algorithm trained for complex interpretation. 
Encountering difficulties in defining reference standards, such as 
inaccurate lesion segmentation or diagnostic uncertainties, can hinder 
the progress and limit the potential of an AI model.

Another factor that must not be  ignored involves ethical 
considerations and the protection of personal data. There might 
be  instances where patients decline participation in a study that 
incorporates an AI model due to a lack of information regarding the 
subsequent handling of their data.

A significant concern arises when an AI model contains a system 
error, as this could lead to severe consequences for a broad population 
if the model manages to proliferate (18).

While implementing AI algorithms in imaging, it is essential to 
take into account the mutual influence between the model’s accuracy 
and the quality of the input images. Therefore, as the quality of the 
obtained images improves, the accuracy of the AI model increases. 
Hence, AI specialists must be open to new approaches in exploring 
methods of visualizing and reconstructing images. These techniques 
need to be adapted to identify the specific characteristics of a condition 
with enhanced reproductibility. Therefore, it is important for experts 
to continuously adjust the AI algorithms to align with these emerging 
imaging methods or protocols (33).

Future advancements in AI models could enhance the accurate 
identification of changes in MRI sequences, potentially enabling the 
diagnosis of specific rheumatic diseases based on subtle characteristics 
alone. There is also potential for integrating MRI data with clinical, 
laboratory and genetic information to improve diagnostic accuracy. 
Training healthcare professionals, particularly radiologists and 
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rheumatologists, to effectively use and interpret AI models 
implemented in MRI is crucial for their integration into clinical 
practice. Last but not least, long-term follow-up of patients involved 
in trials can provide valuable information about the progression of the 
disease, allowing for more precise monitoring and early treatment (72).

6 Conclusion

MRI is the most effective imaging method to detect inflammatory 
and structural changes, invisible to classic radiography. Through the 
integration of AI algorithms into MRI, it becomes feasible to achieve 
early identification of inflammatory changes, assess therapeutic 
efficacy, and monitor the activity of RA and axSpA.

In recent studies, the objective of developing and implementing AI 
in medical imaging follows a similar pattern. At times, the need for 
automation arises as an alternative to visual scoring due to its potential 
for reduced cost, time efficiency, and subjectivity. This can lead to 
decreased interobserver and intraobserver variability, requiring less 
extensive training and specific examiner skills. This objective is 
particularly pertinent in clinical trials, where the accurate detection of 
subtle changes or treatment effects is crucial. Additionally, automation 
is sought after for its potential to offer more specific measurements 
than visual scoring, as computer programs demonstrate greater 
consistency and are less prone to distraction by other 
image information.

AI exhibits significant potential in the field of rheumatology MRI, 
providing opportunities in disease diagnosis, classification, and 
management. By leveraging the capabilities of AI algorithms to 
scrutinize intricate imaging data like MRI, clinicians can enhance 
decision-making and formulate personalized treatment plans for 
individuals with rheumatic diseases. Nevertheless, challenges persist, 
including the necessity for extensive, high-quality datasets and the 
seamless integration of AI into clinical practice. Future research 
endeavors should prioritize overcoming these challenges and delving 

into novel applications of AI in rheumatology, aiming to enhance 
patient outcomes and revolutionize the field.
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FIGURE 7

Implication of AI, data types and data sources in early diagnosis, early intervention and disease management of RA and axSpA RA/rheumatoid arthritis. 
axSpA/axial spondyloarthritis, ANN/artificial neural networks.
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Glossary

RA rheumatoid arthritis

axSpA axial spondyloarthritis

MRI magnetic resonance imaging

AI artificial intelligence

ML machine learning

DL deep learning

SIJ sacroiliac joints

RF rheumatoid factor

CRP C-reactive protein

ACPAs anti-cyclic citrullinated peptide antibody

ESR erythrocyte sedimentation rate

T2T treat-to-target

HLA-B27 leukocyte antigen B27

DMARDs disease-modifying anti-rheumatic drugs

BME bone marrow edema

CT computed tomography

ANN artificial neural networks

CNNs Convolutional Neural Networks

FDA United States Food and Drug Administration

OA osteoarthritis

SA spondyloarthritis

AS ankylosing spondylitis

OMERACT Outcome Measures in Rheumatology

RAMRIS rheumatoid arthritis magnetic resonance imaging scoring

T1W T1-weighted

T2W T2-weighted

FS fat saturation

STIR Short Tau Inversion Recovery

MCP metacarpophalangeal

Gd gadolinium

IR inversion recovery

PD proton density

TIRM Turbo Inversion Recovery Magnitude

SNR single-to-noise ratio

ASAS Assessment of SpondyloArthritis international Society

TSE turbo-spin-echo

GRE gradient-echo

IP in-phase

OOP out-of-phase

ResNet residual network

AUROC area under the receiver operating characteristic curve

PR-AUC area under the precision-recall curve

ROI region of interest

KL Kelgren Lawrence

MAE mean absolute error

p Pearson correlation coefficient

ICC intraclass correlation coefficient

PsA psoriatic arthritis

mask-RCNN region-based convolutional neural network

MCC Matthews correlation coefficient

CE contrast-enhanced

VGG Visual Geometry Group
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